66 research outputs found

    Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    Get PDF
    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc

    Restructurable Controls

    Get PDF
    Restructurable control system theory, robust reconfiguration for high reliability and survivability for advanced aircraft, restructurable controls problem definition and research, experimentation, system identification methods applied to aircraft, a self-repairing digital flight control system, and state-of-the-art theory application are addressed

    On-board automatic aid and advisory for pilots of control-impaired aircraft

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1988.Bibliography: leaves 193-195.by Elaine Ann Wagner.Ph.D

    Reconfiguration and bifurcation in flight controls

    Get PDF
    Numerous aviation accidents have been caused by stuck control surfaces. In most cases the impaired aircraft has sufficient redundancy to reconfigure the flight. However, the actions that the pilot needs to make could be counter intuitive, demanding and complicated. This is due to the drastic changes in the system's dynamics thatare caused by the nonlinearities, the loss of control authority and the disturbance imposed by the stuck surface. The reconfiguration of the flight laws will alleviate the work load on the crew and give them a better leeway to safely land the aircraft. The fault tolerant scheme that is adopted here is a multiple model one with a finite number of reconfigured controllers. Each reconfigured controller consists of a nonlinear output regulator and a constant gain nonlinear observer. The guidelines available for designing the nominal stabilizer are not appropriate for the reconfigured systems.The ability of the control law to reconfigure the aircraft is limited by saturation of the control surfaces, bifurcation points and stability limits. Identifying and characterizing these limitations is the first step in systematically improving the fault tolerant design. The computational results were obtained using a continuation method based on the Newton-Raphson and Newton-Raphson-Seydel methods. The numerous subtleties in employing these tools, when bifurcation points are clustered together, when many eigenvalues are near the origin or when the eigenvalues nearest the origin are complex, are addressed in this work. The reconfigured controller design for all possible single surface failures and the bifurcation analysis of the nominal and reconfigured systems was carried out on a real aircraft, namely the F-16. This was facilitated by the development of a unique, high fidelity, six degree of freedom, F-16 model.Ph.D., Mechanical Engineering -- Drexel University, 200

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Robotics and the Lessons of Cyberlaw

    Get PDF
    Two decades of analysis have produced a rich set of insights as to how the law should apply to the Internet’s peculiar characteristics. But, in the meantime, technology has not stood still. The same public and private institutions that developed the Internet, from the armed forces to search engines, have initiated a significant shift toward developing robotics and artificial intelligence. This Article is the first to examine what the introduction of a new, equally transformative technology means for cyberlaw and policy. Robotics has a different set of essential qualities than the Internet and accordingly will raise distinct legal issues. Robotics combines, for the first time, the promiscuity of data with the capacity to do physical harm; robotic systems accomplish tasks in ways that cannot be anticipated in advance; and robots increasingly blur the line between person and instrument. Robotics will prove “exceptional” in the sense of occasioning systematic changes to law, institutions, and the legal academy. But we will not be writing on a clean slate: many of the core insights and methods of cyberlaw will prove crucial in integrating robotics and perhaps whatever technology follows

    Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Get PDF
    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included

    City of Augusta 2016 Annual Report

    Get PDF
    corecore