3,141 research outputs found

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Acquiring and Maintaining Knowledge by Natural Multimodal Dialog

    Get PDF

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    Automatic extraction of robotic surgery actions from text and kinematic data

    Get PDF
    The latest generation of robotic systems is becoming increasingly autonomous due to technological advancements and artificial intelligence. The medical field, particularly surgery, is also interested in these technologies because automation would benefit surgeons and patients. While the research community is active in this direction, commercial surgical robots do not currently operate autonomously due to the risks involved in dealing with human patients: it is still considered safer to rely on human surgeons' intelligence for decision-making issues. This means that robots must possess human-like intelligence, including various reasoning capabilities and extensive knowledge, to become more autonomous and credible. As demonstrated by current research in the field, indeed, one of the most critical aspects in developing autonomous systems is the acquisition and management of knowledge. In particular, a surgical robot must base its actions on solid procedural surgical knowledge to operate autonomously, safely, and expertly. This thesis investigates different possibilities for automatically extracting and managing knowledge from text and kinematic data. In the first part, we investigated the possibility of extracting procedural surgical knowledge from real intervention descriptions available in textbooks and academic papers on the robotic-surgical domains, by exploiting Transformer-based pre-trained language models. In particular, we released SurgicBERTa, a RoBERTa-based pre-trained language model for surgical literature understanding. It has been used to detect procedural sentences in books and extract procedural elements from them. Then, with some use cases, we explored the possibilities of translating written instructions into logical rules usable for robotic planning. Since not all the knowledge required for automatizing a procedure is written in texts, we introduce the concept of surgical commonsense, showing how it relates to different autonomy levels. In the second part of the thesis, we analyzed surgical procedures from a lower granularity level, showing how each surgical gesture is associated with a given combination of kinematic data
    • …
    corecore