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Abstract

Reconfiguration and Bifurcation in Flight Controls
Suba Thomas

Prof. Bor-Chin Chang &
Prof. Harry G. Kwatny

Numerous aviation accidents have been caused by stuck control surfaces. In most

cases the impaired aircraft has sufficient redundancy to reconfigure the flight. How-

ever, the actions that the pilot needs to make could be counter intuitive, demanding

and complicated. This is due to the drastic changes in the system’s dynamics that

are caused by the nonlinearities, the loss of control authority and the disturbance

imposed by the stuck surface. The reconfiguration of the flight laws will alleviate the

work load on the crew and give them a better leeway to safely land the aircraft. The

fault tolerant scheme that is adopted here is a multiple model one with a finite num-

ber of reconfigured controllers. Each reconfigured controller consists of a nonlinear

output regulator and a constant gain nonlinear observer. The guidelines available for

designing the nominal stabilizer are not appropriate for the reconfigured systems.

The ability of the control law to reconfigure the aircraft is limited by saturation of

the control surfaces, bifurcation points and stability limits. Identifying and character-

izing these limitations is the first step in systematically improving the fault tolerant

design. The computational results were obtained using a continuation method based

on the Newton-Raphson and Newton-Raphson-Seydel methods. The numerous sub-

tleties in employing these tools, when bifurcation points are clustered together, when

many eigenvalues are near the origin or when the eigenvalues nearest the origin are

complex, are addressed in this work. The reconfigured controller design for all possi-

ble single surface failures and the bifurcation analysis of the nominal and reconfigured

systems was carried out on a real aircraft, namely the F-16. This was facilitated by

the development of a unique, high fidelity, six degree of freedom, F-16 model.
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CHAPTER 1: INTRODUCTION

All systems are prone to failures, in spite of regular maintenance. In flight control

systems failures can be catastrophic, and in addition to loss of life, have economic

ramifications and erode customer confidence. The failures can be structural, actuator,

and/or sensor failures. This work deals with a special class of failures involving stuck

actuators. In the event of a failure, the control law is reconfigured to accommodate the

changes in the system. A bifurcation analysis is essential, to evaluate the reconfigured

system for faults of varying severity and other parameters variations, and to improve

the design and accommodate a larger flight envelope.

1.1 Motivation

“An airline pilot’s job involves countless hours of sheer boredom punctuated by mo-

ments of sheer terror”, is an old adage is commercial aviation [1]. At such crucial

moments, pilots are more often that not at a loss to take the right decision. This can

be attributed to a number of reasons. Failure scenarios are not encountered routinely

by pilots who may be exposed to such environments only during the training period.

Moreover, flight simulators currently used for pilot training are not truly represen-

tative of the flight conditions of the failed aircraft. The manufacturers either “hold

the last value” or extrapolate to approximate the actual conditions. The dynamics

of the crippled aircraft could wander into highly nonlinear regimes, depending on the

severity of the fault and the conditions prior to the failure. Thus, the actions that

need to be taken may be unfamiliar, counter intuitive, and complicated. Worse still,

is the possibility that a failure could destabilize the system. It is desirable to at least

stabilize the impaired system, and give the crew a fighting chance to safely land the

aircraft.

Statistics reveal that aviation accidents resulting from loss of control account
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for a substantial percentage of the total aviation accidents [2]. Prominent aircraft

accidents that have been attributed to a stuck actuator caused by mechanical failure

are reviewed below:

Boeing 747SR, August 12, 1985

On August 12, 1985 Japan Airlines flight 123, a Boeing 747SR, took off from Haneda,

Tokyo and was headed to Osaka. Six minutes after take off, the control tower received

a distress signal from JAL123 requesting permission to return to Haneda. Having

granted permission, the controller observed that the aircraft was making a gradual

turn of 500 to the right instead of a 1770 turn. The aircraft was never able to make

the maneuver and eventually crashed on the slopes of Mount Osutaka, killing the

entire crew and 505 of the 509 passengers. This is the world’s worst accident ever

involving a single airliner. The cause for the crash was determined as the complete

loss of the flying surfaces in the tail, and the control surfaces to a certain extent on

the wings, as a result of an explosive decompression of its rear vertical tail plane. [3]

DC-10, July 19, 1989

On July 19, 1989 United Flight 232 was making a right turn in the skies over Iowa,

when there was a loud bang from the rear of the aircraft, causing the entire aircraft to

shudder. The DC-10 was enroute to Chicago from Denver. Instead of straightening

out the aircraft continued to turn right and loose altitude. The inboard ailerons were

sticking up and none of the controls seemed to be damaged or moving. Using mostly

the port and starboard engine, and with brilliant airmanship the crew directed the

aircraft to Sioux City and “managed” to land. Of the 285 passengers and 8 crew

members, 185 people survived. It was later found that all the three hydraulics in the

empennage was ruined from impact with fragments from the tail engine. The engine’s

fan disk was eventually recovered and pieced together. Two large fractures were found
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in the disk, indicating overstress failure. The 17 year old disk had undergone routine

maintenance and six times had been subjected to fluorescent penetration inspections.

Investigators concluded that human error was responsible in improperly identifying

the fatigued area before the accident. [4]

Boeing 737-300, September 8, 1994

An USAir Boeing 737-300 crashed at Aliquippa, 38km NW of Pittsburgh, Pennsyl-

vania on September 8, 1994 killing all 5 crew members and 127 passengers. The

pilot was positioning to land at the Greater Pittsburgh International Airport and

was rolling out of a left turn when the aircraft suddenly entered the wake vortex of

a Delta Airlines Boeing 727 that preceded it by about 69 seconds (4.2mls). This

resulted in the aircraft continuing to roll left. The first officer manually overrode the

autopilot without disengaging it by putting in a large right-wheel command at a rate

of 150deg/sec. Control was not regained and the aircraft impacted the ground nose

down. The National Transportation Safety Board (NTSB) determined the probably

cause of the accident to have been a loss of control resulting from the movement

of the rudder surface to its blowdown limit. The rudder most likely deflected in a

direction opposite to that commanded by the first officer as a result of a jam of the

main rudder PCU servo valve secondary slide to the servo valve housing offset from

its neutral position and over travel of the primary slide. [5]

MD-83, January 31, 2000

On January 31, 2000 Alaska Airlines AL261, a McDonnell Douglas MD-83, was on

flight from Lic Gustavo Diaz Ordaz International Airport, Puerto Vallarta, Mexico,

to Seattle-Tacoma International Airport, with an intermediate stop planned at San

Francisco International Airport. Near Los Angles the crew reported problems with

the stabilizer trim, and mentioned that they were unable to control the pitch. Shortly
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afterwards they claimed to have regained control and requested an emergency stop at

Los Angles International Airport. The last radio contact with the crew came as the

aircraft passed 17,000 feet at an unusually slow speed of 119 knots. A park ranger,

along with the pilots of a nearby aircraft, reported seeing the aircraft plunge into the

Pacific Ocean in an inverted flight attitude. The NTSB determined that the in-flight

failure of the horizontal stabilizer trim system jackscrew assemblys acme nut threads

resulted in the loss of the pitch control. The thread failure was caused by excessive

wear resulting from Alaska Airlines insufficient lubrication of the jackscrew assembly.

[6]

These examples attest that the debilitated aircraft does not crash on inception of

the failure. Thanks to the inherent redundancy available in flight control systems,

the safety of the impaired aircraft can almost always be maintained. Expecting the

crew to capitalize on the redundancy, and ensure the safety of the flight in such

circumstances, is a proposition that is left to chance with the odds heavily stacked

against them. A systematic design and evaluation of a control system for the impaired

system ensures higher survival capabilities and thus lower accident rates.

1.2 Literature survey

Fault tolerant control systems have generated a lot of interest and subsequently ex-

tensive research, especially in the context of flight control systems. The recovery

strategies can be broadly categorized as passive or active. Passive fault tolerant con-

trol schemes are essentially robust control techniques in which structural failures are

modelled as uncertainty regions around a nominal model. Although this approach

can accommodate any failure within the stability radius, it is usually very conserva-

tive, and cannot guarantee that it can handle unanticipated and multiple failures. In

the alternative active approach the fault is dealt with explicitly. The active approach

is further classified as online and offline. In the online approach, the fault tolerant
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control system adapts to the various faults in real time after the occurrence of the

failure; while in the offline approach a set of controllers corresponding to various fail-

ure scenarios are predesigned and stored on the in-flight computers, and are engaged

on the occurrence of the corresponding failure. The online and offline fault-tolerant

controllers are usually referred to as the restructured and reconfigured controllers

respectively. It should be noted that this terminology has been used interchange-

ably. The online approach usually entails substantial computation power and lacks

determinism and in some cases stability. A offline approach, on the other hand, is

extensive, has rapid availability, guaranteed performance and may demand prodigious

memory. Some of the well know fault tolerant schemes [7] are briefly discussed below.

A passive online scheme based on a neural network based adaptive control is inves-

tigated in [8] and [9]. In this design the nonlinear system is first feedback linearized,

and the failure is cast as an inversion error. The control law is then formulated as the

sum of a stabilizing linear compensator, the tracking signal, and an adaptive signal

that is determined by the neural network to offset the inversion error. The control

scheme was demonstrated on the Tailless Advanced Fighter Aircraft (TAFA) and the

X-36. This approach can handle structural failures very well because of the neural

network component in the control law, thus allowing for no assumptions to be made

about the failure.

The Model Reference Adaptive Control (MRAC) approach [10] is an active online

approach that formulates the fault tolerant control problem as a tracking problem,

in which certain variables of the impaired system are required to track those from a

reference model. The reconfigured law is constructed as a state feedback augmented

with the reference signal. An input disturbance is also assumed. The goal is then to

match the failed system dynamics with that of the reference model. Two approaches

have been proposed for this, namely, indirect and direct. In the indirect approach, the

control parameters are computed based on the plant estimates which are constantly
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updated. In the direct approach, the control parameters are estimated directly. A

reconfigurable scheme embodying the same philosophy is also proposed by Tao et al

[11]. The ideas were extended to affine nonlinear systems [12], based on grouping of

the healthy actuators. This increases the complexity of the adaptive scheme. The

major drawback of these approaches is that they assume that the failed aircraft model

can be determined online. This consumes a lot of memory and time, especially for

aircrafts, and could compromise the safety of the flight before all the parameters are

computed.

In [13], a multiple model, switching and tuning (MMST) scheme is adopted to

achieve an offline fault-tolerant scheme. Models of various failure scenarios are en-

visioned and corresponding fixed or adaptive controllers are designed a priori. They

admit that the fixed controller is preferable to an adaptive one. However, because

their fixed models can represent only a fixed number of possible environments while

there uncountable possible environments, they shy away from using an exclusively

fixed model approach (which makes it an off line approach). In the event of a failure,

switching is based on cost functions assigned to the various models and the controller

corresponding to the closest model is chosen. If an adaptive controller is chosen then it

tunes the parameters slowly over time to improve or achieve the desired performance.

In order to circumvent the need to model every failure scenario in the MMST

scheme, the Interacting Multiple Model (IMM) scheme is proposed in [14], [15], and

[16]. In this approach it is assumed that every possible failure can be modelled as a

convex combination of models in a pre-determined model set. The specific combina-

tions of models that make up a failure is determined online. Numerous techniques

have been put forward to determine the control law once the failure is identified.

The major shortcoming of IMM is that there is no guarantee that a failure can be

represented in terms of the models in the model set. Also, there are no guidelines to

define the model set.
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In the Pseudo Inverse Method (PIM) [17], the feedback gain of the reconfigured

controller is computed by equating the closed loop matrices of the nominal and failed

systems. This involves computing the pseudo-inverse of the input matrix of the

failed plant and hence the name. The major drawback of this method is that there

is no guarantee that the system will be stable. Gao and Antsaklis [18] achieved

stability by reformulating it as a constraint minimization problem. However, the

solution looses its optimality when extended to the MIMO case. Another possible

problem with the PIM is that it assumes that the nominal and failed plant matrices

are accurately known. In the control mixer approach [19], which is based on the

PIM, the control mixer module redistributes the signals in the closed loop systems so

that the reconfigured system has the same or optimally approximate function as the

nominal system. This method although attractive in terms of the ease in computation

and implementation, was based on PIM and has no stability guarantees. Yang et.

al. [20] proposed the Robust Control Mixer Module Method in which the stability,

performance, and robustness can be considered simultaneously, but the mixer module

increases becomes extremely complex due to the dynamic module.

Eigenstructure assignment for impaired aircrafts have been explored in [21] and

[22]. The goal has been to match the characteristics of the impaired system to the

original system, as much as possible. The biggest hindrance in this approach is that

the best possible choice of eigenvalues and eigenvectors for failed aircraft dynamics

is not yet understood. Moreover, all proposed designs are linear and based at the

original equilibrium condition of the aircraft. In the event of a failure the aircraft

dynamics could wander far away from the original conditions rendering the model on

which the design is based irrelevant.

The concept of a Propulsion Controlled Aircraft (PCA) was developed at NASA

Dryden Flight Research Center [23]. The idea is to use only engine thrust in the

event of a complete failure of all control surfaces. Differential and symmetric throttle
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inputs are used to control the roll and flight paths respectively. It was also found that

it is very difficult to make a safe landing using just thrust control. This approach can

be considered as a special case of the MMST scheme in which there is only one failure

mode, namely that all the control surfaces are lost. It is also important to note that

in all the tests the aircraft is in perfectly trimmed conditions before the reconfigured

controller was engaged.

In [24] and [25], the problem of designing the reconfigured problem was treated as

a disturbance rejection problem. It was recognized that the jammed actuator not only

ceases to be an effective control input but also acts as a persistent disturbance on the

impaired system. This is very important in flight control systems where unlike certain

other systems, the impaired system dynamics cannot be just recast as the nominal

system without the failed control input. The reconfigured controller was designed

and simulated for a generic aircraft model, and it was observed that nonlinear terms

in the control law provided a larger window of safety.

1.3 Problem formulation

Consider flight control systems of the form

ẋ = f(x,uo)

y = h(x)

where x ∈ Rn is the set of states, uo ∈ Rp+1 is the set of control inputs, and y ∈ Rm

are the measurements . During normal operations, suitable control laws ensure that

the desired performance criteria are satisfied. Assume that, suddenly, one of the

control surfaces is jammed. The dynamics of the system changes to

ẋ = f(x,u, µ)
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µ̇ = 0

y = h(x) (1.1)

where µ is the failed surface and u are the remaining effective control inputs. The

failed surface not only ceases being an effective control input but also acts as persistent

disturbances on the system. This renders the original controller - also referred to as

the nominal controller - ineffective in sustaining the nominal performance, and can

even cause the system to become unstable. We approach the problem by recognizing

that in the event of a failure, via a stuck actuator, there is a considerable change in

the structure of the system. With one of the control inputs unavailable and with the

effect of the incessant disturbance it may not be possible for the performance of the

debilitated system to be on par with the nominal system. However, we wish to design

a controller that rejects the disturbance and also satisfies certain critical performance

requirements. The reconfigured controller must respect the limitations imposed by

the control bounds. It is also desirable that the reconfigured controller is valid for all

stuck positions and doesn’t need a priori information on the actual stuck position.

1.4 Solution strategy

The fault-tolerant flight control system that is adopted here is a multiple model

switching scheme [13], [26], with predesigned controllers for all possible failure sce-

narios. Each controller is designed as a regulator with disturbance rejection capa-

bilities as in [25]. In the event of a fault, it is assumed that a Fault Detection and

Isolation (FDI) mechanism [27] identifies and isolates the failure and makes a switch

to the appropriate controller. If there is substantial delay in this process the aircraft

dynamics could become highly nonlinear. In the case of asymmetric failures the de-

coupling between the longitudinal and lateral dynamics is rendered untenable. Thus

the reconfigured controller design should be based on a model that captures the es-
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sential nonlinearities of the system. The reconfigured controller consists of a regulator

and an estimator. The regulator achieves regulation of certain critical variables of

the impaired aircraft while simultaneously negating the disturbance imposed by the

failed control surface. The estimator/observer estimates the stuck actuator position,

which is required by the regulator. Consequently, the reconfigured controller does not

require the a priori knowledge of the stuck position. In this design strategy, we en-

vision a particular reconfigured controller design to accommodate all failures arising

from a specific stuck actuator or group of stuck actuator surfaces, and thus we have a

fault tolerant system with a finite number of predesigned controllers and guaranteed

performance.

The reconfigured aircraft encounters limitations that are imposed via lack of con-

trol authority, bifurcation points and stability boundaries. It is necessary to ascertain

and understand these limitations in order to attempt to enlarge the safety envelope.

The issues of saturation of control inputs and the occurrence of bifurcation points

can be addressed by a feasible choice of regulated variables, that do not compromise

flight safety. It would be desirable to steer clear of bifurcations; it may however not

be an option in failure scenarios. At bifurcation points the linear system has degen-

eracies, and special controllers need to be implemented. The stability envelope can

be enlarged by a design based on a better understanding of the aircraft dynamics and

better reconfigured controller designs.

