1,905 research outputs found

    Towards completing the puzzle: complexity of control by replacing, adding, and deleting candidates or voters

    Get PDF
    We investigate the computational complexity of electoral control in elections. Electoral control describes the scenario where the election chair seeks to alter the outcome of the election by structural changes such as adding, deleting, or replacing either candidates or voters. Such control actions have been studied in the literature for a lot of prominent voting rules. We complement those results by solving several open cases for Copelandα, maximin, k-veto, plurality with runoff, veto with runoff, Condorcet, fallback, range voting, and normalized range voting

    Complexity of Manipulation, Bribery, and Campaign Management in Bucklin and Fallback Voting

    Get PDF
    A central theme in computational social choice is to study the extent to which voting systems computationally resist manipulative attacks seeking to influence the outcome of elections, such as manipulation (i.e., strategic voting), control, and bribery. Bucklin and fallback voting are among the voting systems with the broadest resistance (i.e., NP-hardness) to control attacks. However, only little is known about their behavior regarding manipulation and bribery attacks. We comprehensively investigate the computational resistance of Bucklin and fallback voting for many of the common manipulation and bribery scenarios; we also complement our discussion by considering several campaign management problems for Bucklin and fallback.Comment: 28 page

    Campaign Management under Approval-Driven Voting Rules

    Get PDF
    Approval-like voting rules, such as Sincere-Strategy Preference-Based Approval voting (SP-AV), the Bucklin rule (an adaptive variant of kk-Approval voting), and the Fallback rule (an adaptive variant of SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit fixed-parameter tractable algorithms.Comment: 34 pages, 1 figur

    How Hard Is It to Control an Election by Breaking Ties?

    Full text link
    We study the computational complexity of controlling the result of an election by breaking ties strategically. This problem is equivalent to the problem of deciding the winner of an election under parallel universes tie-breaking. When the chair of the election is only asked to break ties to choose between one of the co-winners, the problem is trivially easy. However, in multi-round elections, we prove that it can be NP-hard for the chair to compute how to break ties to ensure a given result. Additionally, we show that the form of the tie-breaking function can increase the opportunities for control. Indeed, we prove that it can be NP-hard to control an election by breaking ties even with a two-stage voting rule.Comment: Revised and expanded version including longer proofs and additional result

    Manipulation and Control Complexity of Schulze Voting

    Full text link
    Schulze voting is a recently introduced voting system enjoying unusual popularity and a high degree of real-world use, with users including the Wikimedia foundation, several branches of the Pirate Party, and MTV. It is a Condorcet voting system that determines the winners of an election using information about paths in a graph representation of the election. We resolve the complexity of many electoral control cases for Schulze voting. We find that it falls short of the best known voting systems in terms of control resistance, demonstrating vulnerabilities of concern to some prospective users of the system

    Normalized Range Voting Broadly Resists Control

    Full text link
    We study the behavior of Range Voting and Normalized Range Voting with respect to electoral control. Electoral control encompasses attempts from an election chair to alter the structure of an election in order to change the outcome. We show that a voting system resists a case of control by proving that performing that case of control is computationally infeasible. Range Voting is a natural extension of approval voting, and Normalized Range Voting is a simple variant which alters each vote to maximize the potential impact of each voter. We show that Normalized Range Voting has among the largest number of control resistances among natural voting systems
    corecore