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ABSTRACT 

Keystroke and Touch-dynamics Based Authentication for 

Desktop and Mobile Devices 

Zahid Ali Syed 

 

The most commonly used system on desktop computers is a simple username and password approach 

which assumes that only genuine users know their own credentials. Once broken, the system will accept 

every authentication trial using compromised credentials until the breach is detected. Mobile devices, 

such as smart phones and tablets, have seen an explosive increase for personal computing and internet 

browsing. While the primary mode of interaction in such devices is through their touch screen via 

gestures, the authentication procedures have been inherited from keyboard-based computers, e.g. a 

Personal Identification Number, or a gesture based password, etc. 

This work provides contributions to advance two types of behavioral biometrics applicable to 

desktop and mobile computers: keystroke dynamics and touch dynamics. Keystroke dynamics relies 

upon the manner of typing rather than what is typed to authenticate users. Similarly, a continual touch 

based authentication that actively authenticates the user is a more natural alternative for mobile devices.  

Within the keystroke dynamics domain, habituation refers to the evolution of user typing 

pattern over time. This work details the significant impact of habituation on user behavior. It offers 

empirical evidence of the significant impact on authentication systems attempting to identify a genuine 

user affected by habituation, and the effect of habituation on similarities between users and impostors. 

It also proposes a novel effective feature for the keystroke dynamics domain called event sequences. 

We show empirically that unlike features from traditional keystroke dynamics literature, event 

sequences are independent of typing speed. This provides a unique advantage in distinguishing between 

users when typing complex text. 

With respect to touch dynamics, an immense variety of mobile devices are available for 

consumers, differing in size, aspect ratio, operating systems, hardware and software specifications to 

name a few. An effective touch based authentication system must be able to work with one user model 

across a spectrum of devices and user postures. This work uses a locally collected dataset to provide 

empirical evidence of the significant effect of posture, device size and manufacturer on user 

authentication performance. Based on the results of this strand of research, we suggest strategies to 

improve the performance of continual touch based authentication systems. 
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Chapter 1

Introduction

1.1 Motivation

Computer based access control systems rely on a variety of authentication pro-
cedures to restrict data access to legitimate users while preventing malicious
users from accessing the same resources. The username-password scheme has
been the de-facto method to protect and provide access to computer based sys-
tems such as e-mail, banking etc. The effectiveness of this method relies on
the authorized user alone being aware of the username-password combination.
Breaching this security layer requires little effort in today’s age of pervasive so-
cial networks and computational devices. These systems offer weak protection
and are easily circumvented with automated brute force attacks that attempt
millions of character combinations per minute. Such attacks can be conveniently
performed on systems that do not have a lock-out feature. Furthermore, once
the password is known to unauthorized user, this user credential scheme has
a 100% False Acceptance Rate (FAR). A variety of measures are used to to
make the possibility of compromising credentials more difficult. These include
secret question-answer combinations, text messaging an access code to a mobile
device, frequently changing the password, etc. Commercial application of phys-
iological biometrics (fingerprint, iris, face, hand) has proven difficult due to the
greater cost, inefficiency, lack of infrastructure and the supervision required for
user enrollment when deploying them. Due to this, the username and password
based access is still relied upon as the most convenient access control method.

Desktop computers are accessed via the keyboard and mouse while touch
screen based mobile devices such as cell phones and tablet computers use touch
presses and touch gestures as sources as input. Thus, keystroke dynamics and
touch dynamics are soft-biometric based authentication tools and can be used to
create an effective multi-modal system for continual authentication in a multi-
device environment. In modern times, a single person uses multiple computer
devices such as a desktop computer, a cellphone and a tablet computer, etc.
Each modality presents certain challenges to understand usage patterns, and
isolate factors that affect user model development in order to better authenticate
a user.

1.2 Goal

The goal of this work is to develop practical strategies to improve user authen-
tication within keystroke dynamics and touch dynamics based authentication
systems. This work has been carried out on desktop computers and mobile de-
vices. With respect to desktop and mobile computers, our focus has been to
identify and study the effect of habituation. As a user learns to type a password
or use a mobile device application, his/her keystroke and touch dynamics profile
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changes. This ’habituation’ has a significant effect on user behavior, profile mod-
eling and, thus, authentication performance. Our goal is to empirically study
this effect and its impact on authentication. We also analyze the intra-user and
inter-user variations caused by habituation on usage patterns.

Touch dynamics based authentication systems for mobile touch screen com-
puters must also take additional factors into account to develop an accurate
user profile. This is due to the portable nature of mobile devices such as tablets
and cell phones. The factors include user’s posture, device type, size, orienta-
tion, type of app, gesture direction, etc. Creating a user profile using apriori
knowledge of such factors may allow for a more accurate representation of a user
model. It also leads to better authentication while requiring less data for user
model creation. Our goal is to use an experimental data collection to empirically
study the effects of a number of such factors upon a user touch dynamics pro-
file. The empirical results from this study provide information on which factors
have a significant effect on improving accuracy in determining impostors. This
study has immediate practical benefits to develop strategies for better authen-
tication through touch dynamics. Our work on touch dynamics authenticates
users continually, i.e. the user is authenticated as they are using the device.

1.3 Contributions

This work provides the following set of original contributions:

1. Analysis of the effect of user habituation in keystroke dynamics on a user’s
keystroke dynamics profile, its effect on inter-user profile separability with
time, and its impact on authentication performance. We show that user
habituation has a statistically significant impact upon the user profile
and the performance of keystroke dynamics based authentication schemes.
Based on our findings, we test several training models and conclude that
the best model to improve the accuracy of keystroke dynamics authen-
tication systems is one that retrains on the most recent set of keystroke
entries.

2. Demonstration that event sequences are an effective attribute for use in
keystroke dynamics based authentication systems. The event sequence is
the temporal sequence of all key-press and key-release events performed
to type a string. This includes the key-press and key-release events of
character keys and of special keys (Caps Lock, Left Shift, Right Shift,
etc) that are used to modify the character key output. In contrast to the
traditional approach in literature of ignoring these variations, we show
using empirical analysis that including variations in event sequences in
keystroke dynamics based authentication systems leads to better perfor-
mance and reliability. We also demonstrate that event sequences possess
discriminatory information that is independent of typing proficiency. This
is in contrast to currently existing keystroke dynamics based attributes,
all of which rely on inter-user variations in typing proficiency.
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3. Demonstration that the user’s posture, the device size and the device
manufacturer have a significant impact on the authentication performance
of a touch-based authentication system. We show that the attributes used
in current state-of-the-art touch-based authentication systems lead to a
user model that is incapable of providing constant, reliable performance
when any of the above-mentioned three factors are changed.

1.4 Organization

The remainder of this work is organized as follows. Chapter 2 provides a sum-
mary of related work regarding keystroke dynamics and touch dynamics. Chap-
ters 3 and 4 describe specific contributions in the areas of keystroke dynamics
and touch dynamics, respectively. Finally, Chapter 5 concludes the work by
providing a summary of the accomplishments as well as future directions for
research.
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Chapter 2

Related Work

2.1 Keystroke Dynamics

2.1.1 Introduction

The username and password authentication is the de-facto standard for com-
puter access control due to the low cost of implementation and infrastructure.
The effectiveness of this system hinges on the assumption that only the legiti-
mate, genuine user knows his or her credential. This type of authentication can
be circumvented through either brute force or other more complicated attacks
[78]. A variety of measures are currently used to harden the credential check-
ing process, including visual captchas, user-specific questions, account to device
or location association, regular password changes etc. With the advent of so-
cial networks, user specific information, possibly hinting on the content of weak
passwords became easier to obtain [31] while IP/MAC addresses in two way
authentication schemes can be faked using off-the-shelf software [18], making
password authentication breaches more common.

Adoption of traditional biometric authentication techniques for computer
access control (fingerprint, iris or face recognition), on the other hand, can be
an expensive proposition. High accuracy of biometric authentication typically
correlates with the use of costly sensors, but sensor interoperability is not guar-
anteed [62]. Thus, enhancements to low cost password-based authentication,
which provides an additional level of trustworthiness are more appealing.

Keystroke dynamics is a behaviorial biometric with effective performance
potential [9]. It evaluates the typing behavior of users by measuring the duration
of each key press, the latency between successive key presses etc. These time
periods are called the hold and delay times, respectively. Hold times will always
exhibit positive values as a finite amount of time is required to press a key, while
delay times may be positive or negative. A negative delay time occurs when a
user presses the succeeding key prior to releasing the current key.

Keystroke dynamics based systems can be deployed under either a fixed text
or a free text scenario. Fixed text analysis is constrained to pre-determined
content and is effective for building static user authentication systems (such as
username and password login). Free text, on the other hand, can be used to de-
velop continual authentication systems[80] that determine whether an impostor
has taken over another user’s session.