1.5 Contributions of the thesis

The thesis has four major contributions:

1. A set of mathematical and computer simulation models were developed for the

F-16 aircraft. These high fidelity six degree of freedom models are indispensable

in the design and evaluation of the nominal and fault-tolerant controllers, and
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in carrying out the bifurcation analysis.

2. The bifurcation analyses of the F-16 in level flight and in coordinated turn

conditions were carried out from a control systems perspective. The analysis was

done for the nominal and various failure scenarios. This served two purposes:

a. It resulted in a better understanding of the F-16 in terms of the control

issues at bifurcation points and the limitations associated with specific

reconfigured control designs.

b. It helped in identifying numerical issues and subtleties associated with

obtaining bifurcation diagrams. This knowledge would contribute greatly

to automating the bifurcation analysis.

3. Normal form nonlinear observers - that estimate the stuck actuator positions

- were constructed using a systematic and elegant method of transformation,

namely, Lie transformation. This systematic approach is imperative for large

systems and is also essential in automating the construction. The evaluation

of several small systems using a coded Mathematica function showed that the

constant gain observer is the most robust.

4. Controller designs:

a. A stability augmentation system for the nominal system was designed ac-

cording to the guidelines in the literature. This is important in order to

realistically evaluate the delay that reconfigured designs could accommo-

date.

b. Fault tolerant controllers were designed and evaluated for the various fail-

ure scenarios. The stabilizers were based on an LQR design with unit

weighting on all the states and effective control variables. It was found
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that this design was superior to the stabilizer designs based on the flying

qualities of the nominal system.

Research on developing fault tolerant controllers has been ongoing for almost two

decades, and yet, with the exception of the work done at NASA Dryden [23], none

of the other approaches have been vetted and implemented on real aircrafts. This

chasm between theory and practice in the flight safety community can be attributed

to the want of the necessary mathematical models to verify and evaluate the proposed

solutions. The vast majority of the examples involve other simpler physical systems

or highly simplified aircraft models. A prominent contribution of this thesis has

been the development of nonlinear six degree of freedom mathematical and computer

simulation models for the F-16. This enables the development, verification, and

evaluation of demonstrable fault tolerant flight control laws.

The mathematical models and computer simulation models of the nonlinear six

degree of freedom F-16 aircraft were developed using the symbolic computing program

Mathematica [28], supplemented with the modelling and control design package TSi

ProPac [29]. While there are several simulation models available for the F-16, our

process is unique in that we build a symbolic model that can be used for control

system design (either linear or nonlinear) as well as a simulation model in the form of

optimized C-code that compiles as a SIMULINK S-function. The symbolic model can

be manipulated in various ways using standard Mathematica or specialized ProPac

constructions. For example, linearized models can be derived or even parameter

dependent linear families of models [30] can be obtained. In addition, the aerodynamic

forces and moments, that are used in the model, are obtained using a global nonlinear

parametric modelling technique [31], [32], which allows the model to be valid in a large

flight envelope. Thus, these high fidelity models are relevant and useful in designing,

simulating, validating, and assessing the various controllers and in investigating the

limitations of the nominal and reconfigured F-16 vis-à-vis bifurcations, stability, and
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available control authority.

The second contribution has been in the area of bifurcation analysis for flight

control systems. Bifurcation analysis for dynamical systems is a well established field

[33], [34]. There have also been numerous studies of bifurcations in aircraft dynamics

[35], [36], [37], [38], [39]. Software packages like AUTO [40] have been developed to

automate bifurcation analysis in dynamical systems. However bifurcation analysis

for control systems is a nascent research area and is associated with trying to regu-

late the system’s variables. The tools that are needed to carry out the analysis are

well developed [41] and have been used in earlier works [42], [43]. In the analysis

of the F-16 there were several issues in implementing these techniques because the

aircraft had bifurcation points that clustered together and also had eigenvalues of

an essential Jacobian that were in close proximity. These issues were ironed out and

bifurcation analysis was carried out for the nominal and reconfigured aircrafts in level

and coordinated turn conditions. This analysis is essential to assess and improve the

reconfigured controller design methodologies.

Bifurcation analysis of the nominal system was carried out to provide a backdrop

to the analysis of the reconfigured systems. The nominal F-16 had three bifurcation

points each, in the level flight and coordinated turn conditions. The bifurcations are

associated with regulation of the aircraft’s speed, flight path, and orientation. The

speed of the aircraft and the values of the longitudinal variables at which the bifurca-

tions occur do not differ significantly between the two cases. At the bifurcation points

in level flight, there is a transmission zero at the origin, the aircraft is uncontrollable

and there are dependent inputs. In the bifurcations associated with the coordinated

turn, the aircraft loses observability and has dependent outputs, in addition to rea-

sons for the bifurcations in level fight. Most bifurcation points are associated with

aircraft stall. Tumbling stall and an emergent spin that transitions to a roll departure

was also observed.
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A valuable application of the bifurcation analysis is the evaluation of the recon-

figured system with respect to variations in the stuck control surface position. This

helps in assessing the limitations of specific control formulations. Bifurcation analy-

sis for the different reconfigured systems, namely, stuck, left elevator, right elevator,

aileron, and rudder, was carried out in both level and coordinated flight. Bifurcation

analysis with velocity as the parameter was also considered. The variables that are

regulated are the aircraft’s velocity and orientation. The reconfigured controller for

the aileron failure is able to handle all stuck positions of the aileron. In the case of

the left/right elevator and rudder failure, the reconfigured systems run out of aileron

control. A failure of the elevator surface on the aircraft’s side that is into the turn, is

more difficult to mange than the one on the other side. In all, 22 bifurcation points

were identified in the reconfigured systems. At the bifurcation points, there are de-

pendent inputs, transmission zeros, the system becomes uncontrollable, unobservable,

and in the majority of the cases have dependent outputs. Some bifurcation points

are stable while others are not. The unstable bifurcation points are associated with

aircraft stall.

The bifurcation diagrams obtained in this work will serve as a springboard and

benchmark for automating bifurcation analysis for control systems. The diagrams

were generated in Mathematica using Newton-Raphson and the Newton-Raphson-

Seydel methods. In the vicinity of bifurcation points, the Newton-Raphson’s method

fail to converge and we must resort to Newton-Raphson-Seydel’s method or a varia-

tion. Techniques to speed up the analysis are also outlined in the thesis.

In this work, avenues to improve the design proposed in [25] have been explored.

The reconfigured controller in [25] had three components, namely a nonlinear reg-

ulator that annulled the disturbance, a linear stabilizer, and a linear observer that

estimated the stuck actuator position. A natural idea was whether the design could

be improved with a nonlinear observer gain. Normal form nonlinear observers were
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constructed using a systematic and elegant method of transformation, namely, Lie

transformation [34]. A methodology was developed in which the transformation,

which is the solution of a Homological Equation, and the observer gain matrix, which

is a series of matrix homogenous polynomials, can be sequentially computed. This

approach is vastly more efficient than a brute force approach, especially for large

systems. The process was automated as a Mathematica function. The automation

helped us to quickly evaluate normal form nonlinear observers for numerous small

systems, and it was concluded that the first order normal form observer is the most

robust. Thus in this thesis the structure proposed in [25] is used in all the recon-

figured designs. The observers that were implemented were constant gain observers

that were designed using LQR theory.

A stabilizer for the nominal system was designed in accordance with the accepted

standards, via eigenstructure assignment. This stabilizer was very robust in terms

of variations in speed and turn radius. It was far superior to a stabilizer designed

as a LQR regulator with unit weighting on all the states and control inputs; as can

be expected because the former is based on well established results. However, when

the two approaches were implemented on the impaired systems, it was found that

the stabilizer designed using LQR theory with unit weighting on all the states and

available control inputs performed much better. This suggested that the nominal

system dynamics provide almost no guidelines in effectively stabilizing an impaired

system.

1.6 Organization of the thesis

The rest of the dissertation is organized as follows. The theoretical framework in

the development of the fault tolerant controller is detailed in Chapter 2. Bifurca-

tion analysis in the context of control systems, the issues associated with obtaining

the bifurcation diagrams, and identifying and characterizing bifurcation points and
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discussed in Chapter 3. In Chapter 4, the development of the mathematical and

symbolic models for the nonlinear six degree of freedom F-16 is presented. A stabil-

ity augmentation system that was developed using eigenstructure assignment is also

included. The Poincaré’s equations for the aircraft are given in Appendix A. The

bifurcation analysis of the nominal F-16 in level and coordinated turn conditions is

explained in Chapter 5. The results of the bifurcation analysis for various failure sce-

narios of the F-16 in level and coordinated turn conditions are presented in Chapter

6. The reconfigured control laws and the simulation results of the reconfiguration

of the F-16 for different failure scenarios and in level and turn flight conditions are

shown in Chapter 7. The summary of the thesis and directions for further research

are presented in Chapter 8. The list of symbols is tabulated in Appendix B.
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CHAPTER 2: RECONFIGURED CONTROLLER DESIGN

In the event of a failure, via a stuck actuator, there is a drastic change in the dynamics

of the system. The failed control surface not only becomes ineffective, but also imposes

a persistent disturbance on the system. The severity of the failure, and delays in

detecting and identifying the failure, could cause the nonlinearities in the dynamics

to become relevant. The failure could also destabilize the system. The reconfigured

controller is designed as a nonlinear regulator with disturbance rejection properties.

Linear regulators based on disturbance estimates has been well developed and is

detailed in [44], [45], [46]. The theoretical framework for the nonlinear regulator

has been developed in [47] and was employed for reconfigured systems in [25]. The

necessary and sufficient conditions for the existence of the control law is that the

failed system be linearly controllable and that there are no bifurcation points in flight

envelope. This design ensures that the failed system is stable while regulating certain

critical variables and annulling the disturbance imposed by the failed actuator.

The regulator needs information on the stuck actuator position. The need for

additional hardware can be obviated if the reconfigured controller is based on the

original measurements. In addition it is not prudent to depend on information from a

sensor that is physically at close proximity to the failed region. Normal form nonlinear

observers, that rely on the original measurements and the healthy control inputs, are

employed to estimate the stuck position. The normal form observers are constructed

using Lie transformations. It was found that the constant gain nonlinear observer is

the most robust. The necessary and sufficient condition for the construction of such

observers is that the system be zero input linearly observable. The observer can also

aid in the fault detection and isolation process.

The regulator and the observer together comprise an unit of the reconfigured

controller. Different regulator-observer pairs are designed and stored online for the

various failures. This is thus a multiple model scheme with a finite number of recon-
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figured laws.

2.1 Regulator design

Consider the system

ẋ = f(x,uo) (2.1)

y = h(x) (2.2)

where x ∈ Rn is the set of states, uo ∈ Rp+1 is the set of control inputs, and y ∈ Rm

are the measurements . Without any loss of generality we can assume that the

equilibrium is at the origin, i.e., f(0,0) = 0 and h(0) = 0. Moreover, we assume

that a nominal controller ensures that the performance requirements of the nominal

system (2.2) are met. Now consider a scenario when an actuator µ ∈ R is stuck. Its

dynamics can be expressed as

µ̇ = 0 (2.3)

The set of control inputs u = uo \ µ, are the effective control inputs of the failed

plant, and the stuck actuator acts on it as a disturbance with dynamics given by

(2.3). Thus the dynamics of the impaired plant is given by

ẋ = f(x,u, µ)

µ̇ = 0

y = h(x) (2.4)

In formulating the reconfigured controller problem, we acknowledge that it may not

be possible to achieve the original performance; however, we still wish to regulate

some very critical variables. Thus we can pose the problem as follows: Determine the
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control law u for the plant (2.4) having disturbances µ, so that the variables

z = r(x) (2.5)

have a prescribed steady state value. Let us assume that the reconfigured controller

is given by the feedback law u = c(x, µ). Thus the reconfigured controller is a

memoryless system and is provided with the full information about the states and

stuck actuator positions. The closed loop system is then described by the equations

ẋ = f(x, c(x, µ), µ)

µ̇ = 0 (2.6)

It is desirable that the equilibrium x = 0 of

ẋ = f(x, c(x, 0), 0) (2.7)

is asymptotically stable in the first approximation. The property of asymptotic sta-

bility comes from the linear approximation of (2.7), namely

ẋ = (A + BK)x + (E + BJ)µ + h.o.t (2.8)

where the matrices A, B, K, E and P are defined as

A =
∂f

∂x (0,0,0)
, B =

∂f

∂u (0,0,0)
, K =

∂c

∂x (0,0)
, E =

∂f

∂µ (0,0,0)

, P =
∂c

∂µ (0,0)

Thus asymptotic stability is guaranteed if all the eigenvalues of (A + BK) have

negative real parts. From pole placement we know that this can be achieved only

if the pair (A,B) is stabilizable. Therefore (A,B) stabilizable is a sufficient but

not necessary condition for solving the full information regulation problem. In flight
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control problems this condition may not be stringent because of the redundant control

surfaces on the aircraft.

The linearization of the closed loop system (2.6) can be expressed as

ẋc = Acxc (2.9)

where xc = [x,uf ]
T and Ac =




A + BK E + BP

0 0


. From fundamental linear

algebra we know that the domain of the linear mapping Ac can be decomposed into

three invariant subspaces, namely, the stable subspace, Es, unstable subspace, Eu, and

the center subspace, Ec, which are the eigenspaces containing the positive, negative

and zero eigenvalues respectively. The equilibrium point is called hyperbolic if Ac has

no zero eigenvalues, i.e, it has no center subspace. If Ac is hyperbolic, then Hartman-

Grobman’s theorem [33] establishes topological conjugacy between the nonlinear and

linear systems, and many analysis of the nonlinear system can be carried out by

considering only the linear system. From (2.9) we can see that the closed loop system

has a center subspace which calls for a more detailed analysis using Center Manifold

Theory. We start with a couple of definitions.

Definition 1.1 Let U be a neighborhood of the origin. A Cr submanifold S of U is

said to be locally invariant for (2.6) if for each xo
c, there exists t1 < t < t2 with the

property that the integral curve xc of (2.6) satisfying xc(0) = xo
c is such that xc(t) ∈ S

for all t ∈ (t1, t2).

Definition 1.2 A manifold S passing through xc = 0 is said to be a center manifold

for (2.6)at xc = 0, if it is locally invariant and the tangent space to S at 0 is exactly

Ec.

Definition 1.3 Let U be a neighborhood of the origin. We define the local stable and
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unstable manifold of the equilibrium point xc = 0 as, respectively

W s
loc = {xc ∈ U |Ψc(xc, t) → 0 as t →∞ ∧Ψc(xc, t) ∈ U ∀ t ≥ 0}

W u
loc = {xc ∈ U |Ψc(xc, t) → 0 as t → −∞ ∧Ψc(xc, t) ∈ U ∀ t ≤ 0}

where Ψc(xc, t) is the flow generated by (2.6).

Theorem 1.4 (Center Manifold Theorem) Let fc(xc) be a Cr vector field on

Rn+f with f(0) = 0 and Ac =
∂fc(0)

∂xc
. Let the spectrum of Ac be divided into three sets

σs, σc, σu with

Re λ =





< 0 λ ∈ σs

= 0 λ ∈ σc

> 0 λ ∈ σu

Let the (generalized) eigenspaces of σs, σc and σu be Es, Ec, Eu, respectively. Then

there exists Cr stable and unstable manifolds W s and W u tangent to Es and Eu,

respectively, at xc = 0 and a Cr−1 center manifold W c tangent to Ec at xc = 0. The

manifolds W s, W c, W u are all invariant with respect to the flow of fc(xc). The stable

and unstable manifolds are unique, but the center manifold need not be.

From (2.9) we can conclude that (2.6) has a stable manifold and a center manifold.

The stable manifold is the hyperplane µ = 0. The center manifold is tangent to

Ec = [0(n×n), 1]T at the origin and its graph can be determined from the following

theorem.

Theorem 1.5 There exist a neighborhood V̄ ∈ R of µ = 0 and a mapping a : V̄ →
Rn such that

S̄ = {(x, µ) ∈ Rn × V̄ : x = a(µ)} (2.10)

is a center manifold for (2.6).
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If a curve on the center manifold is a solution of (2.6) then we have by first differen-

tiating (2.10)

ẋ =
∂a(µ)

∂µ
µ̇ (2.11)

and then from (2.6) and (2.10) the following is obtained

f(a(µ), µ, c(x, µ)) = 0 (2.12)

Lemma 1.6 Suppose (2.10) is a center manifold for (2.6) at (0, 0). Let (x(t), µ) be

a solution of (2.6). There exist a neighborhood U0 of (0, 0) and real numbers M1 > 0,

M2 > 0 such that, if (x(0), µ(0)) ∈ U0, then

‖ x(t)− a(µ(t)) ‖≤ M1e
−M2t ‖ x(0)− a(µ(0)) ‖ (2.13)

This Lemma shows that if we start near the origin the trajectories eventually wind up

on the center manifold and they do so exponentially. To achieve the desired regulation

the following condition

lim
t→∞ r(x(t)) = 0 (2.14)

must be satisfied for each initial condition (x(0), µ(0)).

