466 research outputs found

    Keystroke and Touch-dynamics Based Authentication for Desktop and Mobile Devices

    Get PDF
    The most commonly used system on desktop computers is a simple username and password approach which assumes that only genuine users know their own credentials. Once broken, the system will accept every authentication trial using compromised credentials until the breach is detected. Mobile devices, such as smart phones and tablets, have seen an explosive increase for personal computing and internet browsing. While the primary mode of interaction in such devices is through their touch screen via gestures, the authentication procedures have been inherited from keyboard-based computers, e.g. a Personal Identification Number, or a gesture based password, etc.;This work provides contributions to advance two types of behavioral biometrics applicable to desktop and mobile computers: keystroke dynamics and touch dynamics. Keystroke dynamics relies upon the manner of typing rather than what is typed to authenticate users. Similarly, a continual touch based authentication that actively authenticates the user is a more natural alternative for mobile devices.;Within the keystroke dynamics domain, habituation refers to the evolution of user typing pattern over time. This work details the significant impact of habituation on user behavior. It offers empirical evidence of the significant impact on authentication systems attempting to identify a genuine user affected by habituation, and the effect of habituation on similarities between users and impostors. It also proposes a novel effective feature for the keystroke dynamics domain called event sequences. We show empirically that unlike features from traditional keystroke dynamics literature, event sequences are independent of typing speed. This provides a unique advantage in distinguishing between users when typing complex text.;With respect to touch dynamics, an immense variety of mobile devices are available for consumers, differing in size, aspect ratio, operating systems, hardware and software specifications to name a few. An effective touch based authentication system must be able to work with one user model across a spectrum of devices and user postures. This work uses a locally collected dataset to provide empirical evidence of the significant effect of posture, device size and manufacturer on user authentication performance. Based on the results of this strand of research, we suggest strategies to improve the performance of continual touch based authentication systems

    Passphrase and keystroke dynamics authentication: security and usability

    Get PDF
    It was found that employees spend a total 2.25 days within a 60 day period on password related activities. Another study found that over 85 days an average user will create 25 accounts with an average of 6.5 unique passwords. These numbers are expected to increase over time as more systems become available. In addition, the use of 6.5 unique passwords highlight that passwords are being reused which creates security concerns as multiple systems will be accessible by an unauthorised party if one of these passwords is leaked. Current user authentication solutions either increase security or usability. When security increases, usability decreases, or vice versa. To add to this, stringent security protocols encourage unsecure behaviours by the user such as writing the password down on a piece of paper to remember it. It was found that passphrases require less cognitive effort than passwords and because passphrases are stronger than passwords, they don’t need to be changed as frequently as passwords. This study aimed to assess a two-tier user authentication solution that increases security and usability. The proposed solution uses passphrases in conjunction with keystroke dynamics to address this research problem. The design science research approach was used to guide this study. The study’s theoretical foundation includes three theories. The Shannon entropy formula was used to calculate the strength of passwords, passphrases and keystroke dynamics. The chunking theory assisted in assessing password and passphrase memorisation issues and the keystroke-level model was used to assess password and passphrase typing issues. Two primary data collection methods were used to evaluate the findings and to ensure that gaps in the research were filled. A login assessment experiment collected data on user authentication and user-system interaction for passwords and passphrases. Plus, an expert review was conducted to verify findings and assess the research artefact in the form of a model. The model can be used to assist with the implementation of a two-tier user authentication solution which involves passphrases and keystroke dynamics. There are a number of components that need to be considered to realise the benefits of this solution and ensure successful implementation

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    Secure Pick Up: Implicit Authentication When You Start Using the Smartphone

    Full text link
    We propose Secure Pick Up (SPU), a convenient, lightweight, in-device, non-intrusive and automatic-learning system for smartphone user authentication. Operating in the background, our system implicitly observes users' phone pick-up movements, the way they bend their arms when they pick up a smartphone to interact with the device, to authenticate the users. Our SPU outperforms the state-of-the-art implicit authentication mechanisms in three main aspects: 1) SPU automatically learns the user's behavioral pattern without requiring a large amount of training data (especially those of other users) as previous methods did, making it more deployable. Towards this end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW) algorithm to effectively quantify similarities between users' pick-up movements; 2) SPU does not rely on a remote server for providing further computational power, making SPU efficient and usable even without network access; and 3) our system can adaptively update a user's authentication model to accommodate user's behavioral drift over time with negligible overhead. Through extensive experiments on real world datasets, we demonstrate that SPU can achieve authentication accuracy up to 96.3% with a very low latency of 2.4 milliseconds. It reduces the number of times a user has to do explicit authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies (SACMAT) 201