2.1.2 Terminology

When a key on a keyboard is pressed down, a make code for the key is trans-
mitted to the device while encoded as a hex value. It contains information on
the key pressed, and other system flags such as any modifier keys used (shift,
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control, alt, etc). When the key is released, a corresponding break code is sent
to the device. This information received at the lowest level is used to define
higher level events called the KeyDown event and the KeyUp event. KeyDown
event refers to the time when the key is engaged while KeyUp refers to the time
when it is disengaged. Based on these two events, derivative attributes are cre-
ated such as hold time, and delay time. Hold time refers to the period of time
between the KeyDown event and the corresponding KeyUp event. Hold time is
also referred to as dwell time in literature. Delay time, also referred to as flight
time or latency, is the period between two consecutive key events. Delay time
may be positive or negative. It is negative if the succeeding key was pressed
before releasing the preceding key.

Keystroke dynamics is restricted to using the duration of keypresses for user
profile modeling. There have been attempts to create pressure sensitive key-
boards [70] that senses the force level on every depressed key and implement
this technology in keystroke dynamics [20]. However, efforts in this direction
have been mainly for research purposes [58, 34, 49] and pressure sensitive phys-
ical keyboards have not yet been produced commercially.

2.1.3 Current Research

Utilizing typing behavior for user authentication is a well explored field. For
example, by the mid 19th century, it was understood that telegraph operators
had unique ”tapping” signatures. By the late 1970s, SRI International had
developed the first hardware based implementation of keystroke dynamics based
systems. In 1984, NIST conducted a study that found the technology to be“98%
effective”. Starting in the early 2000s there has been a continued growth in the
understanding of keystroke dynamics [45].

Only in the past 10 years have researchers explored the feasibility of creating
frameworks for keystroke - based authentication using machine learning tech-
niques. Of particular interest is the exploration of various classifier methods for
authentication. The Bayes classifier [16], hidden Markov [15], Gaussian mixture
[36] and k -nearest neighbor models [37] have been explored, as have different
distance measures in [35, 46]. More recently neural networks [60, 61, 52], Sup-
port Vector Machines [72, 81], and ensemble learning through random forests
[6, 73] have also been studied.

The physical characteristics of keystroke dynamics, such as keyboard lay-
out [76], habituation [73, 4, 43, 44] and model update techniques [44, 43, 4]
received increased attention. In [73] the authors theorized that habituation was
dependent on the type of password and could be leveraged for building more
effective classifiers through the reduction of Equal Error Rates (EER). However,
the study was confounded by the presence of larger training samples and lacked
a rigorous statistical analysis of the effect of habituation over time. Authors of
[4, 42] noted that a mere increase from 5 to 10 samples for training could have
a marked effect on reducing error rates. In [44, 43, 4] the authors contended
that updating the user model upon successful authentication could enable bet-
ter classifier performance. This work offers credible statistical evidence to this
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research direction.
In [4] the authors noted that the classification algorithm, the volume of train-

ing data, and the update technique have a strong impact on performance, while
the feature set does not. Our work demonstrates similar findings. However, we
contend that the volume of training is confounded by the variability of the prior
data. In this paper we showed that the reduction in variance indicates that the
best performance can be obtained by using recent keystroke entries for model-
ing. Moreover, the feature sets in our long and short passwords demonstrated
that the type of password playes a key role in the classifier performance. When
assigned more complex credentials, the users were easier to differentiate.

The selection of passwords also plays a critical role in keystroke dynamic
research. In [4, 46] the authors assigned a single password to all users. In [4, 46]
the users were allowed to select their own passwords. While this represents
a more realistic scenario, statistical studies will be confounded by the varying
lengths and complexity of passwords. A more thorough history of keystroke
dynamic based authentication can be found in [5].

In [71], Sim and Janakiraman showed that the digraph pattern changes when
it occurs in different words. A distance measure between two typing samples
based on the relative typing speed of trigraphs was introduced in [8].

In [32], Gunetti and Claudia evaluated the use of free text in detecting
impostors. The experiment was setup by having forty volunteers type 15 samples
of text each. These volunteers served as the legal users of the hypothetical
system. Another 165 people were then used as impostors and their typing
samples were gathered over the course of 6 months. This study reported a False
Acceptance Rate (FAR) of 5% and a False Rejection Rate (FRR) of 0.005%. An
extended approach to incorporate digraphs and trigraphs is proposed. Another
distance measure to consider difference of n-graph’s timing information in two
typing samples is also introduced.

In [61], Obaidat and Saudon used 15 volunteers over a period of 8 weeks to
conduct the experiment. Each user logged in using their user ID which had an
average length of 7 characters. The same users also acted as impostors by trying
to login using the other users’ IDs. The keystroke data was partitioned into a
training set and a testing set and run through various pattern recognition and
neural network based classifiers. The data was analyzed by using hold times
and delay times datasets separately and also by combining them. According
to the authors, the combined hold and delay time-based dataset consistently
performed better than using hold and delay datasets separately. Furthermore,
the authors show that the best performing neural network classifiers gave lower
FAR and FRR values than the best performing traditional pattern recognition
techniques such as K-means, Bayes classifier and Cosine measure.

In [55], the keystroke data was collected over a period of 7 weeks with almost
all of the participants being familiar with computers. The subjects were asked
to type in a phrase that was displayed on the interface. For the free text section
of the experiment, the subject typed sentences of their own accord. The total
number of participants used in the final data analysis was 31. The dataset was
divided into training and testing datasets. The classification algorithms used
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included Euclidean distance measure, non-weighted probability and weighted
probability measure. The weighted measure algorithm was used to weigh the
more commonly occurring digraphs such as ‘er’, ‘th’, ‘re’ as compared to less
common digraphs. This form of classification led to a 10% increase in the
classification accuracy. The authors also note that they found that the mean
typing speed of digraphs that were typed only with the left hand such as ‘er’,
‘re’, ‘es’, ‘we’ were lower for left-handed users as compared to when typed by
right handed users.

Villani et. al. [77] focused on the use of long-text input for gathering
keystroke data. The two variables that were analyzed in this study were the
type of input keyboard (laptop or desktop) and the type of text input (free text
or copying a given string). The Nearest Neighbor classification algorithm was
used to perform the analysis. The experiment was performed on 118 subjects.
Data collection consisted of entering data on a desktop or a laptop. Each sce-
nario had two activities where the subject could either copy the given text or
type free text. For data acceptance, a subject had to participate in at least two
of the four possible activities.

Based on the results, the authors note that the accuracy of identifying a
subject is highest when a single keyboard is used by the subject during training
and testing phases. Laptop accuracies were also reported to be higher than
desktop accuracies, presumably due to the personal nature of laptops. The
authors also note that the accuracy of free text input is lower than when copying
a given string. Accuracy also decreased when subjects used different keyboards
for enrollment and testing (Laptop for enrollment and desktop for testing or vice
versa). The authors did not detect any significant difference between desktop-
desktop or laptop-laptop training-testing phases and neither did they detect
any difference between a copy task and free text on desktops. However, there
was a distinct performance downgrade in user classification when copy tasks
and free text entry were performed on the same keyboard and were then used
as training and testing datasets respectively. According to the authors, this
indicates that user patterns change based on the mode of typing (free text
or copy). The accuracy decreased further when different keyboard types and
different input modes were used, which suggests that the type of keyboard used
in the experiment affects the performance of the classifier.[77]

Another aspect of keystroke analysis that has been researched pertains to
the use of keystroke digraphs, trigraphs, and n-graphs in user identification.
Bergadamo et. al. achieved a False Acceptance Rate (FAR) of 0.007% and
a False Reject Rate (FRR) of 4.09% in [8]. Free text analysis for computer
based systems has been performed by [32, 71]. One of the reasons for this is
that behavioral biometrics may change according to the physical environment
of the user. Monrose and Rubin, while working with free text, achieved a
classification accuracy of about 23%. Research work related to the study of
keyboard characteristics has also been performed by [76, 70].
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2.1.4 Contributions to keystroke dynamics

In this work, we analyse the effect of user habituation in keystroke dynamics on
a user’s keystroke dynamics profile, its effect on inter-user profile separability
with time, and its impact on authentication performance. We show that user
habituation has a statistically significant impact upon the user profile and the
performance of keystroke dynamics based authentication schemes. Based on our
findings, we test several training models and conclude that the best model to
improve the accuracy of keystroke dynamics authentication systems is one that
retrains on the most recent set of keystroke entries.