Lemma 1.7 Assume that the closed loop system (2.6) is stabilized by some c(x, µ).

Then, the condition (2.14) is also satisfied if and only if there exists a mapping x =

a(µ), with a(0) = 0, defined in the neighborhood of the origin, satisfying the conditions

0 = f(a(µ), µ, c(a(µ), µ)) (2.15)

0 = r(a(µ)) (2.16)

Proof : [47]

The first condition guarantees that the solution trajectories are in the center
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manifold. The second chooses the trajectory on the center manifold along which the

regulation is accomplished.

The necessary and sufficient condition to solve the Full Information Output Reg-

ulation Problem is given by the following theorem.

Theorem 1.8 The Full Information Output Regulation Problem is solvable if and

only if the pair (A,B) is stabilizable and there exists mappings x = a(µ) and u = b(µ),

with a(0) = 0 and b(0) = 0, both defined in the neighborhood of the origin satisfying

the conditions

0 = f(a(µ), µ, b(µ))

0 = r(a(µ)) (2.17)

Proof: [47]

A control law defined as

u = b(µ) + K(x− a(µ)) (2.18)

where K is a matrix that places the eigenvalues of (A+BK) in the open left half plane,

is a solution to the Full Information Regulator Problem. The number of variables

z that can be regulated is limited by the number of available control surfaces u.

The ability to regulate a specific variable is also dependent on the dynamics of the

system. The choice of K dictates the transient response of the system. The mappings

x = a(µ) and u = b(µ) can be considered as Taylor series expansions in µ

a(µ) = a′(0)µ + a′′(0)µ2 + a′′′(0)µ3 + · · ·

b(µ) = b′(0)µ + b′′(0)µ2 + b′′′(0)µ3 + · · · (2.19)

and the unknown coefficients can be determined by substitution the expansion (2.19)
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into (2.17).

Remark 1.9 In order to ensure that the closed loop system has its equilibrium at

(0,0) the control law approximated using (2.19) must satisfy the relation c(0,0) = 0.

Regulation occurs along the center manifold. If the initial states are on the stable

manifold, then motion is along the hyperplane µ = 0. As we move away from the

origin, the flows have to wind up on the center manifold.

2.2 Estimator design

Investigation and development of observers with linear error dynamics has been in

progress for over two decades. Krener and Isidori [48] and Krener and Respondek

[49] considered the problem of synthesis of observers yielding error dynamics that

are linear in transformed coordinates. However, the necessary conditions are quite

restrictive. Kazantis and Kravaris [50] proposed the construction of normal form with

linear dynamics based on Lyapunovs auxiliary theorem. The necessary conditions

still pose undesirable restrictions because of the requirement that the eigenvalues

of the linearized plant lie in the Poincaré domain. Krener and Xiao [51] extended

the observer design method to the Siegel domain. The result can be applied to any

real analytic zero-input linearly observable system. A method for constructing an

observer with approximately linear error dynamics by polynomial approximation of

the solution to the partial differential equation was outlined. For large systems a

more systematic approach is needed.

2.2.1 Preliminaries

The impaired plant dynamics are given by

ẋc = fc(xc,u)
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y = h(x) (2.20)

where xc = [x, µ]T .

Definition 2.10 Let U be an open set in Rn+1. Two states x1, x2 are said to be

U-distinguishable if there exists a control u(t), t > 0, whose trajectories from both

x1, x2 remain in U , such that y(·, x1, u) 6= y(·, x2, u). Otherwise they are U-

indistinguishable.

Definition 2.11 The system is said to be strongly locally observable at x0 ∈ Rn+1 if

for every neighborhood U of x0, every state in U other than x0 is U-distinguishable

from x0. The system is said to be strongly locally observable if it is strongly locally

observable at x0 for every x0 ∈ Rn+1.

Definition 2.12 The plant is said to be locally observable at x0 ∈ Rn+1 if there exists

a neighborhood W of x0 such that for every neighborhood U of x0 contained in W every

state in U other than x0 is U-distinguishable from x0. It is said to be locally observable

at x0 if it is locally observable at x0 for every x0 ∈ Rn+1

In flight dynamics most of the states are measured we only have to estimate the

stuck positions and thus the conditions for construction of the observer are easily

satisfied.

Definition 2.13 The system (2.20) is said to be exponentially detectable if there

exists a function γ(ξ,y) defined on a neighborhood of (ξ,y) = (0,0) that satisfies:

1. γ(0,0) = 0

2. γ(ξ,h(ξ)) = fc(ξ)

3. ξ = 0 is an exponentially stable equilibrium point of ξ̇ = γ(ξ,0)



26

A system whose linearization is detectable is exponentially detectable. Exponen-

tial detectability implies that the system

˙̂xc = γ(x̂c,y) (2.21)

is a local observer for (2.20) in the sense that ‖xc (t)− x̂c (t)‖ → 0 as t →∞ provided

xc (t) remains sufficiently close to the origin, [29].

Lemma 2.14 The system

żc = η(zc,y), zc ∈ Rn+1 (2.22)

x̂c(t) = T(zc(t)) (2.23)

is a full state exponential observer for (2.20) if η(0,0) = 0, zc = 0 is an exponentially

stable equilibrium point of (2.22) with y = 0, and T : Rn+1 → Rn+1 is a locally

smooth, invertible mapping such that xc(t) = T(zc(t)) for each xc(0) = T(zc(0)) on

a neighborhood of xc = 0.

Proof: Since

ẋc =

[
∂T(zc)

∂zc

η(zc,y)

]

zc→S(x),y→h(xc)

= fc(xc)

where zc(t) = S(xc(t)) is the inverse transformation of xc(t) = T(zc(t)). It follows

that the function

γ(xc,y) :=

[
∂T(zc)

∂zc

η(zc,y)

]

zc→S(xc)

(2.24)

satisfies the three conditions of Definition 2.13.
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2.2.2 Observers with linear error dynamics

We seek an exponential observer of the type (2.22), (2.23) with linear dynamics, i.e.,

żc = Aczc − L0y, zc ∈ Rn+1 (2.25)

x̂c(t) = T(zc(t)) (2.26)

Remark 2.15 If such an observer exists, a simple calculation (see [50]) shows that

the error dynamics are linear when expressed in the zc-coordinates, specifically

d

dt
(S(xc)− S(x̂c)) = Ac(S(xc)− S(x̂c))

We attempt to build an observer of the form (2.25) by direct construction. The formal

Taylor series of (2.20) at xc = 0 is

ẋc = Fxc + F2(xc) + · · ·+ Fr(xc) + O(|xc|r+1)

y = Hxc + H2(xc) + · · ·+ Hr(xc) + O(|xc|r+1)

Fk(xc),Hk(xc) are vector homogenous polynomials in the elements of xc of degree k.

The dynamics of (2.20) can be recast as

ẋc = f(xc) + L(xc)h(xc)− L(xc)y

where the matrix L(xc)is the observer gain that has to be designed. We specify L(xc)

in the form

L(xc) = [I + L1(xc) + L2(xc) + · · ·]L0

where the Lk(xc) are matrix homogenous polynomials of degree k in the elements of

xc. Express Lk(xc) k = 1, 2, . . . as matrix homogenous polynomials with unknown
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coefficients. Using the expansions of f, h and L

ẋc = Acxc +
∑

k≥1

fk(xc)

k!
−


I +

∑

k≥1

Lk(xc)


L0y (2.27)

where

Ac = F + L0H

fk (xc)

k!
= Fk+1 (xc) + L0Hk+1 (xc) + · · ·+ Lk (xc)L0Hxc

The idea is to find a transformation xc = T(zc) of the form

xc = T0zc + T1(zc) + T2(zc) + · · ·

such that nonlinear terms are eliminated from the transformed equations and result

in an equation of the form (2.25).

2.2.3 Reduction to normal form

Definition 2.16 An n-tuple (λ1, . . . , λn) of eigenvalues belongs to the Poincarè do-

main if the convex hull of the n points (λ1, . . . , λn) in the complex plane does not

contain zero. An n-tuple of eigenvalues belong to the Siegel domain if zero lies in the

convex hull of (λ1, . . . , λn) .

Definition 2.17 The n-tuple (λ1, . . . , λn) of eigenvalues of a given n × n matrix A

is said to be resonant if there exists a relation among the eigenvalues of the form

λs = m1λ1 + · · ·+ mnλn, s ∈ {1, . . . , n}

mk ≥ 0,
∑

mk ≥ 2
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Proposition 2.18 (Poincaré-Siegel Theorem) Suppose the eigenvalues of Ac are non-

resonant and the vector field v(xc) is given by the formal power series

v(xc) = Acxc + v2(xc) + v3(xc) + · · ·

Then v(xc) is reducible to the linear vector field

w(zc) = Azc

by a near identity, formal power series change of variables. If, in addition, the eigen-

values of Ac belong to the Poincaré domain and the vector field is analytic, then the

transformation is analytic (the series converges).

Proof: [52], Chapter 5.

Remark 2.19 Since (F, H) is an observable pair there exists a matrix L0 (indeed

many) such that the matrix Ac = F +L0H is asymptotically stable and its eigenvalues

are nonresonant. Then, the above theorem can be used to establish the existence of

a near identity transformation of (2.27) into (2.25). Furthermore, the analyticity

requirement that the eigenvalues of Ac belong to the Poincaré domain can be eliminated

if a stronger form of nonresonance is assumed.

Definition 2.20 A complex number λ is said to be of type (C, ν) with respect to

the spectrum of F = σ(F ) = (α1, . . . αn) if for any vector m = (m1, . . . , mn) of

nonnegative numbers, |m| = ∑
mi > 0 , we have

|λ−m · α| ≥ C

|m|ν

where C > 0, ν > 0 are constants.
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Proposition 2.21 Suppose all the eigenvalues of Ac are of type (C, ν) with respect to

σ(F ) . Then the transformation of Proposition 2.18 is analytic in some neighborhood

of the origin.

Proof: [52]

Proposition 2.22 For each L0 that renders Ac = F +L0H asymptotically stable and

nonresonant in the sense that

λi 6= m1α1 + · · ·+ mn+1αn+1

i = 1, . . . , n + 1,mk ≥ 0,
∑

mk ≥ 2

where λi, αi are respectively, the eigenvalues of Ac and F , there exists a formal power

series change of variables xc = T(zc) such that

żc = Aczc − L0y (2.28)

x̂c(t) = T(zc(t)) (2.29)

is an exponential observer for (2.20).

Proof: This follows from direct application of the Poincaré-Siegel Theorem. See also

[51].

Remark 2.23 Notice that observability of (F, H) is not required. Detectability is

sufficient provided that nonresonance condition is satisfied.

Remark 2.24 The observer can be implemented as shown in Equations (2.28) and

(2.29) or as an ‘identity’ observer:

˙̂xc = fc (x̂c) + L (x̂c) (y− h (x̂c)) (2.30)
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Notice that because L(xc) is generated as a power series, we have a natural notion of

observer ‘order’ associated with the degree of the terms retained in the expansion. The

zeroth order observer, corresponding to L(xc) = L0 is the frequently used ‘constant

gain’ observer.

Remark 2.25 As suggested in [51] it may be advantageous to seek nonlinear output

injection in the transformed system, i.e.,

żc = Azc − ` (y) (2.31)

where ` is smooth and of the form

` (y) = L0y + h.o.t (2.32)

This injects additional degrees of freedom (the coefficients of `) that may be used to

enlarge the domain of convergence of the transformation.

2.2.4 Computation via Lie transforms

Scale the state variables xc according to xc → εxc , where ε is a scalar parameter, so

that (2.27) becomes

ẋc = Acxc +
∑

k≥1

fk(xc)

k!
εk − 1

ε


I +

∑

k≥1

Lk(xc)ε
k


 L0y (2.33)

Now let U(T̄, ε) be a given ‘generating function’ and suppose the transformation

xc = T̄(zc, ε) is defined as the solution of the equation

∂T̄

∂ε
= U(T̄, ε), T̄(zc, 0) = zc
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In new coordinates the system equations are

żc = Aczc +
∑

k≥1

gk(zc)

k!
εk − 1

ε


I +

∑

k≥1

Lk(T̄(zc, ε))ε
k


 L0y

where the components of gk are homogeneous polynomials in zc of degree k + 1.

Proposition 2.26 Suppose that U admits series expansion

U(T̄, ε) =
∞∑

m=0

Um(zc)ε
m/m!

Define the sequence

f
(m)
i (xc), i,m = 0, 1, 2, . . . ,

by the recursive relations

fm
i = f

(m−1)
i+1 − ∑

0≤j≤i
C i

jad
f
(m−1)
i−j

Uj

i = 0, 1, 2, . . . m = 1, 2, . . .

(2.34)

f
(0)
i = fi, i = 0, 1, 2, . . . (2.35)

where Ci
j = i!/(j!(i− j)! is the binomial coefficient. Then

gm = f
(m)
0 , m = 0, 1, 2, . . . (2.36)

Proof: [33], Chapter 12
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Remark 2.27 The computations can be organized according to the following triangle.

f
(0)
0

f
(0)
1 f

(1)
0

f
(0)
2 f

(1)
1 f

(2)
0

f
(0)
3 f

(1)
2 f

(2)
1 f

(3)
0

...
...

...
...

. . .

The ith element of the mth column of this triangle can be computed by knowing only

the first i + 2 elements of the (m − 1)th column. The fi’s are along the first column

and the gi ’s are along the diagonal.

Our objective is to determine the generator U(xc, ε) , from which we can obtain the

transformation T̄(zc, ε), that takes

f(xc, ε) = Acxc +
∑

k≥1

fk(xc)

k!
εk (2.37)

into

g(zc, ε) =
∞∑

m=0

gm(zc)ε
m/m! = Azc (2.38)

In particular, we require

g0(zc) = Aczc, gm(zc) = 0, m ≥ 1

Proposition 2.28 The generator components Ui for the transformation that takes

the vector field (2.37) into (2.38) are given by

adAcxcUi = fi+1 −
∑

0≤j≤i−1
Ci

jadfi−j
Uj

i = 1, 2, . . .

(2.39)

adAcxcU0 = f1 (2.40)
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Proof: Let us compute the generator components Uj from (2.34) through (2.36),

organizing the calculations in accordance with the table.

f
(0)
0 = Acxc = X(say)

f
(0)
1 = f1, f

(1)
0 = f

(0)
1 − ad

f
(0)
0

U0

⇒ adXU0 = f1

f
(0)
2 = f2,

f
(1)
1 = f

(0)
2 − C1

0ad
f
(0)
1

U0 − C1
1ad

f
(0)
0

U1,

f
(2)
0 = f

(1)
1 = 0

⇒ adXU1 = f2 − C1
0adf1U0

f
(0)
3 = f3,

f
(1)
2 = f

(0)
3 − C2

0ad
f
(0)
2

U0

− C2
1ad

f
(0)
1

U1 − C2
2ad

f
(0)
0

U2,

f
(2)
1 = f

(1)
2 − C1

0ad
f
(1)
1

U0 − C1
1ad

f
(1)
0

U1,

f
(3)
0 = f

(2)
1 = 0

⇒ adXU2 = f3 − C2
0adf2U0 − C2

1adf1U1

In general, we obtain (2.39). To solve (2.39), (2.40) we need the following Lemma.

Lemma 2.29 Consider the operator adAcxc that takes vector fields whose components

are homogenous polynomials of degree m into the same linear vector space. If the

eigenvalues of Ac are {λ1, . . . , λn+1} then the eigenvalues of adAcxc are given by

{
n+1∑

i=1

miλi − λj

}

n+1∑

i=1

mi = m j = 1, . . . , n + 1

Moreover, if Ac is diagonal then the operator adAcxc is also diagonal on the space of

homogenous vector-valued polynomials.
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Proof: [52], Chapter 12.

Remark 2.30 To solve the homological equation (2.39), (2.40) using the above Lemma

we will first have to transform the system so that Ac is diagonal.

Remark 2.31 L0 should be chosen so that none of the eigenvalues of adAcxc are zero

to ensure that the Homological equation has a unique solution.

Now that the generator U is known, we wish to determine the transformation T̄(zc, ε)

that satisfies (9).

Proposition 2.32 Define the sequence p
(m)
i , i, m = 0, 1, 2, . . . by the recursive rela-

tions

p
(m)
i = p

(m−1)
i+1 +

∑
0≤j≤i

Ci
jLp

(m−1)
i−j

Uj

i = 0, 1, 2, . . . , m = 1, 2, . . .