    ERINYES: A CONTINUOUS AUTHENTICATION PROTOCOL

    Get PDF
    The need for user authentication in the digital domain is paramount as the number of digital interactions that involve sensitive data continues to increase. Advances in the fields of machine learning (ML) and biometric encryption have enabled the development of technologies that can provide fully remote continuous user authentication services. This thesis introduces the Erinyes protocol. The protocol leverages state of the art ML models, biometric encryption of asymmetric cryptographic keys, and a trusted third-party client-server architecture to continuously authenticate users through their behavioral biometrics. The goals in developing the protocol were to identify if biometric encryption using keystroke timing and mouse cursor movement sequences were feasible and to measure the performance of a continuous authentication system that utilizes biometric encryption. Our research found that with a combined keystroke and mouse cursor movement dataset, the biometric encryption system can perform with a 0.93% False Acceptance Rate (FAR), 0.00% False Reject Rate (FRR), and 99.07% accuracy. Using a similar dataset, the overall integrated system averaged 0% FAR, 2% FRR and 98% accuracy across multiple users. These metrics demonstrate that the Erinyes protocol can achieve continuous user authentication with minimal user intrusion.Lieutenant, United States NavyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    KBOC: Keystroke Biometrics OnGoing Competition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents the first Keystroke Biometrics Ongoing evaluation platform and a Competition (KBOC) organized to promote reproducible research and establish a baseline in person authentication using keystroke biometrics. The ongoing evaluation tool has been developed using the BEAT platform and includes keystroke sequences (fixedtext) from 300 users acquired in 4 different sessions. In addition, the results of a parallel offline competition based on the same data and evaluation protocol are presented. The results reported have achieved EERs as low as 5.32%, which represent a challenging baseline for keystroke recognition technologies to be evaluated on the new publicly available KBOC benchmarkA.M. and M. G.-B. are supported by a JdC contract (JCI-2012- 12357) and a FPU Fellowship from Spanish MINECO and MCD, respectively. J.M. and J.C. are supported by CAPES and CNPq (grant 304853/2015-1). This work was partially funded by the projects: CogniMetrics (TEC2015-70627-R) from MINECO FEDER and BEAT (FP7-SEC-284989) from E

    Vulnerability analysis of cyber-behavioral biometric authentication

    Get PDF
    Research on cyber-behavioral biometric authentication has traditionally assumed naïve (or zero-effort) impostors who make no attempt to generate sophisticated forgeries of biometric samples. Given the plethora of adversarial technologies on the Internet, it is questionable as to whether the zero-effort threat model provides a realistic estimate of how these authentication systems would perform in the wake of adversity. To better evaluate the efficiency of these authentication systems, there is need for research on algorithmic attacks which simulate the state-of-the-art threats. To tackle this problem, we took the case of keystroke and touch-based authentication and developed a new family of algorithmic attacks which leverage the intrinsic instability and variability exhibited by users\u27 behavioral biometric patterns. For both fixed-text (or password-based) keystroke and continuous touch-based authentication, we: 1) Used a wide range of pattern analysis and statistical techniques to examine large repositories of biometrics data for weaknesses that could be exploited by adversaries to break these systems, 2) Designed algorithmic attacks whose mechanisms hinge around the discovered weaknesses, and 3) Rigorously analyzed the impact of the attacks on the best verification algorithms in the respective research domains. When launched against three high performance password-based keystroke verification systems, our attacks increased the mean Equal Error Rates (EERs) of the systems by between 28.6% and 84.4% relative to the traditional zero-effort attack. For the touch-based authentication system, the attacks performed even better, as they increased the system\u27s mean EER by between 338.8% and 1535.6% depending on parameters such as the failure-to-enroll threshold and the type of touch gesture subjected to attack. For both keystroke and touch-based authentication, we found that there was a small proportion of users who saw considerably greater performance degradation than others as a result of the attack. There was also a sub-set of users who were completely immune to the attacks. Our work exposes a previously unexplored weakness of keystroke and touch-based authentication and opens the door to the design of behavioral biometric systems which are resistant to statistical attacks
    • …
    corecore