We also demonstrate that event sequences are an effective attribute for use
in keystroke dynamics based authentication systems. The event sequence is
the temporal sequence of all key-press and key-release events performed to type
a string. This includes the key-press and key-release events of character keys
and of special keys (Caps Lock, Left Shift, Right Shift, etc) that are used to
modify the character key output. In contrast to the traditional approach in
literature of ignoring these variations, we show using empirical analysis that
including variations in event sequences in keystroke dynamics based authentica-
tion systems leads to better performance and reliability. We also demonstrate
that event sequences possess discriminatory information that is independent of
typing proficiency. This is in contrast to currently existing keystroke dynamics
based attributes, all of which rely on inter-user variations in typing proficiency.

The research on keystroke dynamics presented in this work offers strategies
for training better keystroke-dynamics based authentication systems. Further-
more, we demonstrate how the definition of keystroke dynamics can be expanded
to include the user’s key-preference behavior in addition to traditional typing
rhythm behavior.

2.2 Pointer dynamics

2.2.1 Definition

Pointer-based recognition is a behavioral biometric that analyzes the usage pat-
tern of a computer’s pointing device to verify the identity of an individual. A
pointing device is used to move the cursor within the Graphical User Interface
of a computer or another display device. It can also be used to select interface
elements or perform actions based on the control elements available. Computer
pointing devices have been investigated as a form of behavioral biometric only
recently. The advantage of this modality is the widespread applicability, as it
only requires the hardware present in most computing systems. In the liter-
ature, the most common examples of pointer-based recognition refer to mouse
dynamics. Current extensions to touch sensitive devices lead to touch dynamics.

The development of algorithms that can determine the identity of a user
starts with the identification of the device control elements. A computer mouse
is typically used as a pointing device on desktop and some laptop computers.
A computer mouse controls consist of two or three buttons and a movement-
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tracking device such as a rolling ball or a laser. At the atomic level, two types of
events characterize any pointing activity: mouse movement and button events.
The former refers to the actions of moving the screen pointer while the latter
refers to mouse button’s presses and releases. Software can trap and record
atomic mouse events. Events are associated with attributes, e.g., the event
type, timestamp(s), and cursor coordinates. This information collectively forms
the mouse dynamics data.

Atomic events seem to be too detailed to be effective for biometric analy-
sis. The literature suggests they be aggregated into higher-level abstractions to
obtain meaningful representations of user behavior. The abstractions include
gestures, such as drag-and-drop, move-and-click, right-click, left-click, and sim-
ple mouse movement [1]. Gestures aggregate usage patterns. Statistical analysis
of associated measures allows the development of user models and their com-
parison.

In computing devices with touch screens interface interactions require touch
gestures, typically performed with the fingers. These touch gestures require
either one or two fingers to execute. Examples of single finger gestures include
touch, double touch, and swipe. Two finger gestures include pinch open and
pinch close. At the atomic level, the a touch gestures are recorded by the device
as the series of touch presses. Typical atomic data includes the location of the
press, the screen area pressed by the finger at that point, and the timestamp
of the event. Higher-level abstractions provide more meaningful information
such as the gesture type, the gesture velocity and pressure at various intervals,
deviations from “a perfect gesture”, etc. These statistics can be aggregated over
a period of time to form a user model. Most touch screens used in smart phones
do not have the technology to capture touch-pressure information. However,
the relative measure of pressure can be computed indirectly, by measuring the
area touched by the finger.

2.2.2 Mouse Technology

Modern commercially available mice either use mechanical or optical means to
detect mouse movements. A mechanical mouse utilizes a ball located at the
bottom of the mouse. As the user moves the mouse, the ball rotates in the same
direction. Using mechanical means, the ball’s movement is translated to pulses
of infrared pulses that are detected by an infrared sensor. By using two pairs
of pulses and sensors, orthogonally on the X and Y coordinates, the pulses are
interpreted by a processor to calculate the speed and direction of the mouse’s
movement. Optical mice use an LED or a laser for tracking movements. This is
performed by casting light on the surface that the mouse is being moved over.
A CMOS sensor captures images of the light that scatters off the surface. A
digital signal processor samples the images from the CMOS sensor. Using a
signal processing algorithm to compare the changes in the images captured by
the CMOS sensor, the digital signal processor calculates the movement direction
and speed of the mouse. Due to their high sampling rate, optical mice have a
higher tracking resolution compared to mechanical mice. They also have lower
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failure rates, are more resistant to dirt accumulation and do not require a special
mouse pad to work. Due to these reasons, they have are used more commonly
than mechanical mice.

2.2.3 Usage Scenarios

Mouse Dynamics-based Authentication (MDA) systems have been used in two
types of biometric scenarios: static authentication and continual authentication.
Static MDA systems authenticate a user at a specific time such as at the time
of login. Such a system needs to offer a definitive authentication outcome in a
short time period. This usually requires the user to enter a predetermined input
sequence, such as trace a pattern [64], or offer an electronic signature unique to
the user. Due to the constrained nature of mouse activity, static MDA systems
are easily implemented and computationally inexpensive.

On the other hand, continual MDA systems offer repeated authentication
of a user’s identity as he or she continues to operate the pointing device. In
fact, authentication is continually performed throughout the usage session. In
this scenario, the user’s mouse movements are unconstrained. Mouse dynamics
data is collected by a background process, with or without user’s cooperation
or his/her awareness. The authentication system has no control over the form,
sequence and intensity of user activity. While the lack of constraints inspires
uninhibited behaviors thought to offer increased uniqueness, the lack of activ-
ity may lead to periods in which authentication is not feasible. When mouse
dynamics activity is present, incremental data is analyzed and compared to the
stored user model [1]. Due to incremental nature of data collection, continual
MDA systems may offer authentication decisions with varying levels of certainty
over time. Accurate decisions require longer periods of mouse dynamics data
monitoring, typically in terms of minutes or tens of minutes. Continual authen-
tication systems are computationally more expensive than the static ones.

2.2.4 Feature Representation

Most MDA systems developed so far rely on machine learning methods for
model development and comparison. Therefore, users are required to enroll.
The enrollment includes a period of time needed for model building, leading
to the establishment of a signature, which is stored in a model. Such a model
represents the basis for user authentication, in which the user’s mouse dynamics
data is captured and compared to the model.

Based on the features used for authentication, MDA systems can be catego-
rized into three types [48]:

1. Trajectory-based authentication is suitable for static MDA systems. The
user is asked to follow a standard pattern such as a signature or an outline
of a drawing that serves as a mouse dynamics based “password”. In this
type of system, various trajectory-based measures are calculated at sam-
pling points on the pattern [10, 12]. These may include angle, distance
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time and between predefined sample points, etc. The similarity between
the enrolled signature and the input mouse data is calculated to authen-
ticate the user. Due to the narrow set of patterns used for enrollment and
verification, trajectory-based approaches by themselves are not suitable
for continual authentication systems.

2. Feature-based authentication incorporates additional attributes of mouse
data not included in trajectory-based systems. In addition to the track-
ing of precise pointer coordinates, this approach includes derived second
order measures of mouse movements, such as speed, acceleration, angular
velocity, and curvature [64]. These features are computed from the atomic
mouse events. Feature-based authentication systems are suitable for both
static and continual authentication.

3. Behavior-based approaches include mouse dynamics data collected over
a longer time periods. The lengthy mouse dynamic data vectors allow
the computation of various cumulative measures and statistical parame-
ters, for example, the average speed of the pointer, movement direction
histogram, traveled distance, etc. This information is used not only to
compare against the user’s enrolled signature but, in some cases, to peri-
odically update the model. Behavior-based analysis allows similarity score
to be applied to biometric identification (one to many matching) [1], in
addition to authentication. A considerable amount of time may be needed
to accumulate enough data to identify a user. Nevertheless, continual au-
thentication systems in which mouse movements are unrestricted and the
number of users who participate in identification is large require the added
complexity of behavior-based mouse dynamics approaches.

2.2.5 Classification

A variety of algorithms have been proposed for the purpose of comparing the
mouse data captured during the verification stage with the user model. These
approaches include neural networks [1, 64], distance metrics [48, 65, 57, 12],
decision trees [48, 68], support vector machines [81, 52, 76], and data distribution
models [10].

One of the problems with analyzing the accomplishments in the field of
mouse dynamics authentication is the wide variety of experimental setups in
literature. Table 1 compares the experimental results from the selected works
on static and continual authentication scenarios with mouse dynamics. The ta-
ble shows that the reported performance of MDA systems varies considerably,
but so do the experiment setups. The differences in experimental setups are
related to the number of test subjects, the restrictions of the devices used by
the subjects, the type of mouse signatures in static authentication, the features
chosen for classification, the nature of impostor data, and/or the algorithm used
for classification. At this time, there is no agreement amongst the researchers
with respect to relevant test scenarios or the best performing classification ap-
proaches. Therefore, claimed performance results reported directly from the
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literature in Table 1 should not be interpreted as a clear indication of quality of
a classification approach.