(2.41)

If p
(0)
i = Ui, i = 0, 1, 2, . . . , then T̄m+1 = p

(m)
0 .

Proof: [33], Chapter 12.

Remark 2.33 Notice that the computations of p
(m)
0 as given by (18) proceed along

the same triangular structure as f
(m)
0 . See Remark 13.

p
(0)
0

p
(0)
1 p

(1)
0

p
(0)
2 p

(1)
1 p

(2)
0

p
(0)
3 p

(1)
2 p

(2)
1 p

(3)
0

...
...

...
...

. . .

Remark 2.34 Notice that in view of (8) fm is a homogenous polynomial of degree

m + 1 . Hence (15) implies that Um is a homogenous polynomial of degree m + 1 ,

and (18) implies that T̄m is a homogenous polynomial of degree m + 1 .
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The kth order transformation xc = T̄k(zc) = zc + T̃k, where T̃k = T1/1!+ · · ·+Tk/k!,

thus obtained is in terms of the unknown polynomial coefficients of L(xc). The

transformation transforms (7) into

{
I +

∂T̃k

∂zc

}
żc = Ac(zc + T̃k) +

∑

j≥1

fj(zc + T̃k)

j!
−


I +

∑

j≥1

Lj(zc + T̃k)


 L0y

Retaining terms of order k we write

{
I + ∂T̃k

∂zc

}
(Aczc + L0y) = Ac(zc + T̃k) +

k∑
j=1

fj(zc+T̃k)

j!
−

[
I +

k−1∑
j=1

Lj(zc + T̃k)

]
L0y

+O
(
|zc|k+1

)

The transformation Tk is constructed so that fc(xc) → Axzc + O(|zc|k+1) or, equiv-

alently, adAczcT̃k =
∑k

j=1 fj/j!. Thus, the unknown polynomial coefficients of L(xc)

are determined from
k−1∑

j=1

Lj =
∂T̃k

∂zc

Remark 2.35 The observer gain matrix L (xc) = ∂T̄
/

∂zc

∣∣∣
zc→ ¯T

−1
(xc)

is real even if

the eigenvalues of Ac are complex.

2.2.5 Simulations

Numerous low order examples have been solved, including those in [50], [51] and [53]

in order to verify the computations. Here is the Van der Pol system from [51].

ẋ1 = x2, ẋ2 =
(
1− x2

1

)
x2 − x1



37

We specify L0 = [−2,−4]T which results in the eigenvalues −0.5 ± j 1.65831. The

transformation T and its inverse are

T=




z1 − 0.101852z3
1 + 0.017789z5

1 + 0.0277778z2
1z2 − 0.0132345z4

1z2

+0.0277778z1z
2
2 − 0.00547641z3

1z
2
2 − 0.0185185z3

2 + 0.0102185z2
1z

3
2

−0.00366901z1z
4
2 + 0.00030489z5

2

−0.231481z3
1 + 0.0997385z5

1 + z2 − 0.277778z2
1z2 + 0.0123547z4

1z2

+0.222222z1z
2
2 − 0.0931538z3

1z
2
2 − 0.0648148z3

2 + 0.0632284z2
1z

3
2

−0.0139039z1z
4
2 + 0.00155164z5

2




S=




x1 − 0.101852x3
1 + 0.00690236x5

1 − 0.0277778x2
1x2 + 0.0214877x4

1x2

−0.0277778x1x
2
2 − 0.000696427x3

1x
2
2 + 0.0185185x3

2 + 0.0237321x2
1x

3
2

−0.0125347x1x
4
2 + 0.00278153x5

2

0.231481x3
1 + 0.0352924x5

1 + x2 + 0.277778x2
1x2 − 0.00078059x4

1x2

−0.222222x1x
2
2 − 0.104377x3

1x
2
2 + 0.0648148x3

2 + 0.111154x2
1x

3
2

−0.0416517x1x
4
2 + 0.00693601x5

2




Typical responses are shown in Figure 2.1. Our experience indicates that observer

1 2 3 4 5 6 7 8
t
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0.5

1

1.5

2

e1

1 2 3 4 5 6 7 8
t
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-1.5
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-0.5

0.5

1
e2

Figure 2.1: The constant gain observer error response (solid) is compared with the 4th-
order normal form (identity) observer (long-short dashed) and the nonlinear output in-
jection observer (long dashed) for initial conditions: x1(0) = 2, x2(0) = .5, x̂1(0) =
0, x̂2(0) = 0.

implementation in ‘identity’ form is by far the most reliable. The most surprising
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Figure 2.2: The plots of Tanh and its approximations.

result was the effectiveness of the constant gain observer. Any improvement by the

higher order observers is marginal at best and often degrades if the series does not

converge rapidly.

Fig. 2.2 is that of the tanh function and its series approximations of orders one,

three and five. It is seen that at locations far from the origin, the approximations in

fact diverge from the original function

Tanh[x] =
ex + e−x

ex − e−x

Thus unless the hyperbolic tangent function is computed as series approximations

to the exponential function it will diverge. Similarly it is our feeling that in the

construction of the normal form observer the performance of the lower order observers

will progressively improve only if the right hand side of (2.20) can be expressed in

terms of appropriate functions. A very high order observer will be better than the

constant gain observer, but given the performance of the latter we concluded that

the computational demands vis-à-vis the performance for higher order observers were

unjustifiable.

To summarize, we have a fault tolerant controller with multiple reconfigured con-

trollers. The schematic of one of the reconfigured controllers is shown in Fig. 2.3.
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Figure 2.3: Structure of the fault tolerant controller.
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CHAPTER 3: BIFURCATION ANALYSIS OF CONTROL SYSTEMS

The reconfigured system can encounter drastic changes in behavior at certain flight

conditions and stuck control surface positions. The nominal system can also en-

counter sudden changes when the aircraft executes high performance maneuvers. In

order to design control systems that encompass a large flight envelope and ensure

that the demanding performance criteria are satisfied, we must be aware of the lim-

itations of the system and understand the characteristics of the controlled aircraft

when it approaches these limiting conditions. The limiting points include bifurcation

points of the underlying mathematical model. Although bifurcations have been stud-

ied extensively from a dynamical perspective, those arising from a control system

perspective have not received much attention. Bifurcations in control systems are

associated with regulating certain variables of the system. At bifurcation points, the

linearized system always has degeneracies in the zero dynamics. Software tools that

analyze bifurcations from a control system perspective are also lacking.

3.1 Bifurcation analysis in dynamical systems

Bifurcation analysis of dynamical systems is a well established field, and consequently,

powerful software tools like AUTO [40] have been developed to analyze bifurcations

from a dynamical standpoint. Bifurcations in dynamical systems are associated with

qualitative changes in the solutions of the equilibrium equations. In the analysis, the

number of equilibrium equations is the same as number of variables. Control systems,

which are essentially dynamical systems, have also been analyzed in a dynamical

framework, with the goal of understanding nonlinear phenomena.

Nonlinear phenomena in aircraft, like stall, wing rock, and spin have been studied

from a dynamical perspective. An investigation of the high angle of attack behavior

of the same aircraft analyzed in this work, was conducted on the Langley differential
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maneuvering simulator [54]. Various maneuvers were initiated to investigate issues

like controllability and departure susceptibility. A pioneering work in the study of

nonlinear phenomena by a continuation approach based on the aircraft’s mathematical

model is [35]. The authors were able to identify trim conditions corresponding to the

onset of spin and wing rock. Further examples along this line of research can be

found in [36] and [37]. The bifurcation analysis of the controller augmented aircraft

was considered in [38] and [39]. The ultimate goal of all the above research is to design

control systems that circumvent or alleviate the undesirable nonlinear phenomena.

As the bifurcation analysis of the mathematical models are carried out from a

purely dynamical system perspective, the bifurcation parameters correspond to con-

trol surfaces positions. This analysis, may not correspond to what the aircraft en-

counters in practice and does not reveal control degeneracies that accompany the

bifurcation. It will also be instructive to evaluate the impaired aircraft dynamics,

with the stuck positions as the bifurcation parameter.

3.2 Control system bifurcations points

Consider a parameter dependent, nonlinear control system given by

ẋ = f(x,u, µ)

y = h(x, µ)

z = r(x, µ) (3.1)

where x ∈ Rn are the states, u ∈ Rp are the control inputs, y ∈ Rm are the mea-

surements, z ∈ Rr are the regulated variables, and µ ∈ R is any parameter. The

parameter could be a physical variables like the weight of the aircraft or the center

of gravity location; or a regulated variable like velocity, flight path angle, altitude or

roll angle; or a stuck control surface. This is a slight abuse of the notation, as µ is
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not limited to denote the failed actuator. Equation (3.1) can represent either an open

loop or closed loop system.

A triple (x?,u?, µ?) is an equilibrium point of (3.1) if

χ(x?,u?, µ?) :=




f(x?,u?, µ?)

r(x?, µ?)


 = 0 (3.2)

For an infinitesimally small change in the equilibrium value of the parameter µ from µ?

to µ? +4µ? the equilibrium point (x?,u?, µ?) changes to (x? +4x?,u? +4u?, µ? +

4µ?). Considering a first order Taylor series approximation of (3.2) at the new

equilibrium point, we have

[Dxχ(x?,u?, µ?) Duχ(x?,u?, µ?)]



4x?

4u?




+Dµχ(x?,u?, µ?)4µ? = 0 (3.3)

Equation (3.3) can be solved for 4x? and 4u? only if p ≥ r and the Jacobian J

is nonsingular. Since the number of controls can always be reduced we henceforth

assume p = r. The Jacobian J is given by

J = [Dxχ(x?,u?, µ?) Duχ(x?,u?, µ?)] (3.4)

Points where J is nonsingular are called regular points. A formal definition is given

below.

Definition 2.36 [55] An equilibrium point (x?,u?, µ?) is regular if there is a neigh-

borhood of µ? on which there exist unique, continuously differentiable functions x(µ),

u(µ) satisfying

χ(x(µ),u(µ), µ) = 0 (3.5)

From equations (2.17) it can be seen that at a regular point, the regulator problem
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has a solution. If an equilibrium point is not a regular point it is a static bifurcation

point. At a regular point the linear equivalent of (3.1) is such that

det




A B

C 0


 6= 0 ⇔ Im




A B

C 0


 = Rn+r (3.6)

where A and B are the state and input matrices respectively and the matrix C is

partial derivative of the regulated variables with respect to the states x, evaluated at

the equilibrium point. Then we have the following theorem for a static bifurcation

point.

Theorem 2.37 An equilibrium point (x?,u?, µ?) is a static bifurcation point only if

Im




A B

C 0


 6= Rn+r (3.7)

Consequently we can conclude that at a static bifurcation point ImP (λ = 0) 6=
Rn+r, where P (λ) =




λI − A B

−C 0


 is the system matrix. Thus the occurrence of a

bifurcation could be due to two possibilities:

1. The presence of invariant zeros at the origin. This is referred to as the non-

degenerate case. The invariant zeros are comprised of the input decoupling

zeros (uncontrollable modes), output decoupling zeros (unobservable modes)

and the transmission zeros (remainder of the invariant zeros) [56].

2. The occurrence of dependent controls and/or dependent regulated variables. This

is referred to as the degenerate case.

The necessary conditions for a static bifurcation point can be summarized as follows

[43]:

Proposition 2.38 The equilibrium point (x?,u?, µ?) is a static bifurcation point of

(3.1) only if one of the following conditions is true for its linearization:
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1. there is a transmission zero at the origin,

2. there is an uncontrollable mode with zero eigenvalue,

3. there is an unobservable mode with zero eigenvalue,

4. it has insufficient independent controls,

5. it has redundant regulated variables.

There is a fundamental difference between bifurcation analysis of dynamical sys-

tems and control systems. Software packages available for dynamical system bifurca-

tion analysis are not amenable to the analysis of the problems at hand. As seen above,

the behavioral aspects at the bifurcation points of control systems involve issues of

system controllability, observability, et cetera, which are nonexistent for dynamical

system bifurcation analysis. The results in this research have been generated man-

ually using Mathematica [28], and will serve as a spring board and benchmark for

automating the bifurcation analysis of control systems. The following section outlines

the procedure employed to generate the bifurcation diagrams.

3.3 Obtaining bifurcation diagrams

To obtain the bifurcation diagrams, which is essentially a locus of the equilibrium

points, we start at a known equilibrium condition and employ the Newton-Raphson

(NR) method as a continuation process to the equilibrium equations (3.2). The NR

algorithm is given by [57]




xi+1

ui+1


 =




xi

ui


 − J−1 χ(xi, ui, µi+1)

As expected, it fails to converge as a bifurcation point is approached. To resolve

this issue the NR method is replaced by the Newton-Raphson-Seydel (NRS) method
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[41] at the point where the former breaks down. The NRS method is essentially the

NR method applied to a modified set of equations, namely

χ(x,u, µ) = 0 (3.8)

J ṽ = λṽ (3.9)

‖ṽ‖ = 1 (3.10)

The idea is to evaluate the Jacobian at the point where the NR method fails and

compute its eigenvalues and eigenvectors. The initial approximation of λ and ṽ

in (3.9) and (3.10) is chosen as the smallest eigenvalue of J and its corresponding

eigenvector, respectively. In equations (3.8) - (3.10), λ is treated as a parameter and

is made to approach zero. λ = 0 corresponds to a bifurcation point. Equations (3.9)

and (3.10), with λ = 0, require that the Jacobian J be singular at the bifurcation

point - a necessary condition for bifurcation. Once a bifurcation point is determined,

the magnitude of λ must be increased, but with its sign opposite to that with which

the bifurcation point was approached, to progress along the bifurcation curve. At

points sufficiently far from ant bifurcation points, the smaller set of NR equations

can replace the NRS equations.

The above approach assumes that the smallest eigenvalue of the Jacobian, evalu-

ated at the point where NR breaks down, is the one that eventually goes to zero at

the bifurcation point. A dilemma occurs if there are two bifurcation points close to

the origin. Also if the eigenvalues closest to the origin is a complex pair, the path they

will take to the real axis so that one of them can eventually wind up at the origin, is

not known a priori . In such instances it is advisable to choose an eigenvalue, whose

locus is well established even if it is not approaching the origin, and its correspond-

ing eigenvector. Sufficiently close to the bifurcation point, the smallest eigenvalue

unambiguously approaches zero and can be used as the bifurcation parameter.
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It should also be noted that an eigenvalue of the Jacobian may become small

just by virtue of the proximity of the present point to a bifurcation point on another

portion of the bifurcation curve. In such instances, allowing λ to converge to zero

could result in a solution on the other branch of the curve. Also, in cases where

there are two consecutive bifurcation points on the bifurcation curve, the smallest

eigenvalue may move away from the origin and approach the origin from the same

side, as we progress from the first to the second bifurcation point. In both these cases,

as discussed above, it is better to work with an eigenvalue with a well established

locus.

It is advisable to employ as the bifurcation parameter an eigenvalue that is far

away from any other eigenvalue of the Jacobian matrix. Two specific cases have

prompted this conclusion. First, if neighboring branches have eigenvalues that are

in close proximity, the solutions obtained from the NRS equations could abruptly

jump from one branch to the other. This could result in the curve being retraced

or a bifurcation point being overlooked. Secondly, if the eigenvalue that is used

as the bifurcation parameter collides with another eigenvalue, continued use of the

same eigenvalue can only result in the bifurcation curve being retraced. The two real

eigenvalues invariably become complex as the bifurcation curve unfolds.

Although the NRS equations are seemingly more involved than the NR equations,

it was observed that the bifurcation curve could be generated faster with the former,

with a judicious choice of the bifurcation parameter. The choice of a lone eigenvalue

as the bifurcation parameter, enables us to progress much faster along the bifurcation

curve than the NR equations, which may fail to converge for very large increments

of the actual physical variables. The Mathematica function FindRoot was used to

solve the NR and NRS equations. As a matter of fact, the entire bifurcation curve

can be generated with such eigenvalues, and as the curve unfolds the regions where

some other eigenvalue changes sign can be noted. These points can then be dealt
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with later, and the bifurcation points identified.

An interesting case was encountered when two eigenvalues approached zero along

the imaginary axis. The real part of these eigenvalues are not identically zero, but

are offset infinitesimally from the origin. This gives a clue as to which eigenvalue

approaches the origin, and how it progresses on the real axis as the bifurcation curve

evolves. Another way is to observe the sign of the second smallest eigenvalue at the

bifurcation point. The sign of this eigenvalue is the same as that of the infinitesimal

real part of the complex eigenvalues.