For example, Jorgensen and Yu [41] compared two previously proposed clas-
sification approaches by Ahmed and Traore [1] and Gamboa and Fred [26] under
the same scenarios and in a unique environment. They found that when envi-
ronmental variables uncontrolled in the previous studies (such as the length of
enrollment time and the devices used by test subjects) were controlled, the error
rates changed considerably. This seems to indicate the uncontrolled variables
contribute to the distinctiveness of users, thereby artificially increasing the algo-
rithm performance. While Jorgensen’s study used only 17 subjects, the results
highlight the problems that are rather common for an emerging biometric field.

Shen et al. conducted a comparison study of 8 classification algorithms us-
ing the dataset from a controlled data collection [69]. They found that certain
distance metrics (Nearest Neighbor and Mahalanobis) offer good authentication
performance. However, it is not clear whether these same distance metrics would
perform well with a different feature set. Furthermore, noise is an inherent prob-
lem in behavioral biometrics. Further research is needed to determine whether
the best performing algorithms are robust to noise. In a related behavioral bio-
metrics domain (keystroke dynamics) it has been shown that user habituation
affects classifier performance [73]. It is likely that this phenomenon affects the
performance of mouse dynamics based authentication too. Such confounding
factors make it difficult to attribute experimental results solely to the nominal
user behavior at this time.

The metrics commonly used to determine the efficacy of biometric authen-
tication approach are False Accept, False Reject and Equal Error Rates. The
parameter important for pointer based biometrics is the time needed for authen-
tication. We also report the number of users in the study. Table 1 indicates
that while research claims a significant increase in the performance of MDA
systems, the performance and reliability necessary for stand-alone deployment
in real-world systems does not appear to be within reach yet.
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Table 1: Overview of selected works on static and continual authentication using mouse dynamics

Work Type Features used Algorithm
Authentication
time per
user

# of
users

Error Rates
FRR FAR

Hashia et al
(2005) [33]

Static

Pointer speed, angle and
distance of deviation from
shortest path between 2
points

Outlier detection 20 secs 15 15% 15%

Bours and
Fullu (2009)

[12]

Static

Velocity vectors for each
segment of mouse
movement while
traversing a maze

Levenshtein
distance

Not reported 28 27% 27%

Sayed et al
(2013) [64]

Static

8 gestures types
characterized by 12
features such as velocity,
curvature, acceleration
etc.

Neural network 26.9 secs 39 4.59% 5.26%

Schulz
(2006) [65]

Cont.

Mouse movement curve
features: length, number,
curvature, inflection
features and straightness

Euclidean distance Not reported 72 24.30% 24.30%

Nakkabi et
al. (2010)

[57]

Cont.

39 features based on 4
types of movements:
mouse-move, drag-and
drop, point-and-click,
silence

Fuzzy classification 17 mins 48 0.36% 7.78%
2.75%

Shen et al
(2012) [68]

Cont.

Click elapsed time,
movement speed,
movement acceleration,
relative position of
extreme speed

One-class SVM
(Best performing),
k-nearest neighbor,
neural network

10 mins 28 9.45%
3.39%

7.78%
2.75%
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2.2.6 Application and Challenges

Mouse dynamics has the potential to be used as a stand-alone biometric. The
more likely context, currently, is its inclusion in multi-modal systems. Fusion of
mouse dynamics data with other biometric modalities provides a faster, more
reliable solution [74]. Research studies fail to test MDA systems with challeng-
ing (non zero-effort) impostor data. Reducing the authentication time remains
a significant challenge in continual authentication scenarios. A long authentica-
tion time may allow a malicious user sufficient time to penetrate the system.

Nakkabi et al. achieved an Equal Error Rate (EER) that matches the Euro-
pean standards for security in continual authentication systems [57]. This result
came at the cost of a long time needed for authentication (˜17 minutes) using
48 test subjects who posed as impostors for one another.

More generally, current experiments suffer from a small number of test sub-
jects and limited impostor data that comes either from the users included in
the study or is created artificially. A publicly available realistic dataset would
significantly help advance the field. Such a dataset would need to minimize
various confounding factors, such as those related to different pointing devices,
screen sizes and resolutions, mouse acceleration settings, familiarity of users
with applications, etc.

2.2.7 Evolution of Pointer Based Dynamics with Touch-
screens

With the growth of touch sensitive screens and their application in consumer
electronics, biometric authentication from touch screen dynamics is emerging.
In touch dynamics, fingers or point devices are used to perform gestures, ac-
cess control elements and interact with the user interface on the touch sensitive
screen. The underlying granular data for mouse dynamics and touch dynam-
ics is similar as both technologies rely upon gestures and pointer movements
for authentication. Thus, the technology developed for MDA, with necessary
modifications, can be used in touch dynamics.

2.2.8 Touch Screen Technology

Initially developed in the 1960s for air traffic control systems, touch screen are
common today in devices such as ATMs, self-service kiosks at grocery stores,
airports etc. However, the use of touch screens has become ubiquitous due to
their usage in mobile devices and portable tablet computers. There are many
technologies used to create touch screens. However, the most commonly used
screens are capacitive or resistive based. One type of resistive display consists of
two layers of glass or acrylic panels that are coated with indium tin oxide. This
allows the layers to conduct electricity and also possess a degree of electrical
resistance. These layers are placed together while being separated by invisible
spacers. Other types of resistive displays also exist. However, the general princi-
ple on which resistive displays work remains the same: when pressure is applied
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at a certain point on the display, a contact is created between the electrically
conductive layers. A voltage is then applied across the Y direction on the screen.
Since the touch creates a voltage divider at that point, an electrode along the
X axis measures the voltage gradient, thus detecting the Y coordinate of the
pressure point. Similarly, the voltage gradient across the X axis is measured to
determine the Y coordinate of the point of contact. The coordinate sampling
is performed multiple times and an averaging algorithm is used to determine
the location of the contact [21]. The time to sense a single touch thus depends
on the averaging algorithm, the analog technology used, and the clock speed
of the device. Resistive screens thus work based on the pressure applied to
compress the electrically conductive layers together. Due to the technology’s
passive nature, any pointing device (finger, stylus, etc) can be used to interact
with resistive displays. They are also more economical than capacitive displays.
However, resistive displays suffer from low responsiveness due to the need to
apply pressure to create a contact.

Capacitive screens, although more expensive, have become prevalent in mo-
bile devices such as cell phones and tablet computers due to their responsive-
ness. The capacitive screen uses an array of surface electrodes to detect a touch.
When the user touches the screen, the body’s capacitance causes the finger to
act as the second electrode. The glass layer between the surface electrode and
the finger acts as the dielectric. Based on the location of the surface electrode in
the array, the coordinates of the contact point is calculated. Due to the nature
of capacitive technology, any object that does not possess conductance cannot
be used for interacting with such displays.

The primary objective of touch screen technology is to detect the location
of the touch. It does not possess the ability to measure the degree of pressure
applied. However, capacitive technology can use the number of electrodes that
are activated as a relative measure of the pressure applied. Thus, pressure
detection on touch screens is possible only when a deformable object such as
a finger is used to touch the screen. Any object that does not possess this
characteristic (e.g., a stylus) cannot provide meaningful pressure information.

2.2.9 Application to Continual User Authentication

As with mouse dynamics based authentication, research in touch-based au-
thentication can be classified into two types: entry-point based authentication
(static) and continual authentication. In static authentication, user identifica-
tion is based on a pre-defined token such as a password, or personal identifi-
cation numbers (PIN), etc. In this case, authentication assumes the form of
keystroke dynamics, supplemented with pressure information from touch ges-
tures. In graphical passwords, this could take the form of a pre-defined gesture,
or connecting a grid of points on the touch screen in a single gesture. This
authentication system, currently in use on smart phones, has been extended to
include pressure data, illustrating the feasibility of a touch dynamics static au-
thentication system [19]. However, it is important to note that in the majority
of touch screen devices, the pressure is sensed indirectly and not based on a
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dedicated pressure sensor. When additional pressure is exerted, the finger tip
flattens slightly and increases the contact area. The increase in contact area is
interpreted as an increase in pressure exerted.

Table 2 summarizes the experimental setup and results of four studies that
have been performed on touch-based continual authentication.

Frank et al. [24] authenticated users by analyzing their regular device use
patterns over time, through 34 different features extracted from touch strokes.
This study achieved an equal error rate between 0%-4%. The authors also tested
for inter-session authentication that showed that touch-based authentication can
be used for long term authentication.

Li et al. [47] evaluated the performance of a live implementation of a smart
phone-based touch authentication system. The touch data was collected in the
background from 75 users who were asked to freely use the devices for a number
of days. The collected data was used to create a SVM-based classifier that
exhibited an equal error rate of 3%.

Feng et al. [23] used 53 touch and gesture features for classification. Addi-
tionally, they created a special digital sensor glove to achieve highly accurate
continuous identification. The glove was used to capture 36 triaxial angular rate
features when users performed touch activity. The glove data was collected for
11 subjects and the classifier trained using Random Forest, J48, and Bayes net-
work algorithms. The authors achieved an accuracy of 2.15% FAR and 1.63%
FRR when the digital glove was used. Without the glove, they reported an
accuracy of 11.96% FAR and 8.53% FRR.

Recently, Serwadda et al. [67] performed a benchmark analysis and released
the first public dataset in this field. The benchmark analysis compared ten
classification algorithms on a locally collected dataset to determine the best
performing ones. The best performing classifier on their dataset was Logistic
Regression with an EER between 10.5%-17.2% depending on the type of strokes
used to develop the model (horizontal or vertical) and the screen orientation
(portrait or landscape).

As can be seen from the related work, the research in touch based continual
authentication is in its infancy. The number of features varied from 10 to 53
across the different studies. One study does not disclose the types of features
used [23]. Some studies leverage feature selection [24, 47] and others do not
[23]. Similarly, feature normalization is performed only by one study [24]. Some
studies use EER for benchmark comparison [24, 47, 67] while others only report
error rates [23].

There are other significant factors that have currently not been researched:
Touch based devices come with varying form factors. The display size, aspect
ratio, screen orientation (landscape or portrait), the touch sampling rate of the
touch screen, and the touch screen hardware are some factors whose effects on
user behavior are not well understood. Modern touch screen - based devices
are equipped with accelerometers and gyroscopes. If device orientation, user
movement and device perturbation during interaction is found to be a significant
source of variation in user behavior, it would be possible to use data from these
sensors to augment touch-based authentication with the movement data. Recent
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research fuses user movement and touch dynamics [10].

2.2.10 Contributions to touch dynamics

In this work, we demonstrate that the user’s posture, the device size and the de-
vice manufacturer have a significant impact on the authentication performance
of a touch-based authentication system. We show that the attributes used in
current state-of-the-art touch-based authentication systems lead to a user model
that is incapable of providing constant, reliable performance when any of the
above-mentioned three factors are changed. This area of research in touch dy-
namics has previously remained unexplored. The results presented in this work
are the first of its kind and significantly important in the development of robust
touch-based authentication systems.
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Table 2: A Summary of the current studies on touch-based continual authentication. A part of this table is summarized from
a benchmark study [67]

Study # of
Users

# of
fea-
tures

Features
enumer-
ated?

Feature
selection
per-
formed?

Feature
normaliza-
tion?

Outlier
removal?

Classification
algorithm

FAR FRR

Frank et al.
[24]

41 27 Y Y Y
Short strokes
removed

SVM 0-4 0-4
kNN 0-4 0-4

Li et al. [47] 75 10 Y Y N N SVM 3 3

Feng et al.
[23]

40 53 N N N N
J48 14 12

Random
Forest

7.5 8

Bayes Net 11.96 8.53

Serwadda et
al. [67]

41-106 28 Y N N N

Logistic
Regression

13.8 13.8

SVM 15.4 15.4
Random
Forest

16.5 16.5

Naive Bayes 20.5 20.5
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Chapter 3

Keystroke Dynamics

3.1 Datasets used

The experiments and analysis in Chapter 3 uses three keystroke dynamics based
datasets. These were either collected locally or available publicly. They are la-
beled as KDS-1, KDS-2, and KDS-3. Each research question uses one or more
datasets based on their suitability and availability. Thus, some research ques-
tions used only one dataset while othes used all three datasets. The collection
procedure and characteristics of each dataset are described in the remainder of
this section.

3.1.1 KDS-1 Dataset

The first data collection (KDS-1) was performed by Bartlow and Cukic [6]. They
collected data from 41 users who typed short and long passwords repetitively.
The characteristics and the content of KDS-1 is summarized in Table 3. The
short passwords were 8-character lower case dictionary words, while the long
passwords contained 12 characters in a uniform format SUUDLLLLDUUS,
where S represents a symbol, U represents an uppercase character, L represents
a lowercase character and D represents a numeric digit.

The data collection sequence consisted of enrollment and data entry. Dur-
ing enrollment, each user was given the short and long passwords through the
interface shown in Fig. 1(a). Once the user was enrolled in the system, the
data collection consisted of two distinct phases: training and testing. During
the training phase, the user would enter their (genuine) username-password se-
quences regularly through the interface shown in Fig. 1(b). Following this entry,
the user would be asked to enter the data that would correspond with the testing
phase through the interface shown in Fig. 1(c). This would consist of providing
another user’s credentials to the current user. The user typed these credentials
into the given interface. By doing so, the user acted as an impostor with respect
to another user. Each user was asked to input the genuine and impostor data
10 times each in a day.
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(a) Registration interface

(b) Genuine input interface

(c) Impostor input interface

Figure 1: User Interface for KDS-1 data collection
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Table 3: Summary of KDS-1 and KDS-3 Datasets
KDS-1 dataset KDS-3

dataset
# of Subjects 41 51

Collection
Format

Client/Server web
based remote

collection

In lab
setting

Impostors
present?

Yes Yes

Who act as
impostors?

Other users Other users

Data
collected

Password 1,
Password 2

1 Password

Password
format

8-letter, lower case
dictionary word

“.tie5Roanl”

Format:
SUUDLLLLDUUS

Entries per
user

40 entries per
password

50 entries
per session

User input
device

Using personal
computers

Lab PC

Frequency 5 times per day 1 session /
sitting

3.1.2 KDS-2 Dataset

We collected this dataset for our research. In KDS-2, each user was assigned
four passwords: 2 short and 2 long. The short and long passwords followed
the same format as in KDS-1. We recruited 30 users for the study. They were
coupled into 15 user pairs. Each user in a pair was assigned the same four
passwords. The users were unaware of this pairing process. The pairing of users
was done to simulate an environment where an impostor learns someone else’s
password, but does not have a chance to observe the genuine user’s password
typing rhythm.

The users were asked to submit their four passwords several times a day. The
data was collected via a web-based front-end application built using Javascript
and collected at a back-end server at our lab. The users used their own com-
puters to submit data. The Javascript application collected and submitted the
following information to the back-end server:

1. The keys pressed and the time stamps of the key events.

2. IP address.

3. Browser type.
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4. Date and time of submission.

In this work, we only use key event data. The subjects were selected with rea-
sonable variation in demographical characteristics so as to remove potential bias
in experimental results. Each user was asked to submit at least 40 legitimate en-
tries per password. The features of the dataset are summarized in Table 4. Most
users submitted 50 - 55 entries per password. The minimum number of entries
submitted for a password was 44. In order to create consistent experiments, as
explained later, we used 40 entries per password from each user.

Table 4: Characteristics of KDS-2 Dataset
Password Type
Short Long

Min # of entries/user 103 90
Max # of entries/user 215 245
Avg # of entries/user 136 118

Total users 30

3.1.3 KDS-3 Dataset

The KDS-3 dataset was collected by Killourhy and Maxion and is publicly
available [46]. The dataset consists of 51 users typing the same password,
.tie5Roanl, 400 times each. The passwords were entered by a user in 8 sessions.
In each session, the user submitted 50 entries. Erroneous entries were removed
and only legitimate entries using only the characters required were kept in the
dataset. The characteristics of the dataset are summarized in Table 3.

Noise removal on KDS-1 and KDS-2 datasets
Both KDS-1 and KDS-2 were collected in an uncontrolled environment. This

entailed that we analyze the dataset for outliers and remove them. The outliers
were removed based on the total typing time distribution for a given user. For
every user, those entries whose typing time was greater or less than 1.5×Inter−
QuantileRange was removed from the dataset.

3.1.4 Advantages and Disadvantages of each KDS Dataset

In KDS-1 each user was assigned a short and a long password, impostors in the
dataset represented all other users and would mimic a malicious user obtaining a
password and attempting to circumvent an authentication scheme. Users were
asked to submit data at their convenience with no specific requirements for
frequency of submission per session. However, users were asked to submit no
more than 5 entries per day.

In KDS-2 each user was assigned a pair of short and a pair of long passwords.
Furthermore, each user was paired to another user. This creates the scenario
where an impostor has gained access to a password and is habituating to it prior
to launching an attack. Users were given the freedom to submit as many or as
few entries per session and per day.
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In KDS-3 all users were assigned the same password. This removes any
confounding factors generated by using different passwords for each user. Such
confounding factors related to location of letters in the password relative to
the keyboard as well as the type of input device. However, the data collection
procedure does not mimic real world situations as users will seldom submit a
large number of password entries in a single session.