As mentioned earlier, these techniques will aid in the developing software tools to

automate the bifurcation analysis for control systems.
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CHAPTER 4: THE F-16 AIRCRAFT

This chapter details the development of high fidelity six degree-of-freedom symbolic

mathematical and simulation models, and the design of a stability augmentation sys-

tem for the F-16. The choice of this specific aircraft is due to the extensive resources

that already existed in terms of the aircraft’s data, nondimensional coefficients and

flying qualities. The aerodynamic force and moment coefficients are based on a mul-

tivariable polynomial formulation. This allows for the model to accommodate a large

flight envelope. The development of the equations of motion is along conventional

lines but it is automated in Mathematica using Tsi Propac. The resulting mathe-

matical model is obtained as Poincaré’s equations, from which the state equations

are derived. The simulation model is a C-code which is complied as a SIMULINK

S-function. The six degree-of-freedom nonlinear model provides the perfect frame-

work to see the coupling between the longitudinal and the lateral dynamics, to design

and evaluate the various recovery designs, and to carry out the bifurcation analysis.

A linear controller is designed, using eigenstructure assignment, following guidelines

outlined in the literature.

4.1 The nonlinear six degree of freedom F-16 model

The aircraft is considered as a rigid body with a 6-DOF joint at the reference center of

gravity location. The body fixed reference frame is located at the reference center of

gravity location with the X, Y and Z axes in the forward, right wing and downward di-

rection respectively. The position and orientation of this reference frame with respect

to a earth fixed frame comprise the generalized coordinate vector q = [φ, θ, ψ, x, y, z]T ,

where (x, y, z) gives the position and (φ, θ, ψ) are the Euler angles. The joint veloci-

ties, comprising of the angular velocities (p, q, r) and the linear velocities (u, v, w) with

respect to X, Y and Z respectively, define the joint velocity vector p = [p, q, r, u, v, w]T .
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We considered a model with five control inputs, namely thrust T, left δel and

right δer elevator, aileron δa and rudder δr. The terms left and right are designated

based on the pilot’s perspective. The control surface angles are limited as follows:

elevators |δer| , |δel| ≤ 0.436 rad (25◦), aileron |δa| ≤ 0.375 rad (21.5◦), and rudder

|δr| ≤ 0.524 rad (30◦). A positive δel/δer corresponds to the elevator surface moving

up, while a positive δa signifies that the right aileron surface is moving up and the

left surface is moving down. The movement of the rudder to the right corresponds to

a negative δr.

The nondimensional aerodynamic force (Cx, Cy, Cz) and moment (Cl, Cm, Cn) co-

efficients are expressed as multivariate nonlinear functions and were adapted from

[31] (see also [32] for background on polynomial aerodynamic formulation) .

Cx =
1

2
Cx(α, δel) +

1

2
Cx(α, δer) + Cxq(α)q̃

Cy = Cy(β, δa, δr) + Cyp(α)p̃ + Cpr(α)r̃

Cz =
1

2
Cz(α, β, δel) +

1

2
Cz(α, β, δer) + Czq(α)q̃

Cl = Cl(α, β) + Clp(α)p̃ + Clr(α)r̃ + Clδa
(α, β)δa +

le
2

((Cz)δer=0 − (Cz)δel=0)

+Clδr
(α, β)δr

Cm =
1

2
Cm(α, δel) +

1

2
Cm(α, δer) + Cmq(α)q̃ + Cz(xcgref

− xcg)

Cn = Cn(α, β) + Cnp(α)p̃ + Cnr(α)r̃ + Cnδa
(α, β)δa + Cnδr

(α, β)δr

−Cy(xcgref
− xcg)(

c

b
)

where p̃ = pb/2V, q̃ = qc̄/2V, r̃ = rb/2V.

The following physical data was obtained from [58], [59] and [54]. Ix = 9496 slug−ft2,

Iy = 55814 slug−ft2, Iz = 63100 slug−ft2, Ixz = 982 slug−ft2, m = 637.14 slugs,

S = 299.992 ft2, b = 30 ft, c̄ = 11.32 ft, lt = 0 ft, le = 5.56 ft, la = 6.39 ft.



50

The generalized force vector is Q̄ = [L,M, N, X, Y, Z]T where

L =
1

2
ρV 2SCl,M =

1

2
ρV 2SCm + ltT, N =

1

2
ρV 2SCn

X =
1

2
ρV 2SCx + T, Y =

1

2
ρV 2SCy, Z =

1

2
ρV 2SCz

The model is then generated (see [29], [60] and [61] for more details) in the form of

Poincaré’s equations [29].

q̇ = V (q)p (4.1)

M(q)ṗ + C(p,q)p + Q(p,q,uo) = 0 (4.2)

The function Q(p,q,uo), the generalized force vector, contains the aerodynamics and

the input vector is uo = [T, δel, δer, δa, δr]
T . We adjoin a set of output equations

y = h(p,q) =




V

α

β

p

q




(4.3)

where V =
√

u2 + v2 + w2 is the velocity, α = arctan w
u

is the angle of attack and

β = arcsin v
V

is the side-slip angle.

Finally Eqs. (4.1), (4.2) and (4.3) are automatically coded using ProPac (refer

[29], [60] and [61] for more details). The output is a C file which can be compiled

using any standard C compiler. We use Microsoft C to create a dll file that defines the

SIMULINK S-function. The compilation is done from the Matlab command window

with the command mex. We should note that differential equations of the form (4.2)

require that the symmetric positive definite matrix M(q) needs to be inverted at each
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integration step. This is done efficiently using the Lapac routine dvsop. All required

supporting subroutines are linked during the compilation process.

It is also possible to invert M(q) symbolically and create the S-function for the

resulting state space system. For the rigid airframe with relatively simple inertial

dependencies on q and parameters (like center of mass location), it is not clear which

approach is more efficient. We have done both and they work very well. In the

alternative approach we first convert from body to wind coordinates, i.e., u, v, w 7→
V, α, β, using the transformation

u = V cos α cos β

v = V sin β (4.4)

w = V sin α cos β

We do this mainly to show the flexibility of our tools. Then, we have the state space

system

ẋ = f(x,uo) (4.5)

y = h(x) (4.6)

where x = [φ θ ψ x y z p q r V α β]T . We construct the C file for (4.5) again

using ProPac and then compile as before. It is also possible to find an equilibrium

point for (4.5) and symbolically compute the required Jacobians to assemble a linear

model. An equilibrium flight condition is φ = 0 rad, θ = 0.0872665 rad, ψ =

0 rad, p = 0 rad/s, q = 0 rad/s, r = 0 rad/s, u = 349.897 ft/s, v = 0 ft/s,

w = 30.612 ft/s, T = 1595.46 lb, δel = −0.0267235 rad, δer = −0.0267235 rad,

δa = 0 rad, δr = 0 rad, which corresponds to level flight at sea level with ρ =

0.0023769 slug/ft3, g = 32.1302 ft/s2 and the center of gravity location coinciding
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Table 4.1: F-16 eigenvalues in the nominal level flight condition.

Phugoid (P) −0.01± 0.0994987i
Short Period (SP) −1.25± 2.165060i
Dutch-roll (DR) −0.50± 1.936490i

Spiral (S) −0.01
Roll-subsidence (RS) −5.00

Heading (H) 0

with the reference gravity position. This condition is denoted by LO in the bifurcation

diagrams. The coordinated turn criterion at LO is trivially satisfied.

4.2 Nominal controller design

The aircraft’s dynamics are inherently unstable and must be augmented with a stabi-

lizing controller, viz, a Stability Augmentation System (SAS). The primary objective

of the controller is to stabilize the system about its operating point, and also to have

a degree of robustness to enable turns, and possess acceptable handling qualities. A

linear controller, designed about the level flight equilibrium point, given in section

4.1, met all these criteria.

Eigenstructure assignment is used to obtain the SAS. Although this is not the most

popular design strategy in flight control design, it has been explored and advocated

[62]. The closed loop eigenvalues, listed in Table 4.1, are based on the guidelines

provided in [63] and [64]. The multivariable nature of the system gives us some

flexibility in choosing the eigenvectors as well [65], and it is desirable to decouple the

longitudinal dynamics from the lateral. The examination of the linearization about

the level flight condition reveals an inherent decoupling between the longitudinal

and lateral dynamics. This was taken advantage of and the design was carried out

independently for the longitudinal and lateral dynamics. The longitudinal and lateral

states are {θ, q, u, w} and {φ, ψ, p, r, v} respectively. The longitudinal controls are
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{δel, δer} and the lateral ones are {δa, δr}. Alternatively, if the dynamics were not

considered separately and the design was carried out along similar lines to achieve a

decoupling in the dynamics, it was found that the controller is not robust and the

system exhausts the available control authority even for very small turns. This is

because the lateral terms in the resulting longitudinal control law demand that the

ailerons have to sometimes provide additional rolling moment to counter the moment

generated by the elevators.

The Dutch roll motion is a “flat” yawing/sideslipping motion in which rolling is

suppressed [66]. Hence we ensure that φ is not excited in the Dutch roll mode. In

both the spiral and the roll subsidence modes there is negligible sideslip and so in

these modes the eigenvector is tailored not to affect v. The heading mode inherently

does not influence p and r. Among the states it influences, namely φ, ψ and v,

the eigenvector is designed so that in this mode only ψ is affected. The eigenvector

assignment is summarized below:

P SP DR S RS H

φ :

θ :

ψ :

p :

q :

r :

u :

v :

w :




0

×
0

0

×
0

×
0

×





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0

×
0

0

×
0

×
0

×







0

0

×
×
0

×
0

×
0







×
0

×
×
0

×
0

0

0







×
0

×
×
0

×
0

0

0


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


0

0

×
0

0

0

0

0

0




The thrust is left to the pilot. It was found that the closed loop system was very

susceptible to becoming unstable if thrust was part of the feedback.
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The SAS was implemented as a linear state feedback control law of the form

uo = Kox + vo (4.7)

or more specifically as

T = Tc

δel = δelc − 1.3945 + 1.2722q + 0.3398θ + 5.7944× 10−4u + 3.7089× 10−2w

δer = δerc − 1.3945 + 1.2722q + 0.3398θ + 5.7944× 10−4u + 3.7089× 10−2w

δa = δac + 6.4660p + 0.4058φ− 3.1594r − 0.03101v

δr = δrc − 4.93p + 2.2151φ− 25.4988r − 0.1877v

where vo = [Tc δelc δerc δac δrc]
T is the pilot’s commanded inputs.
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CHAPTER 5: BIFURCATION ANALYSIS OF THE F-16

In this chapter the bifurcation analysis of the nominal system in both level flight

conditions and coordinated turn conditions are discussed. The bifurcations occur

at low speeds, at which some high performance maneuvers are usually executed.

Phenomena such as stall, tumbling and spin-roll departure were observed around

bifurcation points. This work provides a basis for a formal understanding of how

aircraft depart from controlled flight, it is a prerequisite for the systematic design of

recovery strategies, and it will contribute to the design of reconfigurable control of

impaired aircraft.

5.1 Level flight bifurcation analysis

In level flight, the body fixed frame has no rotational component with respect to the

earth fixed frame and thus the roll φ, flight path angle Γ and heading Ψ are all zero.

In this work, a positive φ and positive Ψ are along the positive X and positive ZE

directions respectively, while a positive Γ is in the negative YE direction. The subscript

E is used to denote the earth fixed axis. The zero flight path angle specification is

equivalent to a constant altitude condition, i.e.
•
z = 0. The latter condition can be

obtained from the kinematics given by (4.1) and yields a much simpler expression than

the one obtained from Γ = 0. The coordinated turn condition is trivially satisfied.

In level flight we are interested in regulating the velocity and orientation of the

aircraft, i.e.,

r(x, µ) = {V, φ, Γ, Ψ}

The 4 regulated variables, together with the 9 state equations result in 13 equations.

There are 14 variables, namely: φ, θ, ψ, p, q, r, V, α, β, T, δel, δer, δa, δr. The

velocity V is the parameter. In level flight, the variables φ, ψ, p, q, r, β, δa, δr are

trivially zero. Also, δel = δer. Although the fold bifurcations can be observed in
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Table 5.1: Flying conditions of the nominal system at the bifurcation points associated
with level flight.

Bifurcation Point LA LB LC
V (ft/s) 130.6755 132.5639 127.0139

α = θ (rad) 0.8659 0.9349 0.8429
T (lb) 15064.2843 16387.6502 15254.9235

δel = δer (rad) 0.0785 0.1621 0.3844
δelc = δerc (rad) -2.5619 -2.7626 -2.0736

the bifurcation diagrams of all the relevant non-trivial variables, only the bifurcation

diagram of the left elevator is shown in Figure 5.1, due to space constraints. The

flying conditions at the bifurcation points are given in Table 5.1.
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Figure 5.1: Bifurcation diagrams of the nominal system in level flight.

The closed loop bifurcation analysis is basically the same as that for the open

loop case. The bifurcation curves of the pilot’s commanded inputs, which hold no

physical significance, can be determined from equation (4.2) once the open loop anal-

ysis is complete. However the analysis of stability and system characteristics at the

bifurcation points are different for the open and closed loop cases.

It was found that at all three bifurcation points the open and closed loop systems

are unstable. At the bifurcation points for both the open and closed loop case, the

linear system has transmission zeros at the origin, is uncontrollable and has dependent

inputs.

In level flight, at the bifurcation points, the aircraft usually stalls. This was true
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of all the bifurcation points in both the open and closed loop configurations, except

at bifurcation points LA and LB in the open loop scenario.

At bifurcation points LA and LB in the open loop configuration, the aircraft

experiences the tumbling stall phenomenon. The dynamics are qualitatively similar

at the two point and thus only the simulations for LA are shown in Figure 5.2. The

aircraft is cartwheeling in addition to the tumbling motion as can be inferred from the

plot of the pitch angle θ. Although the Euler angles are based on a 3-2-1 convention

and could cause ambiguity when the aircraft is pointed vertically up or down [67],

this is not the case here since both the roll angle φ and yaw angle ψ are zero.
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Figure 5.2: Dynamics of the open loop system at bifurcation point LA.

5.2 Coordinated turn bifurcation analysis

This section discusses the bifurcation analysis and characteristics of the F-16 in a

coordinated turn of constant radius and at constant altitude.

A coordinated turn is one that satisfies the following two conditions [66]:

C1. The angular velocity of the aircraft is constant and vertical.

C2. The resultant of the gravity and centrifugal force at the center of gravity lies in

the plane of symmetry (the x-z plane) of the aircraft.
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Condition C1 implies that the angular velocity of the aircraft in the earth fixed frame

is given by {0, 0, ω}. This can be transformed into the body axes to yield the following

relationships:

p = −ω sin θ

q = ω cos θ sin φ

r = ω cos θ cos φ

(5.1)

The second condition C2 implies that the aerodynamic force should have no com-

ponent in the Y direction . The force equation in the Y direction - from Eqn (4.2) -

is

mxcg
•
r + m

•
v + mp xcg q + m r u − mpw − Y − g m cos θ sin φ = 0 (5.2)

If the aircraft is in equilibrium while making the coordinated turn, with the center of

gravity location coinciding with the reference location, then Eqn. (5.2) reduces to

mr u − m pw − g m cos θ sin φ = Y

For a coordinated turn we must have

L := r u − pw − g cos θ sin φ = 0 (5.3)

which guarantees that Y = 0. Alternatively we can also set Y = 0. While this is

straightforward for the open loop case, where Cy = 0 would suffice, in the closed loop

case care must be taken to ensure that the aerodynamic force Y also accounts for the

feedback.

If we substitute Eqn (5.1) into the kinematic equations, we get {
•
φ,

•
θ,

•
ψ} =

{0, 0, ω}. This is because the angular velocity ω is about the vertical axis ZE. It also

explains the absence of ψ in Eqn (5.1). Thus in the present analysis it would suffice
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to consider just the 6 dynamic equations in (4.2) with the angular rates p, q, r given

by Eqn (5.1).

The constant altitude condition can be obtained, as discussed in Section 5.1, by

equating the flight path angle Γ to zero, or from the constant altitude condition.

We obtain an equilibrium condition corresponding to a coordinated turn at level

flight by starting at equilibrium point LO and employing the continuation approach.

The 6 dynamic equations together with the coordinated turn and constant altitude

condition result in 8 equilibrium equations. There are 12 variables, namely, φ, θ, ψ

,V , α, β, T , δel, δer, δa, δr, ω. We hold V , ψ, δel, δer fixed and vary ω, until we

reached a radius (R = V/ω = −V sin θ/p) of 8018.2 ft. The choice of the radius was

arbitrary.

The regulated variables are

r(x, µ) = {V, L, Γ, R}

Again, the 6 dynamic equations together with the coordinated turn and constant

altitude conditions result in 8 equilibrium equations. There are 10 variables namely:

φ, θ, V, α, β, T, δel, δer, δa and δr. We set δel = δer and treat V as the parameter.

The bifurcation analysis was carried out for both the open and closed loop cases.

As in the level flight scenario, there were three bifurcation points. At all three points

the open and closed loop systems were unstable. At all the bifurcation points, the

system was uncontrollable, unobservable, had dependent controls, dependent regu-

lated variables and a transmission zero at the origin, for both the open and closed

loop. The bifurcation diagram is shown in Figure 5.3.