3.2 RQ1: When users are assigned unfamiliar
passwords, is there a period of typing habit-
uation?

In all three datasets, each long and short password pair was chosen by the
system. Thus, all users were initially unfamiliar with their credentials. It is
therefore expected that each user would have a learning phase before they ac-
quire the ability to enter the credentials “smoothly”.

Fig. 2(a) shows the total time required by a typical user to type the short
password over the course of the KDS-1 data collection. The difference between
the maximum and minimum keystroke time over this period is 1.5 seconds. After
excluding the major outliers, this difference falls to approximately 0.75 seconds.
Over the course of the entire experiment, the total keystroke time for the short
password does not appear to follow a significant habituation trend.

In order to further analyze any possible trend in the user habituation, we
divided the short and long password typing entries of every user into groups
of 5. Since the entries were arranged in a chronological order, the order of the
entries intrinsically contained information on user habituation. Analyzing these
groups of entries, or windows, provides information on user habituation.

In the second experiment, the short and long password entries were split into
windows of 10 consecutive entries. Thus, two window sizes of 5 and 10 were used
on both passwords. The variations in total typing time are plotted using box
plots. A boxplot is a graphical representation of the five first order statistics
- the minimum observation, lower quartile (Q1), median, upper quartile (Q3)
and maximum observation. The box in the box plot is constructed using the
inter-quartile range from the first to the third quartile. The solid horizontal
line within the box represents the median value. The whiskers represent the
smallest and the largest observations. The presence of outliers is noted with a
hollow circle.
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(a) Short passwords

(b) Long passwords

Figure 2: Typical variation in total keystroke time for short and long passwords
across the length of the study
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(a) Window size = 5 entries

(b) Window size = 10 entries

Figure 3: Variation in keystroke time using different window sizes for a short
password of a typical user
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(a) Window size = 5 entries

(b) Window size = 10 entries

Figure 4: Variation in keystroke time using different window sizes for a long
password of a typical user
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3.2.1 Results and Analysis

Fig. 3(a) illustrates the variation in the typing pattern of a typical user for a
short password over 5 consecutive entries. Fig. 3(b) depicts the same infor-
mation for a window of size 10. Somewhat to our surprise, these two figures
indicate that the total time of typing a short password does not exhibit a clearly
observable reduction. Typing habituation for short passwords, if present, was
minimal. A similar data pattern of behavior was observed for the short pass-
words of the remaining 31 users in the study.

Fig. 2(b) illustrates the total keystroke time for the long, complex pass-
words, for a typical user. The largest difference between the keystroke times
was found to be 7.5 seconds. After excluding the major outliers, this difference
was approximately 4.5 seconds. The results indicate a much clearer habituation
trend than in case of short passwords. The decreasing trend of time needed
to enter a long password is related to time between two consecutive password
entries. When the user enters the long password after a significant time elapsed
after the previous trial (day or days), it takes a few entries before the user settles
into a rhythm. A similar behavior was noted for the remaining 31 users, which
cannot be presented due to space restrictions.

Fig. 4(a) and 4(b) show the box plots for the total keystroke time for long
passwords using a time window of 5 and 10 consecutive entries, respectively.
The figures indicate that the mean time to type in the password is follows a
decreasing trend over the course of the experiment. Furthermore, the typing
pattern tends to become smoother, as evidenced by the fewer outliers and re-
duced variance. This behavior indicates that habituation is present in typing
of the password. However, for complex passwords, users requires a significant
number of entries prior to developing a uniform typing pattern. The behavior
of this user was found to be similar for most of the remaining 31 users.

We can summarize our observations as follows:

1. User habituation appears to be minimal for short passwords. Short pass-
words are commonly occurring English words, familiar to users, such as
explorer, zeppelin, etc. The average user may type such words during their
daily activities and hence they exhibit minimal habituation patterns. The
most common words (such as computer, password) showed the lowest ha-
bituation trends indicating the weakness of simple words as a password
mechanism in keystroke based user authentication.

2. For passwords randomly generated passwords, there is a decrease of 46%
in total typing time between the first 20 entries and last 20 entries. Each
password was comprised of special characters, numerals, and upper and
lower case characters, such as [LO2uqam8UI+ , ;PG3xuel9LU}, etc. The
average user is not familiar with such random sequences and exhibited a
marked habituation trend as he or she learned the words and improved
typing over time.

3. Using too small a window size for habituation analysis can cause the graph
to be too granular. Keystroke patterns do not follow a perfectly smooth
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trend. Rather, the keystroke entry times fluctuate locally as the user
habituates, while the local mean decreases with time. Using a correct
window size was necessary to remove the effect of local variations in the
data.

3.3 RQ2: Does user habituation play a critical
role in building effective keystroke dynamics
classification systems?

How can user’s password typing habituation benefit authentication? When
keystroke dynamics is used to authenticate a user, in addition to the knowl-
edge of the password itself, more stable typing patterns should enable more
precise methods for authentication. In this section, we explore the effect of user
habituation on the performance of user classification, a mechanism that utilizes
keystroke dynamics in authentication. Using the same dataset, we will ana-
lyze if models developed from longer sequences of consecutive password typing
attempts outperform those that use shorter training sequences.

A classifier is built to separate genuine password entries from unauthorized
(impostor) attempts. We trained it using genuine and impostor typing entries
(the dataset includes keystrokes of subjects typing their own as well as each
other’s passwords). We built user typing classification models by steadily in-
creasing the size of training entries from 6 to 30 attempts of typing the same
passwords, in steps of 3. The test samples for genuine and impostor typing at-
tempts were those recorded after the first 30 in their respective category. Using
this system, the average test size was 58 and 59 sequences for short and long
passwords respectively. The experiments were carried out using the Random
Forest classifier [13]. We calculated the Equal Error Rate (EER) for each user
(30 users for long passwords and 33 users for short), and then calculated the
average EER for differing number of samples in the training sets. The average
EERs across all users as the training set size is varied for short and long pass-
words are listed in Table 5 and plotted in Fig. 5. The results can be summarized
as follows:

1. As the training set was incrementally increased, the average EER de-
creases. The maximum value of errors for short passwords is 14.9% when
9 samples are used in the training set, while a 7.0% EER is achieved as
the number of training samples is increased to 30.

2. For long password, the EER decreases from 12.7% to 3.7%. This obser-
vation is further strengthened by Fig. 6 that depicts the ROC curves for
long password using different number of training samples. As higher the
number of training samples, the better the authentication performance.

3. On an average, using keystroke dynamics with long passwords resulted in
3.7% fewer authentication errors compared to short passwords.
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4. It is important to note that in the KDS-1 dataset, impostors were given
the passwords of their peers. Without keystroke dynamics, all attempts
to authenticate would succeed. With keystroke dynamics, about 90% to
96.4% of them would be successfully detected and disallowed.

Table 5: Change in EER when the size of the training set is increased for short
and long password schemes.

Number of Average EER
training vectors Short Long

6 13.5% 12.7%
9 14.8% 8.7%
12 12.1% 7.9%
15 10.2% 6.7%
18 9.2% 5.6%
21 8.6% 5.2%
24 8.5% 4.2%
27 7.4% 3.7%
30 7.0% 3.7%

Average 10.2% 6.5%

Figure 5: A graphical illustration of change in EER as the training set size is
increased
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Figure 6: ROC for long passwords as the size of the training set is varied between
6-30 samples

This performance increase is a natural consequence of using more data to
train the classifier. However, user habituation also plays a role in this perfor-
mance increase. An absence of user habituation would have resulted in a gentler
decline in the EER and could have also caused a significant deviation from the
smooth decline observed in Fig. 5. Due to the nature of the data and the charac-
teristics of the classifier, studying user habituation exclusively without the effect
of confounding factors is difficult. User habituation can only be evaluated by
incrementally collection of typing samples. However, the classifier improves due
to the increase in the number of training samples too. Due to this relationship
between the user habituation and classifier algorithm, it is difficult to study the
impact of saturation effect in user habituation in isolation.

To forecast the performance of keystroke - based authentication, we used
trend lines to determine the EER related to the number of samples used for
training. Fig. 7(a) and 7(b) illustrate the trendlines for the long and short
passwords, respectively. The trend line for long passwords function is y =
0.1325x−0.5719, and y = 0.1597x−0.3405 is for short passwords, with y being the
EER and x being the number of training samples. Based on our data analysis,
the performance of authentication would increase by less than 1% if more than
30 typing samples are used in training. While this number may vary based on
the user demographics and experimental environment, it provides a reasonable
baseline for future measurements. It is also important to note that once the
user is habituated to the password, rebuilding the classifier would result in
better performance. This is because data from earlier typing samples no longer
represent the user as he / she habituated to the complex password.
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(a) Long passwords

(b) Short passwords

Figure 7: EER Projections for a typical password based classifier
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3.4 RQ3: Does habituation have a statistically
significant effect on the user’s Total Typing
Time?

3.4.1 Experiment Setup

In order to statistically analyze the effect of habituation in Sections 3.4-3.7, we
accumulate consecutive password entries from each user in the dataset under
analysis into windows. Fig. 8 illustrates the concept. The sample keystroke
entry vector is converted to windows of size 3 by computing the median value
for each feature. The size of the window refers to the number of entries used
to compute it. Using a large window size smoothes out irregularities in typing
rhythm caused by external factors or noise (physical or mental state, change in
posture, etc.). However, too long a window size may obscure information about
changes in typing over time. Similarly, a small window size shows variations
between keystroke entries.

After evaluating various window lengths, between 1 and 10, we chose a de-
fault window length of 10. Authentication classifiers performed best when using
10 entry windows. Longer windows were not practical because of two reasons:
a real-world authentication system should not require excessive amount of data
for training. We also needed at least 4 windows to perform analysis. Having
collected 40 entries from every user, we split the dataset into 4 windows. Thus,
Window 1 will contain data from keystroke entries 1 − 10, Window 2 contains
entries 11− 20 and so on.

In order to assess the statistical significance of our experiment, we employed
a non-parametric test, the Friedman’s Test [25]. It is used to test for differ-
ences between three or more paired groups when the dependent variable being
measured is ordinal. The groups in this experiment are the windows. The N
subjects and k windows are considered separate independent variables in the
analysis. The test statistic for the Friedman’s test is a Chi-square with (k − 1)
degrees of freedom. Thus, the hypotheses for comparison across the windows
are:

H0: The distributions are the same across the windows

H1: The distributions across the windows are different
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Figure 8: Short password feature vector and window example. Fig. 8(a) illustrates six consecutive entries from User 1. Fig.
8(b) summarizes these entries using a window of size 3 and taking the median of Entries 1− 3 to create Window 1 and so forth
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Here, ‘distribution’ refers to the distribution of typing times in any given
window. For a set of N subjects, 3 groups (windows) are being compared to
test if there are differences in typing times between any two. The values (typing
times) across each row are rank-ordered. The resulting ranks are then summed
for each column. The null hypothesis asserts that there is no difference amongst
the 3 groups. Therefore, the sum of ranked scores in each column Rj should

approximately be k(N+1)
2 . To measure the degree to which each observed sum

of ranked column varies from the null hypothesis value, the Chi-square statistic
χ2
r for Friedman test is calculated as

χ2
r =

12

Nk(k + 1)

k∑
j = 1

R2
j − 3N(k + 1)

The results of the Friedman test are defined by the parameters χ2
r and p.

The test statistic χ2
r is distributed according to the χ2

r distribution with k − 1
degrees of freedom. The value p defines the probability that the calculated
χ2
r value will be obtained if the null hypothesis were true. In our experiment,

we chose α = 0.05 as the significance threshold. Thus, a p-value under 0.05
indicates the rejection of the NULL hypothesis at the 5% significance level.

The Friedman’s test only provides a test to determine if there is a difference
in the distribution of typing times amongst the windows. It does not provide
any information on which pair(s) of windows are different. For this information,
a post-hoc analysis is carried out using Wilcoxon signed-rank tests for multiple
comparisons between the treatments. A Bonferroni correction is applied to
adjust for the multiple comparisons that are being made [11].

In order to measure if habituation causes a statistically significant reduction
in the user’s total typing time, user entries were split into windows of size 10.
For each window we calculated the median total typing time for 10 consecutive
entries. For all three datasets (KDS-1, KDS-2 and KDS-3) we utilized 4 windows
of observation.

Fig. 9 illustrates the structure of the Friedman’s test for our setup. If
the difference in median typing time between the two windows is statistically
significant for all users, this implies that the users’ typing rhythms changed
significantly between the two windows. Note that, contrary to the example
in Fig. 9, the two windows need not be consecutive. Skipping a window can
accommodate the analysis of individuals whose password typing habituation is
slower. While this test does not measure the change in typing patterns for each
individual keystroke in the password, it does provide a general means to assess
habituation.

3.4.2 Hypothesis Test

We defined the hypotheses for this test as follows:

NULL: There is no statistically significant reduction in the median typing time
between the two windows of observation.
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Figure 9: Long password median total time values for window size 10. Window 1
refers to the median typing time for entries 1 through 10 for each user. Window
2 refers to the median typing time for entries 11 through 20 for each user. The
Window 1 - Window 2 column depicts differences in median typing time.

ALT: There is a statistically significant reduction in median typing time be-
tween the two windows of observation.

We tested for change in typing time between all possible combinations of window
pairs (W1−2, W1−3, W1−4, W2−3 and W3−4) for both datasets. Datasets KDS-1
and KDS-2, as explained earlier, contain short and long passwords and the tests
were carried out on both types of passwords.

3.4.3 Short Passwords

Table 6: Statistical significance of reduction in ttotal for short passwords (KDS-1,

KDS-2) at α = 0.05.

Friedman’s
test

Post-hoc analysis
W1−2 W1−3 W1−4 W2−3 W3−4

KDS-1
Short

p 0.002 0.0001 0.0097 0.0554 0.1321

p=0.0056 Sig.? YES YES YES NO NO

KDS-2
Short

p 0.0067 0.0008 < 0.0001 0.0412 0.007

p=0.0019 Sig.? YES YES YES YES YES

Table 6 summarizes the results of Friedman’s Test on short passwords from the
KDS-1 dataset. We infer the following:

• When compared to Window 1 (W1), all subsequent windows consistently
show a statistically significant decrease in typing time. This shows that
habituation, expressed as the decrease in a user’s typing time due to the
learning the password over time, does occur for short passwords.
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• The window pairs W2−3 and W3−4 do not show a statistically significant
decrease in typing time. This indicates that, at least in KDS-1 dataset,
the users habituated to the password within the first 20 or so attempts.

Table 6 also summarizes the results of our statistical study utilizing the short
passwords from KDS-2 dataset. From these results, we draw the following ob-
servations:

• Just as in KDS-1, when compared to W1, all subsequent windows show a
statistically significant decrease in typing time (at α = 0.05), thus rein-
forcing the conclusion that habituation does occur for short passwords.

• Unlike KDS-1, the decrease in typing time remained statistically signif-
icant for window pairs W2−3 and W3−4. Thus, the habituation process
for a user continued through all 40 entries. We attribute this result to a
slight variation in data collection protocols, in KDS-2 each user had to
memorize two short and two long passwords.

The next question is whether the observed difference in typing time can be
effectively leveraged to create better authentication classifiers based on keystroke
dynamics. This question is explored later in Section 3.7.

3.4.4 Long Passwords

Tables 7 summarizes the results of our statistical analysis on the long password
data from KDS-1, KDS-2 and KDS-3, respectively.

Table 7: Statistical significance of reduction in ttotal for long passwords from KDS-1,

KDS-2 and KDS-3 at α = 0.05
Friedman’s
test

Post-hoc analysis
W1−2 W1−3 W1−4 W2−3 W3−4

KDS-1 p < 0.0001 < 0.0001 < 0.0001 0.020 0.0004
p<0.0001 Sig. YES YES YES YES YES

KDS-2 p < 0.0001 < 0.0001 < 0.0001 0.0095 0.0001
p<0.0001 Sig. YES YES YES YES YES

KDS-3 p < 0.0001 < 0.0001 < 0.0001 0.0042 0.0935
p<0.0001 Sig. YES YES YES YES NO

The observations drawn from the results in Table 7 follow:

• In all three datasets, when compared to W1, all windows show a statisti-
cally significant decrease in total typing time at α = 0.05 indicating the
effects of habituation.

• In datasets KDS-1 and KDS-2, users continue to show a significant reduc-
tion in total typing time even after typing the password 40 times. However,
in KDS-3 users did not show a statistically significant reduction in typing
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time after 30 keystroke entries. There are two evident reasons for this: the
two long passwords used in KDS-1 and KDS-2 are longer and more com-
plex than the one password used in KDS-3. Also, the subjects in KDS-1
and KDS-2 were not allowed to type more than 5 times a day to simulate
a realistic scenario, whereas the subjects in KDS-3 typed one password 50
times in a single session. Due to the increased password complexity and
reduced frequency of typing it, subjects in the first two datasets exhibited
a more protracted habituation period. It is natural for users to habituate
faster when they enter the same password in quick succession.

• In KDS-1 and KDS-2, the strength of rejection of the NULL hypothesis is
much higher than that for short passwords. In fact, in the majority of the
window pairs, the p value is smaller by an order of magnitude as compared
to the p values for the short password set. This indicates that the decrease
in typing time is larger and, thus, the habituation more pronounced for
long passwords.