As in the level flight case the aircraft stall at all bifurcation points in the co-

ordinated turn case except at bifurcation point TB in the open loop scenario. At

bifurcation point TB, initially the aircraft appears to enter a spin. However it grad-
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Table 5.2: Flying conditions of the nominal system at the bifurcation points associated
with a coordinated turn of radius 8018.2 ft.

Bifurcation Point TA TB TC
V (ft/s) 130.851 133.175 127.046
α (rad) 0.8653 0.9399 0.8433
β (rad) -0.002782 -0.001315 -0.002842
φ (rad) 0.1021 0.1162 0.09391
θ (rad) 0.8625 0.9366 0.8409

p (rad/s) -0.01239 -0.01337 -0.0118
q (rad/s) 0.001082 0.00114 0.0009907
r (rad/s) 0.01056 0.009774 0.01051
T (lbs) 15077.5 16509.7 15300.2

δel = δer (rad) 0.07208 0.1601 0.3882
δa (rad) -0.04654 -0.09105 -0.03511
δr (rad) 0.006053 0.03262 0.001088
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Figure 5.3: Bifurcation diagrams of the nominal system in a coordinated turn of radius
8018.2 ft.

ually deviates from the spin and comes down in a fast roll. The path taken by the

vehicle is shown in Figure 5.4. It should be noted that the aircraft is constantly

rolling about its axis. For the other bifurcation points the aircraft appears to stall.

There is no indication of it entering into a spin motion.
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Figure 5.4: Dynamics of the open loop system at bifurcation point TB.
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CHAPTER 6: BIFURCATION ANALYSIS OF THE RECONFIGURED
F-16

The bifurcation analysis, of the different impaired systems, is imperative in assessing

the stability, surface limitations and degeneracies of the reconfigured system. Of

special significance is the analysis with the stuck surface as the bifurcation parameter.

The bifurcation analysis was also carried out with velocity as the parameter. The

techniques used in obtaining the bifurcation diagrams are outlined in Chapter 3. Most

of the techniques were learnt in the process of analyzing the nominal and reconfigured

systems.

In the reconfigured systems, the engine thrust was part of the feedback. The

engine is modelled as a first order system given by equation (7.2). The analysis is

carried out for the closed loop reconfigured system, and with the inclusion of T, the

system has 10 states, namely, φ, θ, ψ, p, q, r, V, α, β, and T. The control laws for the

various failures are given in Chapter 7. As in the previous chapter, the term stability

is used in reference to the closed loop system.

For the analysis, we start with the 10 equilibrium equations corresponding to the

10 states. The angular rates, p, q and r, can be expressed in terms of the Euler angles,

φ, θ and ψ, and the angular velocity, ω, of the aircraft, via equation (5.1). It should

be noted that the level flight is a special case of the coordinated turn with ω = 0.

With the substitution of (5.1), the first three equilibrium equations corresponding to

φ̇, θ̇, and ψ̇ are trivially satisfied, and can be discarded in the analysis. If the first

three equations are not dropped in the analysis, the Mathematica function FindRoot

can handle only very small increments of the bifurcation parameter. Thus there are

7 equilibrium conditions along with the 13 variables, namely the 7 remaining states,

the stuck surface, the remaining 4 healthy control inputs and the angular velocity ω.

As in the preceding chapter the regulated variables in the level and turn flight

scenarios are given by equations (5.1) and (5.3) respectively.
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In level flight conditions, we have, ω = 0, φ = 0, Γ = 0 and Ψ = 0. The con-

stant altitude condition,
•
z = 0, which can be extracted from equation (4.1), is less

involved computationally than Γ = 0. As ω and φ are trivial, they, along with the

corresponding two equations, can be eliminated. Thus there are 9 equations and 11

variables. In the bifurcation analysis, either the stuck control surface can be held

fixed and velocity treated as a parameter, or the velocity can be held fixed and the

stuck position be treated as a parameter.

In the coordinated turn analysis, we have Γ = 0, (or the constant altitude condi-

tion) and L = 0, given by equation (5.3). Thus there are 9 equations and 13 variables.

First, omega is treated as a continuation parameter till the turn of desired radius is

reached, and then holding the radius fixed either the velocity or the stuck position is

treated as a parameter. The analysis is explained in greater detail for each case in

what follows.

6.1 Left elevator failure

For the aircraft with a jammed left elevator in level flight, two bifurcation analysis

were carried out. In the first analysis, the left elevator stuck is assumed stuck at its

equilibrium position of -0.02672 rad, and the velocity is the bifurcation parameter;

and in the second analysis, the velocity is held fixed at the equilibrium value of 351.233

ft/s, and the stuck position is treated as the bifurcation parameter. The bifurcation

diagrams are shown in Figure 6.1.

At the two bifurcation points B1 and B2 (see Table 6.1) the failed system is unsta-

ble and is uncontrollable, unobservable, has dependent inputs and one transmission

zero at the origin.

Starting from the stable operating point LO (351.233 ft/s), as the speed is de-

creased the system becomes unstable at S1 (214.283 ft/s). The upper aileron and

rudder limits are reached at A1 (172.783 ft/s) and R1 (138.539 ft/s) respectively.
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Figure 6.1: Bifurcation diagrams of the impaired system in level flight with a stuck left
elevator.

In the bifurcation analysis with the stuck position as the parameter, and when the

impaired aircraft’s velocity and orientation is regulated, the system first runs out of

aileron control: A2 (0.0532765 rad) and A3 (-0.126723 rad) correspond to the lower

and upper aileron limits. Next it encounters the rudder limits: R2 (-0.226723 rad) is

the lower limit and R3 (0.183277 rad) is the upper limit. The right elevator reaches

its saturation point at E1 (-0.403723 rad). The stability boundary is S2 (-0.414523

rad).

In order to carry out the bifurcation analysis in a coordinated turn, the flying

conditions at a coordinated turn need to be determined. This is accomplished by

starting form the level flying conditions and varying ω till a turn radius of 8018.2 ft

is reached. For this analysis we hold the stuck position at its equilibrium value, i.e.,

δel = -0.02672 rad; assume no pilot input in the right elevator; and set ψ = 0. Once

the radius is fixed there are 12 variables.

For the analysis with velocity as the parameter the stuck left elevator is held at its

equilibrium value of -0.02672 rad and it is assumed that ψ = 0. The velocity is fixed

for the analysis when the stuck position is the parameter. The bifurcation diagrams

are shown in Figure 6.2.

At the bifurcation points, B9 through B12, all the conditions for the occurrence

of a bifurcation point hold. They are all stable, except bifurcation point B12. The
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Figure 6.2: Bifurcation diagrams of the impaired system in a coordinated turn of radius
8018.2 ft with a stuck left elevator.

flying conditions at the bifurcation points are given in Table 6.2.

The occurrence of stable bifurcation points are unique to control systems. In the

case of dynamical systems, bifurcation points are always associated with changes in

the stability characteristics.

In the bifurcation analysis with the velocity as the parameter, S5 (159.8752 ft/s),

A6 (170.4802 ft/s), R4 (137.8788 ft/s), and E4 (307.1252 ft/s) correspond to the

stability boundary, aileron upper limit, the rudder upper limit, and the right elevator

upper limit.

As in the level flight analysis, with the stuck position as the parameter the im-

paired system first runs out of aileron control: the lower and upper bounds are reached

at A7 (0.01327 rad) and A8 (-0.07672 rad) respectively; then rudder control: R5 (-

0.2367 rad) and R6 (0.1932 rad) correspond to the lower and upper bound respectively.

The stability boundary is S6 (-0.4214 rad) and E5 (-0.4077 rad) is the right elevator

upper limit.

6.2 Right elevator failure

The bifurcation analysis of the aircraft in level flight with the right elevator failure

must be equivalent to the left elevator failure.

The analysis, when the aircraft is in a coordinated turn of radius 8018.2 ft, is
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carried out along the lines of the left elevator failure, except that the left and right el-

evator terms are interchanged. The bifurcation curves with velocity as the parameter,

and with the stuck position as the parameter are shown in Figure 6.3.

The results, however, do not correspond to the left elevator analysis, as the aircraft

is considered in a coordinated turn to the right in both cases. The major distinction

is that the entire plots in the right elevator cases are unstable. Thus the occurrence

of right elevator failure while the aircraft is in a right turn is more severe than a left

elevator failure, and vive versa; if we are trying to regulate the velocity and orientation

of the aircraft.
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Figure 6.3: Bifurcation diagrams of the impaired system in a coordinated turn of radius
8018.2 ft with a stuck right elevator.

At the bifurcation points B13 and B14 (see Table 6.2) all the conditions for the

occurrence of a bifurcation are valid.

In the analysis with velocity as the parameter, the aileron lower limit, the rudder

upper limit, and the left elevator upper limit occur at A9 (167.903 ft/s), R7 (132.703

ft/s), and L1 (135.642 ft/s) respectively.

As in the left elevator’s analysis, in the analysis with the stuck right elevator

position as the parameter, the aileron limits (A10 and A11) are reached first, followed

by the rudder (R8 and R9) and finally the left elevator (L2). The stuck position values

at the limiting points are: A10 (-0.07672 rad), upper limit; A11 (0.02327 rad), lower

limit; R8 (0.1733 rad), lower limit; R9 (-0.2367 rad), upper limit; and L2 (-0.4053
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rad), upper limit.

6.3 Aileron failure

In the bifurcation analysis of the stuck aileron, with the velocity as the parameter and

the aileron stuck at its equilibrium position of 0 rad, there are 3 bifurcation points. At

all the three points, B3, B4, and B5, the reconfigured system has dependent inputs, is

uncontrollable, unobservable and has two transmission zeros. The bifurcation point

B3 is stable, while the other two are not. In Table 6.1 the flying conditions at the

bifurcation points are tabulated. The bifurcation curves are given in Figure 6.4.

At E2 (127.733 ft.s), the elevator upper limit is reached. No other control surface

boundary is encountered. Stability is lost at S3 (132.412 ft/s). In the analysis with the

stuck position as the parameter, the entire curve is stable and no bifurcation points

or control limitations are encountered. This implies that the reconfigured design is

adequate for any stuck position of the aileron, while in level flight.
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Figure 6.4: Bifurcation diagrams of the impaired system in level flight with a stuck
aileron.

The flying conditions in a coordinated turn of radius 8018.2ft and the aileron stuck

at 0 radians is determined as follows: A continuation in the angular velocity ω, is

applied to the equilibrium equations, starting with the level flight conditions. It is

assumed that the aileron is stuck at its equilibrium value of 0 rad, there is no pilot

input to the rudder and that ψ = 0 radians. Once the flying conditions at the radius
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of 8018.2 ft are determined, the bifurcation analysis for both the velocity and stuck

position as parameter cases are carried out.

The bifurcation curves are shown in Figure 6.5. Although the bifurcation curves

look similar to the level flight analysis there are differences in the actual numerical

values. The stability boundary is S7 (132.829 ft/s) and the elevator limit is at E6

(128.087 ft/s). The bifurcation points B16 and B17 are unstable, while B15 is stable.

At all the three bifurcation points, all the conditions for the occurrence of a bifurcation

hold. From the bifurcation analysis with the stuck aileron position as the parameter,

it can be seen that the reconfigured design can handle all stuck positions of the aileron.

150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Velocity (ft/s)

Le
ft/

R
ig

ht
 e

le
va

to
r 

de
fle

ct
io

n 
(r

ad
)

B15 

B16 

B17 

S7 

E6 

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.08

−0.06

−0.04

−0.02

0

0.02

Stuck aileron position (rad)

Le
ft 

el
ev

at
or

 d
ef

le
ct

io
n 

(r
ad

)

Figure 6.5: Bifurcation diagrams of the impaired system in a coordinated turn of radius
8018.2 ft with a stuck aileron.

6.4 Rudder failure

The level flight bifurcation analysis for the stuck rudder case, with the rudder stuck

at its equilibrium value of 0 rad, and with the velocity as the bifurcation parameter

(Fig 6.4), is numerically the same as that for the stuck aileron case with velocity as

the parameter (Fig 6.6). This is because the aircraft is in level flight. The prominent

difference is that the reconfigured system loses stability at a much higher velocity at

S4 (197.091 ft/s). Thus at all the bifurcation points B6, B7, and B8 the reconfigured

system is unstable. The upper elevator limit is encountered at E3 (127.733 ft/s).
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At all three bifurcation points, B6, B7 and B8, the reconfigured system has de-

pendent inputs, is uncontrollable, unobservable and has two transmission zeros.

In the level flight bifurcation analysis with the stuck rudder position as the pa-

rameter, the reconfigured system encounters the aileron’s lower and upper limit at

A4 (0.1 rad) and A5 (-0.1 rad) respectively.
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Figure 6.6: Bifurcation diagrams of the impaired system in level flight with a stuck rud-
der.

To obtain the coordinated turn conditions, the stuck rudder is held at its equi-

librium position of 0 radians, and it is assumed that there are no pilot inputs to the

left and right elevators. Then ω is varied till the radius of 8018.2 ft is attained. The

bifurcation analysis is carried out with either the velocity or the stuck position as the

parameter. The results are shown in Figure 6.7.

The analysis with the velocity as the bifurcation parameter reveals unexpected

equilibrium surfaces. As the velocity is decreased, first the aileron lower limit is

reached at A16 (231.942 ft/s), followed by the left elevator upper limit L5 (201.692

ft/s), the stability boundary S10 (192.692 ft/s), the bifurcation point B22, and the

upper right elevator limit E9 (189.521 ft/s). There is another unexpected closed loop

bifurcation curve with 4 other bifurcation points, namely, B18, B19, B20, B21. The

curve is explained starting from the aileron upper limit A12 and in a counterclockwise

manner. The points A12 (191.026 ft/s), A13 (132.442 ft/s), A14 (139.546 ft/s) and

A15 (219.546 ft/s) correspond to the aileron’s upper bound. The aileron is within
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its bounds in the portion of the curve from A12 to A13 and from A14 to A15. L3

(128.555 ft/s) and L4 (218.026 ft/s) correspond to the left elevator’s upper bound.

The left elevator is within its bounds from L3 to L4. E7 (128.955 ft/s) and E8

(285.546 ft/s) correspond to the right elevator’s upper limit. The right elevator is

within its bounds from E7 to E8. The reconfigured system is stable from S8 (199.546

ft/s) to S9 (314.858 ft/s). Thus the feasible portion of the entire closed curve is the

region between S8 and A15. At all the five bifurcation points all the conditions for

the occurrence of a bifurcation are valid. They are all unstable.

In the analysis with the stuck position as the parameter, the system encounters

elevator and aileron limits. The left elevator lower and upper limits occur at L6 (0.1

rad) and L7 (-0.12 rad); the right elevator lower and upper limits occur at E10 (-0.1

rad) and E11 (0.13 rad); and, the aileron lower and upper limits occur at A17 (-0.13

rad) and A18 (0.15 rad).

100 150 200 250 300 350 400

−0.5

0

0.5

1

Velocity (ft/s)

Le
ft 

el
ev

at
or

 d
ef

le
ct

io
n 

(r
ad

)

B18 

B19 

B20 

B21 

B22 

S8 

S9 

A16 

L5 

S10 

E9 

E7 

E8 

L3 L4 

A12 

A13 

A14 
A15 

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Stuck rudder position (rad)

Le
ft 

el
ev

at
or

 d
ef

le
ct

io
n 

(r
ad

)

A17 
L7 

E10 

L6 E11 

A18 

Figure 6.7: Bifurcation diagrams of the impaired system in a coordinated turn of radius
8018.2 ft with a stuck rudder.
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Table 6.3: Flying conditions of the impaired system at the bifurcation points (B18 -B22)
associated with a coordinated turn of radius 8018.2 ft.

Bif. Pt. B18 B19 B20 B21 B22
V (ft/s) 128.12 133.047 131.979 315.279 188.852
α (rad) 0.8291 0.9166 0.8568 0.1161 0.3477
β (rad) 0.1210 0.1603 0.1363 0.2277 -0.1567
φ (rad) 0.09414 0.1126 0.1030 0.3651 0.1433
θ (rad) 0.8346 0.9245 0.8633 0.1899 0.3230
ψ (rad) -0.9379 -0.9379 -0.9379 -0.9379 -0.9379

T = Tc (lb) 15078.7 16098.7 14937.0 4870.71 7679.06
δel (rad) 0.3414 0.08012 0.0181 -0.353748 0.8666
δer (rad) 0.4497 0.2307 0.1363 0.629546 0.1648
δa (rad) 2.3266 3.0775 2.6196 4.31437 -3.0097
δr (rad) 0 0 0 0 0
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CHAPTER 7: SIMULATION OF THE F-16’s RECONFIGURATION

In the event of an actuator failure during flight, the nominal controller, more often

than not, will be unable to stabilize the system. The handling qualities of the air-

craft will invariably deteriorate, even if the nominal controller manages to maintain

stability. It was observed that for the stability augmented F-16 that is developed in

this work, the nominal controller is able to stabilize - but with much degraded per-

formance - the failed system, only if the flying conditions are in a very small region

about the trim condition. This agrees well with the experience of the crew of the

DHL A300 that was hit by a hand held missile when taking off from Baghdad air-

port. [68] The pilots were able to land the aircraft with much difficulty, and sources

concluded that, “having the trim set right when they were hit saved them.” With the

continued use of the nominal controller, the safety of the flight is highly dependent in

the resourcefulness, skill and training of the crew. In the case of more severe faults

the stability of the nominal system cannot be maintained, making the crew’s job

extremely demanding. A reconfigured controller, designed as outlined in Chapter 2,

will be able to ensure superior performance.

In formulating the reconfigured controller problem, we recognize that it may not

be possible to achieve the original performance; however, it is important that certain

very critical variables be regulated. At the very least, the orientation of the impaired

aircraft must be maintained. In addition, it is desirable that the velocity be regulated,

in order to circumvent stall. Thus we have

r(x) = [φ, Γ, Ψ, V ]T (7.1)

which has a steady state value of [0 rad, 0 rad, 0 rad, 351.3 ft/s]T in level flight.

The F-16 possesses sufficient redundancy to stabilize the system, and to regulate the

variables given in equation (7.1), in the case of any single actuator surface failure,
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namely, left elevator, right elevator, aileron or rudder.

The engine dynamics is modelled as a first order system with unit time constant,

i.e.,

Ṫ = Tc − T (7.2)

where Tc is the commanded thrust and T is the actual thrust. The performance of

the reconfigured system was evaluated, with and without thrust in the feedback, and

no significant change was observed. In the simulations, thrust is also part of the

feedback.

It was observed that the impaired system that is stabilized, so that its flying

qualities mimicked those of the nominal system, is inferior to the system that is

stabilized based on an LQR design with equal weighting on all states and healthy

control inputs. It should be noted that in the latter design the longitudinal and

lateral dynamics are coupled. The observer gain is also based on an LQR design,

with equal weighting on all states and control inputs. It is felt that the design

of the transients of the impaired system plays a crucial role in the robustness of

the reconfigured system. This is a research area that needs to be explored. The

computation of the reconfigured nonlinear control laws are facilitated by working in

a symbolic computational environment. The control laws and the eigenvalues, for the

various failures, are listed in the sections that follow. The reconfigured control law is

a fourth order approximation in each case, because at the trim conditions it yielded

the equilibrium values of the effective control inputs.

The simulations are carried out in SIMULINK. The relatively complex controllers

are automatically coded, just as the model, producing separate SIMULINK S-functions

that are integrated into a closed loop simulation. The bounds of each control surface

is incorporated in the simulation. Also, each control surface is modelled as a first or-

der system with a time constant of 0.05 seconds. The fault is modelled as a constant.

The states of the aircraft, along with the observer’s states and the control surfaces are



76

initialized at the appropriate flying conditions. The reconfiguration is demonstrated

when the aircraft experiences a failure in level flight as well as in a coordinated turn.

The plots of the reconfiguration process for different actuator failures in level and

turn flight conditions are shown in what follows. The failure occurs at t = 0 sec. The

debilitated aircraft continues to operate with the nominal controller until the switch

to the reconfigured controller is made by a FDI mechanism. An intervention by the

pilot could improve or worsen the situation. In the simulations no pilot intervention

is assumed. In the simulations for aircraft in a coordinated turn, the aircraft is at a

radius of 8018.2 ft (this corresponds to a positive ω, which means that the aircraft is

in a right turn), except for the right elevator failure.

7.1 Left elevator failure

The reconfigured control law for the left elevator failure is computed as:

Tc = 2270.3630 + 952.5891δel + 17664.6249δ2
el− 3913.7772δ3

el + 1089.5586δ4
el

+ 0.06965q− 0.4142T + 0.2479θ

δer = 273.1706− 2.6825δel + 16.4310δ2
el− 0.6805δ3

el + 15.3431δ4
el− 0.3562p−

0.3875φ− 0.1376ψ + 46.0275q + 2.5082r + 118.1671θ− 0.8526u

− 0.1584v + 0.5273w

δa = 27.9731− 11.77δel + 4.6942δ2
el + 1.1815δ3

el + 4.0632δ4
el + 2.3075p

+ 1.3263φ + 0.9631ψ + 27.2358q− 1.8043r + 13.8271θ− 0.08603u

− 0.2576v + 0.02449w

δr = −53.8823− 12.343δel + 5.0250δ2
el + 5.1514δ3

el− 2.6695δ4
el− 3.1467p

− 2.8465φ− 0.2310ψ− 18.0087q + 27.7184r− 23.6998θ + 0.1660u

− 0.9341v− 0.09042w (7.3)
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The regulator eigenvalues are: {−13.5176 ± 2.5769i, −4.7341, −2.1306, −1.4142,

−0.7551± 0.04935i, −0.1759± 0.2078, −0.09191}, and the observer eigenvalues are:

{−13.2472 ± 13.2189i, −12.5935 ± 12.543i, −4.0724 ± 3.9497i, −1.4142, −1.2973,

−1.2797± 1.1939i, −1.0091}.
For the aircraft in level flight, the left elevator is assumed to be stuck at -0.01

radians. A delay of 5 seconds in the fault detection and isolation process is considered.

The trajectories of the regulated variables and the healthy control inputs are shown

in Figures 7.1 and 7.2 respectively.

In a coordinated turn of radius 8018.2 ft, the left elevator is assumed stuck at

-0.04 radians, and a delay of 5 seconds is assumed in detecting and isolating the fault.

The trajectories of the regulated variables and the healthy control inputs are shown

in Figures 7.3 and 7.4 respectively.
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Figure 7.1: Plots of the regulated variables in the event of a left elevator failure in level
flight. The left elevator is assumed stuck at -0.01 rad, and the switching time is set as 5
sec.
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Figure 7.2: Plots of the control inputs in the event of a left elevator failure in level flight.
The left elevator is assumed stuck at -0.01 rad, and the switching time is set as 5 sec.
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Figure 7.3: Plots of the regulated variables in the event of a left elevator failure in a co-
ordinated turn of radius 8018.2 ft. The left elevator is assumed stuck at -0.04 rad, and
the switching time is set as 5 sec.
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Figure 7.4: Plots of the control inputs in the event of a left elevator failure in a coordi-
nated turn of radius 8018.2 ft. The left elevator is assumed stuck at -0.04 rad, and the
switching time is set as 5 sec.

7.2 Right elevator failure

The reconfigured control law for the right elevator failure is computed as:

Tc = 2270.3630 + 952.5891δer + 17664.6248δ2
er− 3913.7772δ3

er + 1089.5586δ4
er

+ 0.06965q−0.4142T + 0.2479θ

δel = 273.1691− 2.7914δer + 14.3868δ2
er− 0.7428δ3

er + 16.2834δ4
er + 0.3562p

+ 0.3875φ + 0.1376ψ + 46.0275q− 2.5082r + 118.1671θ− 0.8526u

+ 0.1584v + 0.5273w

δa = −27.9706 + 11.9621δer− 1.1345δ2
er− 2.0771δ3

er− 5.3979δ4
er + 2.3075p

+ 1.3263φ + 0.9631ψ− 27.2358q− 1.8043r− 13.8271θ + 0.08603u

− 0.2576v− 0.02449w

δr = 53.8909 + 12.9871δer + 6.8998δ2
er− 8.4647δ3

er− 1.6709δ4
er− 3.1467p
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− 2.8465φ− 0.2311ψ + 18.0087q + 27.71849r + 23.6998θ− 0.1661u

− 0.9341v + 0.09042w (7.4)

The regulator and the observer eigenvalues are the same as that for the reconfig-

ured controller designed for the left elevator failure.

It is interesting to note that the reconfigured law for the right elevator is not a

symmetrical counterpart of the left elevator failure. However the simulations of the

reconfiguration for identical stuck positions and switching times result in identical

responses, as expected. The reason the terms in the reconfigured control laws, (7.3)

and (7.4), do not match up is because of the nonlinearities in the dynamics and due

to the fact that the equilibrium is not at the origin. The plots for the right elevator

are shown in Figures 7.5 and 7.6.

The reconfigured law cannot handle a right elevator failure in a coordinated turn

of radius 8018.2 ft (the aircraft is turning to the right), and thus the reconfiguration

is demonstrated, in Figures 7.7 and 7.8, at a much higher radius of 17598.7 ft.

7.3 Aileron failure

The reconfigured law for the failure involving the stuck aileron is computed as:

Tc = 2257.5885 + 295.8252δ2
a − 1.3269δ3

a − 0.03824δ4
a + 0.0670q− 0.4142T

+ 0.2442θ− 3.5671× 10−3u + 9.8206× 10−4w

δel = 197.2237− 0.6508δa + 0.1554δ2
a + 2.4921× 10−3δ3

a + 2.9196× 10−3δ4
a

+ 1.7364p +1.67φ + 0.6579ψ + 29.2383q− 9.8851r− 6.2386× 10−4T

+ 85.1428θ− 0.616u + 0.2532v + 0.3872w

δer = 197.2237 + 0.6508δa + 0.2057δ2
a− 5.0628× 10−3δ3

a + 2.6159× 10−3δ4
a

−1.7364p− 1.67φ− 0.6579ψ + 29.2383q + 9.8851r− 6.2386× 10−4T
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Figure 7.5: Plots of the regulated variables in the event of a right elevator failure in level
flight. The right elevator is assumed stuck at -0.01 rad, and the switching time is set as 5
sec.
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Figure 7.6: Plots of the control inputs in the event of a right elevator failure in level
flight. The right elevator is assumed stuck at -0.01 rad, and the switching time is set as
5 sec.
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Figure 7.7: Plots of the regulated variables in the event of a right elevator failure in a
coordinated turn of radius 17598.7 ft. The right elevator is assumed stuck at -0.03 rad,
and the switching time is set as 5 sec.
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Figure 7.8: Plots of the control inputs in the event of a right elevator failure in a coordi-
nated turn of radius 17598.7 ft. The right elevator is assumed stuck at -0.03 rad, and the
switching time is set as 5 sec.
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+ 85.1428θ−0.616u− 0.2532v +0.3872w

δr = 1.5790δa + 0.09467δ2
a − 0.014036δ3

a − 5.7347× 10−4δ4
a − 1.6338p− 1.6654φ

+ 0.3664ψ + 22.5465r− 0.9146v

The regulator eigenvalues are: {−20.6092, −9.5254±4.4484i, −5.2671, −1.4142,

−1.3043, −0.5457, −0.1759± 0.2078i, −0.09202}, and the observer eigenvalues are:

{−13.248±13.219i, −12.587±12.5353i, −4.07014±3.94707i, −1.41421, −1.00643±
0.532752i, −1.00186, −0.747952}.

The reconfiguration of the aircraft with an aileron failure is shown in Figures 7.9

and 7.10. The aileron is assumed stuck at -0.01 radians and a delay of 3 seconds is

assumed.

The reconfiguration of the aircraft with an aileron failure in a coordinated turn

of 8018.2 ft is shown in Figures 7.11 and 7.12. The aileron is assumed stuck at 0.05

radians and a delay of 3 seconds is assumed.

0 10 20 30 40 50 60 70 80
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (sec)

R
ol

l (
ra

d)

0 10 20 30 40 50 60 70 80
351.16

351.17

351.18

351.19

351.2

351.21

351.22

351.23

351.24

Time (sec)

V
el

oc
ity

 (
ft/

s)

0 10 20 30 40 50 60 70 80
−1

0

1

2

3

4

5

6
x 10

−3

Time (sec)

H
ea

di
ng

 (
ra

d)

0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

3

4
x 10

−4

Time (sec)

F
lig

ht
 P

at
h 

A
ng

le
 (

ra
d)

Figure 7.9: Plots of the regulated variables in the event of an aileron failure in level
flight. The aileron is assumed stuck at -0.01 rad, and the switching time is set as 3 sec.



84

0 10 20 30 40 50 60 70 80
1595.48

1595.49

1595.5

1595.51

1595.52

1595.53

1595.54

1595.55

1595.56

Time (sec)

T
hr

us
t (

lb
)

0 2 4 6 8 10 12

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

Le
ft 

el
ev

at
or

 d
ef

le
ct

io
n 

(r
ad

)

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

Time (sec)

R
ig

ht
 e

le
va

to
r 

de
fle

ct
io

n 
(r

ad
)

0 2 4 6 8 10 12

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (sec)

R
ud

de
r 

de
fle

ct
io

n 
(r

ad
)

Figure 7.10: Plots of the control inputs in the event of an aileron failure in level flight.
The aileron is assumed stuck at -0.01 rad, and the switching time is set as 3 sec.

7.4 Rudder failure

The reconfigured control law for the rudder failure is:

Tc = 2257.5885 δr + 2801.1416 δ2
r − 67.9729 δ3

r − 49.1732 δ4
r + 0.06703q− 0.41421T

+ 0.2442 θ− 3.567× 10−3u− 9.821× 10−4w

δel = 197.2237 + 4.3068δr + 1.0453 δ2
r − 0.3072δ3

r + 0.2852δ4
r + 3.0624p + 3.0263 φ

+ 0.3292 ψ + 29.2383q− 28.0235 r− 6.2386× 10−4T + 85.1428θ− 0.616u

+ 0.6123v + 0.3872w

δer = 197.2237− 4.3068δr + 2.3756δ2
r + 0.2519δ3

r + 0.1535δ4
r − 3.0624p− 3.0263φ

− 0.3292ψ + 29.2383q + 28.0235r− 6.2386× 10−4T + 85.1428θ− 0.616u

− 0.6123 v + 0.3872w

δa = −5.8723δr + 0.5303δ2
r + 0.2217δ3

r − 0.05246δ4
r − 0.7785p− 0.6912φ +



85

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

R
ol

l (
ra

d)

0 10 20 30 40 50 60
350

352

354

356

358

360

362

Time (sec)

V
el

oc
ity

 (
ft/

s)

0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

H
ea

di
ng

 (
ra

d)

0 10 20 30 40 50 60
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (sec)

F
lig

ht
 P

at
h 

A
ng

le
 (

ra
d)

Figure 7.11: Plots of the regulated variables in the event of an aileron failure in a coordi-
nated turn of radius 8018.2ft. The aileron is assumed stuck at 0.02 rad, and the switching
time is set as 3 sec.
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Figure 7.12: Plots of the control inputs in the event of an aileron failure in a coordinated
turn of radius 8018.2ft. The aileron is assumed stuck at 0.02 rad, and the switching time
is set as 3 sec.
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0.8849ψ + 20.1680r− 0.4343v (7.5)

The regulator eigenvalues are: {−20.6092, −7.6909±6.5933i, −5.2672, −1.4142,

−1.2800, −0.1829, −0.1759 ± 0.2078i, −0.1043}, and the observer eigenvalues are:

{−13.251 ± 13.222i, −12.587 ± 12.5353i, −4.0701 ± 3.9471i, −1.4142, −1.0995 ±
0.4573i, −1.003, −0.1303}.

The reconfiguration of the aircraft in level flight, with a rudder failure at 0.1

radians and a delay of 3 seconds, is shown in Figures 7.13 and 7.14.

The reconfiguration of the aircraft in a coordinated turn of radius 8018.2 ft, with

a rudder failure at 0.05 radians and a delay of 3 seconds, is shown in Figures 7.15

and 7.16.
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Figure 7.13: Plots of the regulated variables in the event of a rudder failure in level
flight. The rudder is assumed stuck at 0.1 rad, and the switching time is set as 3 sec.
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Figure 7.14: Plots of the control inputs in the event of a rudder failure in level flight.
The rudder is assumed stuck at 0.1 rad, and the switching time is set as 3 sec.

0 10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

R
ol

l (
ra

d)

0 10 20 30 40 50 60 70 80
351

351.5

352

352.5

353

353.5

354

354.5

355

355.5

356

356.5

Time (sec)

V
el

oc
ity

 (
ft/

s)

0 10 20 30 40 50 60 70 80
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (sec)

H
ea

di
ng

 (
ra

d)

0 10 20 30 40 50 60 70 80
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

F
lig

ht
 P

at
h 

A
ng

le
 (

ra
d)

Figure 7.15: Plots of the regulated variables in the event of a rudder failure in a coordi-
nated turn of radius 8018.2ft. The rudder is assumed stuck at 0.05 rad, and the switching
time is set as 3 sec.
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Figure 7.16: Plots of the control inputs in the event of a rudder failure in a coordinated
turn of radius 8018.2ft. The rudder is assumed stuck at 0.05 rad, and the switching time
is set as 3 sec.
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CHAPTER 8: CONCLUDING REMARKS

This work has resulted in a few new kernels of knowledge, and has opened avenues

for new areas of research. In this concluding chapter, the motivation for the thesis,

the challenges entailing the problem, and the advancements made in obtaining the

solution are summarized. Topics for future work are also outlined.

8.1 Summary

Actuator failures have been the cause of numerous fatal aircraft accidents. The flight

control system, in most cases, has sufficient redundancy to reconfigure, so that the

aircraft does not crash on the inception of the failure. Nonetheless, this redundancy

has been successfully exploited by the crew in only a few cases. Even then, it was a

daunting task to safely land the impaired aircraft. There are several reasons for the

overwhelming challenges that the pilots face to reconfigure the aircraft. In the event of

a failure, the aircraft dynamics could wander into nonlinear regimes and the operating

point shifts from the nominal operation points. The nonlinearities are also important

when the failure is asymmetric in nature. In such circumstances the response and feel

of the aircraft could vastly differ from the pilot’s experience and training. Thus, the

actions that need to be taken may be unfamiliar, counter intuitive and complicated.

In addition, the failed surface not only ceases to function as an viable input, but

also morphs into a persistent disturbance on the system. The aircraft could also

be destabilized, especially if the failure is severe. These are drastic changes in the

dynamics of the system. As every failure scenario is different, the pilot’s job becomes

extremely challenging, if not impossible, even with the best training, unless there is

a fault tolerant controller that explicitly factors these changes to the system. The

reconfiguration of the flight laws will alleviate the work load on the pilot and give

him a better leeway to safely land the aircraft.
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The fault tolerant controller that was adopted in this work is a multiple model

scheme [13], with a finite number of predesigned controllers that are stored on the

system memory. In the event of a fault, a Fault Detection and Isolation (FDI) mech-

anism identifies and isolates the failure and makes the switch to the appropriate

predesigned controller. Each controller, consisting of a regulator and an observer, is

designed to accommodate the failure of a particular control surface or a set of control

surfaces. This requires that each controller be robust. The regulator design problem

is cast as a nonlinear output regulation problem [47], as in [25]. This design guaran-

tees that the system is stable and that critical variables are regulated. The observer

furnishes information about the failure to the regulator. The observer normal form

computations based on Lie transforms were implemented in Mathematica, and it was

concluded that the first order normal form observer, which is essentially a nonlinear

constant gain observer, is the most robust. The constant gain observer can perform

extremely well, if it is allowed to monitor the system well before the failure occurs.

In this work a fault tolerant controller was implemented and analyzed on a real air-

craft, namely the F-16, different failures involving stuck control surfaces of varying

intensities.

To facilitate the design, analysis and simulation of the fault tolerant methodology

on the F-16 fighter aircraft, high fidelity six degree of freedom mathematical and

simulation models for the F-16 were developed. The aircraft’s equations of motion

was obtained using the automated tools available in Tsi ProPac and Mathematica.

The aerodynamic forces and moments of the aircraft were based on a polynomial

formulation [31], which allows the model to be valid in a large flight envelope. The

mathematical model is obtained as Poincaré’s equations, which can be converted to

a state space model. The aircraft has five control inputs, namely, thrust, T, left and

right elevator surfaces, δel, δer, aileron surface, δa and a rudder surface δr. There are

12 states namely, φ, θ, ψ, x, y, z, p, q, r, u, v and w. The model can be transformed to
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wind coordinated by expressing the velocity components, u, v and w, in terms of V,

α and β. The mathematical model is used in the design of nominal and reconfigured

controllers and in the bifurcation analysis. A simulation model was obtained as an

optimized C-code, which can be compiled as a SIMULINK S-function.

A nominal controller was designed using eigenstructure assignment, and flying

qualities based on the guidelines in the literature. The stabilizing gain was designed

so that the longitudinal and lateral dynamics were decoupled. Also in the design, the

thrust was not part of the feedback.

The fault tolerant controller that accommodates all possible single surface failures,

namely, left elevator, right elevator, aileron and rudder, was designed. The reconfig-

ured laws were designed to regulate the orientation and velocity of the impaired

aircraft. For all the single surface failures, the aircraft had sufficient redundancy to

reconfigure the flight. The stabilizer gain was an optimal one, obtained with unit

weighting on all the states and healthy control inputs. This is much superior to a

stabilizer design that attempts to achieve the flying qualities of the nominal aircraft.

The observer gain is also optimized with unit weighting on all the estimator states and

the measurements. The fourth order approximation of the reconfigured law captures

all the nonlinearities for the particular aircraft that was considered.

The simulations were carried out in SIMULINK. The nominal and reconfigured

controllers were obtained as optimized C-codes using Tsi ProPac. This C-code is then

compiled as an S-function. Flight reconfiguration for the various failures were carried

out in both level and turn conditions. The position of the failed surface and the

switching time were chosen arbitrarily. It was observed that the nominal controller

could handle mild faults with degraded performance. The reconfigured controllers

performed well when the stuck locations were close to the trim positions. In the

event of severe faults the delay in the switching time was important in the ability

of the reconfigured controller to succeed. It is interesting to note that the control
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surfaces reach their final equilibrium values much earlier than the aircraft states.

The control inputs of the healthy surfaces are such that the forces and moments they

generate annul the disturbance of the stuck surface; and together with the thrust they

sustain the impaired aircraft in level flight.

To ascertain the safety envelope, we need to be aware of the limitations of the

failed system as the parameters vary. An important parameter is the stuck actua-

tor position. The limitations include stability points, control saturation points and

control system bifurcation points. The reconfigured controllers will positively fail at

the control system bifurcation points. Thus such points that are feasible must be

identified and characterized. Unlike bifurcation analysis in dynamical systems, the

bifurcation analysis in control systems is not yet well developed. Bifurcation points

in control systems is associated with trying to regulate certain variables. At bifurca-

tion points, there can be loss of controllability, loss of observability, the presence of

dependent inputs, dependent outputs or transmission zeros at the origin. Identifying

and characterizing the limitations is the first step in enlarging the flight envelope.

As the currently available software packages are not suitable to carry out bifurca-

tion analysis in control systems, the analysis was manually accomplished using a con-

tinuation approach. The continuation approach was based on the Newton-Raphson

(NR) and the Newton-Raphson Seydel (NRS) methods. The NR method fails to

converge near bifurcation points, because of the singularity in the Jacobian. Thus

close to bifurcation points the NR algorithm must be replaced by the NRS method.

An eigenvalue of the Jacobian is chosen as the bifurcation parameter. Although the

choice of the smallest eigenvalue is mandatory in pinpointing the bifurcation point,

the choice of another eigenvalue as the parameter is sometimes necessary in cases

when the bifurcation points are clustered together and/or the eigenvalues are in close

proximity. The bifurcation curve can be obtained faster using the NRS method, with

a judicious choice of the continuation parameter, in spite of the fact that the NRS
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method has more than twice the number of equations of the NR method. The bifur-

cation curve of the open loop and closed loop system are equivalent; they differ only

in the analysis of control system properties and stability. Thus it may be easier to

work with the open loop systems for both the nominal and reconfigured systems.

The bifurcations occurring in an F-16 in straight and level flight, and in a coordi-

nated turn were identified and characterized. Three bifurcation points were identified

in each case. The bifurcations are associated with the regulation of the aircraft’s

speed and orientation. The speeds at which the bifurcations occur do not differ sub-

stantially between the two cases. The longitudinal variables also do not show much

difference. In straight and level flight, at the bifurcation points in both the com-

pensated and uncompensated cases, there is loss of controllability, the presence of

dependent inputs and a transmission zero at the origin. At the bifurcation points

encountered in a coordinated turn or radius 8018.2 ft, the aircraft also loses observ-

ability and has redundant outputs. In most cases the bifurcations encountered were

stalls. However, stall was followed by tumbling in one instance of a bifurcation in

straight and level flight. During a coordinated turn the vehicle was observed to stall,

enter a spin and then exit to roll divergence before the spin was fully developed.

The bifurcation analysis in both level flight and coordinated turn was carried

out for each single control surface failure scenario, namely, stuck left elevator, stuck

right elevator, stuck aileron and stuck rudder. The orientation and the velocity of

the aircraft were the regulated variables. The analysis with the stuck position as

the bifurcation parameter helped in ascertaining the range of stuck positions that

the reconfigured controllers could accommodate. For the failures of the left elevator,

right elevator and rudder the main issue is that the aircraft runs out of aileron control.

The reconfigured controller was able to handle all stuck positions of the aileron. One

bifurcation point was identified in each of the elevator failure cases. Bifurcation

analysis was also carried out with the velocity as the parameter. The major issue



94

here was either loss of stability or the occurrence of a static bifurcation point; except

for the case when the aircraft was in a coordinated turn with the rudder stuck at

its equilibrium value. In that case the aircraft first ran out of aileron control. In all

20 bifurcation points were identified. Among them, 5 were stable. The existence of

stable bifurcation points of the control system is a fundamental distinction form a

dynamical system. In dynamical systems, bifurcation points are associated with a

switch in the stability properties. It was found that the unstable bifurcation points

are associated with aircraft stall. It is necessary to accurately identify the bifurcation

point in order to characterize their control system properties. This analysis will help

in the design of more robust fault tolerant controllers.

8.2 Future research

The performance of the reconfigured controller with a nonlinear regulator gain remains

to be investigated. The regulator design approach adopted in this work is based on the

estimates of the disturbance states. This framework provides no systematic method

to design a nonlinear regulator gain. It should also be noted that the proposed

control law is one of many viable solutions. A design based on error augmentation is

proposed in [69], [70], [71]. In this framework, it is possible to design the regulator

using nonlinear H∞ theory. The necessary and sufficient conditions for the existence

of solutions are the same in both the approaches.

It was learnt that if the guidelines used in the design of the nominal aircraft

stabilizers are employed in the design of the stabilizers of the reconfigured system,

the performance is much below par than that of a stabilizer designed based on LQR

theory with uniform weighting on all the states and control inputs. This reflects the

fact that fundamental changes in the dynamics of the system occur in the event of a

fault. This calls for a more elaborate study of the dynamics of the failed systems.

As bifurcation analysis from a control system perspective provides valuable in-
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sights into the dynamics of the system, software tools to carry out the bifurcation

analysis efficiently and quickly must be developed. Some of the issues that need to

be considered in automation of the process have been discussed in this thesis. The

development of the software can also benefit from the earlier works such as, [40], [42]

and [72]. Such a tool will help to quickly analyze the system from both a dynamical

and control system perspective for different parameters.

The fault tolerant controller should be able to accommodate all possible failure

scenarios. Multiple surface failures and engine failures have to be considered. The

reconfigured controllers for flight conditions such as descent, climb and other special

maneuvers must be investigated. The final reconfigured design should be able to

accommodate as many failure scenarios as possible, as opposed to accommodating

just a few very well.

The high fidelity six degree of freedom model of the F-16 developed in this work

was essential in designing and analyzing the fault tolerant controllers. Such models

needs to be assembled for other aircraft as well in order to develop effective fault

tolerant controllers for them. These mathematical models should incorporate the

other control surfaces of the aircraft like the flaps, spoilers, et cetera, that may be

very useful in reconfiguring the impaired system.

In this work, the reconfiguration is assumed to be completely automated, and the

pilot has not been considered in the reconfiguration process. In the event of a fault,

there can be gradations in the level of automation. The reconfiguration could be fully

automated in which the on board computers detects the faults and takes corrective

measures; corrective measures could be triggered by a pilot activated panic button;

the reconfigured system may just provide improved handling qualities and aid the

pilot to land the craft; or a completely manual system that provides guidance to the

pilots. It is believed that the synergy of a well designed fault tolerant system and a

properly trained pilot can greatly enhance the fault imperviousness of future aircraft.
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Appendix A: The F-16’s Equations

In chapter 4, the model of the F-16 was obtained as Poincaré’s equations,

q̇ = V (q)p

M(q)ṗ + C(p,q)p + Q(p,q,uo) = 0

where, q = [φ, θ, ψ, x, y, z]T , p = [p, q, r, u, v, w]T , and uo = [T, δel, δer, δa, δr]
T .

The matrices V, M, C, Q are given by

V(q) =




V11 03×3

03×3 V22




with

V11 =




1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 secθ sinφ cosφ secθ




V22 =




cosψ cosθ −cosφ sinψ + cosψ sinφ sinθ sinφ sinψ + cosφ cosψ sinθ

cosθ sinψ cosφ cosψ + sinφ sinψ sinθ −cosψ sinφ + cosφ sinψ sinθ

−sinθ cosθ sinφ cosφ cosθ




C(p,q) =




C11 C12

03×3 C22



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with

C11 =




−982 q −55814 r 63100 q

982 p + 9496 r 0 −63100 p− 982 r

−9496 q 55814 p 982 q




C12 =




0 −637.14 w 637.14 v

637.14 w 0 −637.14 u

−637.14 v 637.14 u 0




C22 =




0 − 637.14 r 637.14 q

637.14 r 0 − 637.14 p

− 637.14 q 637.14 p 0




M(q) =




M11 03×3

03×3 M22




with

M11 =




9496 0 −982

0 55814 0

−982 0 63100




M22 =




637.14 0 0

0 637.14 0

0 0 637.14



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and

Q(p, q, uo) =




−L

−M− lt T

−N

−T−X + 20471.4 sinθ

−Y− 20471.4 cosθ sinφ

−Z− 20471.4 cosφ cosθ




The partitioning of the matrices is due to space limitations. The matrices correspond

to flight conditions at sea level (ρ = 0.0023769 slug/ft3, g = 32.1302 ft/s2), with

the center of gravity coinciding with the reference center of gravity location.

The flight path angle Γ and the heading Ψ are given by

Γ = tan−1




w cosφ cosθ + v cosθ sinφ− u sinθ

u cosψ cosθ + w(sinφ sinψ + cosφ cosψ sinθ) +

v (−cosφ sinψ + cosψ sinφ sinθ)




Ψ = sin−1




u cosθ sinψ + w (− cosψ sinφ + cosφ sinψ sinθ) +

v (cosφ cosψ + sinφ sinψ sinθ)
√

u2 + v2 + w2




In level flight, a positive Γ signifies that the aircraft is loosing altitude, and a positive

Ψ signifies that the aircraft is heading towards the right. The expressions are obtained

from the velocity components of the aircraft in the earth fixed frame.
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Appendix B: List of Symbols

The dissertation has employed numerous symbols and the list in this appendix is

not exhaustive. All the symbols pertaining to the aircraft have been collated below.

Those used in explaining the theory have been omitted, as they have been explained

in their local contexts. Care has been taken to ensure that there are no conflicts.

α angle of attack, rad

β side slip angle, rad

δa aileron control surface deflection, rad

δac aileron pilot input, rad

δel left elevator control surface deflection, rad

δelc left elevator pilot input, rad

δer right elevator control surface deflection, rad

δerc right elevator pilot input, rad

δr rudder control surface deflection, rad

δrc rudder pilot input, rad

φ Euler roll angle, rad

Γ flight path angle, rad

θ Euler pitch angle, rad

µ bifurcation parameter

ρ atmospheric density, slug/ft3

ψ Euler yaw angle, rad

Ψ heading, rad

ω angular velocity of the aircraft in the positive Z direction, rad/s

b wing span, ft

c̄ mean aerodynamic chord, ft
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Cl non-dimensional rolling moment coefficient

Cm non-dimensional pitching moment coefficient

Cn non-dimensional rolling moment coefficient

Cx non-dimensional X body-axis force coefficient

Cy non-dimensional Y body-axis force coefficient

Cz non-dimensional Z body-axis force coefficient

g earth gravitational acceleration, ft/s2

Ix X body-axis moment of inertia, slug − ft2

Ixz X-Z body-axis product of inertia, slug − ft2

Iy Y body-axis moment of inertia, slug − ft2

Iz Z body-axis moment of inertia, slug − ft2

la horizontal distance from the aileron center of mass location to the

center of gravity, ft

le horizontal distance from the elevator center of mass location to the

center of gravity, ft

lt vertical distance from the engine thrust location to the center of gravity, ft

m aircraft mass, slugs

p X body-axis angular velocity component, rad/s

p joint velocity vector (= [p, q, r, u, v, w]T )

q Y body-axis angular velocity component, rad/s

q generalized coordinated vector (= [φ, θ, ψ, x, y, z]T )

r Z body-axis angular velocity component, rad/s

R radius of the turn, ft

S wing reference area, ft2

T engine thrust, lb

Tc commanded thrust, lb

u X body-axis translational velocity component, ft/s
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u set of healthy inputs of the impaired system

uo set of original inputs

v Y body-axis translational velocity component, ft/s

vo set of original pilot command inputs

V airspeed, ft/s

w Z body-axis translational velocity component, ft/s

x X body-axis position, ft

x state vector

y Y body-axis position, ft

y measurements (= h(x, µ))

z Z body-axis position, ft

z regulated variables (= r(x, µ))

L coordinated turn condition C2
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