• In KDS-1 and KDS-2, the average reduction in total typing time was be-
tween 1.5 and 3 seconds for the long password in both datasets. Such a
reduction reflects the complexity of the passwords. As for the short pass-
words, the rejection of the NULL hypothesis is again stronger in dataset
KDS-2, in which users were asked to memorize twice the number of cre-
dentials as compared to KDS-1.

• The graph in Fig. 10 plots the change in Total Typing Time for a typi-
cal user in the KDS-3 dataset. Each datapoint refers to the mean Total
Typing time for a given Session / Window combination. The datapoints
are grouped for the same Window in different sessions. The graph shows
that the difference in typing time between the first and last window pro-
gressively diminishes according to the number of sessions that the user
undertakes. For the first two sessions, each Window in a session exhibits
a lower mean typing time as compared to the previous window. This
phenomenon is not observed after the first 2 sessions, i.e. first 100 entries.

3.4.5 Conclusions

The analysis of all three datasets reveals that user habituation, measured through
the the reduction in the total typing time (or increase in typing speed) needed
to complete a password is evident in both short and long passwords. However,
the effects of habituation were found to be dependent on the password type as
well as the data collection process. In KDS-1, users were asked to memorize one
short and one long password. As a result, users appear to have exhibited quicker
memorization of the passwords. In contrast, users in KDS-2 were asked to mem-
orize four passwords. As a result, it appears that it took longer to memorize
and type the passwords.

In KDS-3 the users were assigned a single password and asked to submit 50
successive entries in each session. As a result, users did not exhibit a marked
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Figure 10: The change in mean Total Typing Time for each Window across the
8 Sessions for a typical user in KDS-3 Dataset

habituation phase when comparing windows after the first 30 entries. In a real
world environment users will seldom be asked to submit 50 entries. In contrast,
KDS-1 and KDS-2 allowed users to submit credentials at their convenience over
a 4 − 5 week period of time. However, KDS-3 was collected in a controlled
environment that eliminates the effect of confounding factors such as user envi-
ronment, keyboard used, etc.

Overall, habituation is more pronounced in the long passwords with a typical
reduction in typing time between 1.5 and 3 seconds. While the NULL hypothesis
is rejected for both the short and long passwords, the rejection is stronger in
the latter case. This can be attributed to the length and complexity of the long
passwords which makes them more challenging to memorize and retype.

3.5 RQ4: Does habituation have a statistically
significant effect on the variance of the user’s
Total Typing Time?

The results of the above experiment show that users’ total typing time of pass-
words decreases significantly over time. We next theorized that habituation
could also be described by the reduction in variance in typing time across suc-
cessive windows of observation. To further study the effect of new password
adoption, we decided to test if it causes a reduction in the variance of the total
typing time just as it reduced the total typing time. The following sub-sections
omit the analysis results of KDS-1 as its results agreed with those obtained from
KDS-2.
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Table 8: Statistical significance of the reduction in variance of ttotal for passwords in

KDS-2 and KDS-3 at α = 0.05
Friedman’s
test

Post-hoc analysis
W1−2 W1−3 W1−4 W2−3 W3−4

KDS-2
Short

p 0.0369 0.003 0.088 0.157 0.0787

p=0.028 Sig. YES YES YES NO NO

KDS-2
Long

p 0.0008 0.005 0.0004 0.4621 0.2382

p=0.007 Sig. YES YES YES NO NO

KDS-3 p < 0.0001 < 0.0001 < 0.0001 0.3574 0.1915
p<0.004 Sig. YES YES YES NO NO

We now compare median variance between pairs of windows for each user.
The variance in ttotal is computed for each window of 10 entries and then com-
pared to other windows using the Friedman’s Test. The following hypotheses
are tested:

NULL: The variance in total typing time between the windows of observation
is not significantly different.

ALT: The variance in total typing time between the windows of observation is
significantly reduced over time.

3.5.1 Short Passwords

Table 8 demonstrates the statistically significant reduction in variance of total
typing time for short passwords in KDS-2. From these results we observe that,
when compared to W1, all windows show a statistically significant decrease in
variance at α = 0.05, indicating the effect of habituation.

3.5.2 Long Passwords

Table 8 demonstrates statistically significant reduction in variance of total typ-
ing time for long passwords in KDS-2. From these results we observe that, when
compared to W1, all windows show a statistically significant decrease in variance
at α = 0.05, indicating a pronounced habituation.

3.5.3 Analysis of KDS-3 Dataset

Table 8 demonstrates statistically significant reduction in variance of total typ-
ing time for long passwords in KDS-3. From these results we observe that, when
compared to W1, all windows show a statistically significant decrease in variance
at α = 0.05, indicating a pronounced habituation. It is interesting to note that
the NULL hypothesis is rejected more strongly as we compare later windows to
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Figure 11: Euclidean Distances between a pair of users for the short password
fountain. Each window is comprised of the median typing times for 5 con-
secutive entries. The Diff values indicate the differences in each feature. The
Euclidean distances are computed as the square root of the sum of squares of
Diff scores.

W1. This is once more due to the fact that the users are likely to show higher
variance in total typing time during the earlier part of each session.

3.5.4 Conclusions

For both short and long passwords, the reduction in variance in total typing time
was significant for all data windows when compared to Window 1. Windows 3
and 4 did not show a significant reduction in typing variance with respect to
Window 2, indicating that the variance of password typing period diminishes
with time, consistent with expectations. Therefore, based on variance alone, we
speculate that habituation to a new password tends to plateau after time.

3.6 RQ5: Does user separability change with
time?

In Sections 3.4 and 3.5, we showed that the total typing time and its variance de-
crease with time. To study the effects of habituation further, we investigated the
change in separability between user pairs who are assigned the same password.

We measure the separability using the Euclidean distance between all win-
dows, for every user pair. The windows, same as before, consist of feature
vectors representing n consecutive keystroke entries. The Euclidean distance
between windows is defined as the distance between the median feature vectors
of those windows. A window size of 5 is selected for this study. A window size
of 5 is chosen to allow a higher level of granularity to determine how separabil-
ity changes over time. Fig. 11 illustrates Windows 1 and 2 for a pair of users
who were both assigned the same short password (fountain), as well as the
Euclidean distance of difference vectors across the two windows.
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Table 9: Statistical significance of user separability, measured through Euclidean

distance after the user submitted 5, 20, and 40 password entries; α = 0.05

Friedman’s
test

Post-hoc analysis

p=0.009 W1 −W4 W1 −W8

Short Long Short Long
p 0.31 0.005 0.096 0.013

Sig. NO YES NO YES

In order to determine whether there are changes in separability between
users forming a pair, we use Friedman’s Test to compare the Euclidean distances
between 3 windows of observation: W1, W4, and W8. The Friedman’s test is a
non-parametric test that is used for repeated measures over the same users over
time. The following hypotheses are tested for both short and long passwords:

NULL: Euclidean distance between user pairs does not change over time.

ALT: Euclidean distance between user pairs changes over time.

As part of the the test’s methodology, the statistical comparison was carried
out on W1−W4, W4−W8 and W1−W8. However. the results for W4−W8 were
discarded as we were not interested in them. The results of this experiment are
shown in Table 9 and can be summarized as follows:

• Separability between users typing the same short password does not change
significantly with time. In other words, the inter-user distance remains rel-
atively constant.

• The inter-user separability changes significantly for long passwords. Inter-
estingly, the absolute values within the Euclidean distance vector between
the users decrease with time. It appears that the user typing patterns
become increasingly similar. This result is somewhat counterintuitive, as
one would expect that given the complexity of the long passwords, users
would be easier to differentiate.

The reason for a decrease in the relative distance between the users who type
the same long password is simply a consequence of the learning process. In early
entries, users demonstrate high variability in keystroke patterns and the relative
distance between users is large. Over time as the users accommodate to their
new passwords, the variability of their keystroke entries is reduced, the keystroke
patterns become more uniform. Therefore, the distance between paired median
values of feature vectors decreases without ever reaching 0. Although inter-user
distances decrease intra-user variance also decreases, thus enabling us to de-
velop keystroke authentication classifiers whose performance improves through
habituation. We show this result later in Section 3.7.3.
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3.7 RQ6: What is the effect of habituation on
classifier performance?

3.7.1 Selecting the Best Distance Measure

In order to perform authentication, we need to be able to separate user’s pass-
word typing patterns. One way to do this is through vector distance measures.
We tested the following distance based classification approaches:

1. Manhattan Distance (scaled)

2. Outlier Count (z -score)

(a) Mahalanobis distance based measures:

(b) Mahalanobis (nearest neighbor)

(c) Mahalanobis (normed)

(d) Mahalanobis

These algorithms were selected based on the results of Killourhy and Maxion
[46]. They tested 14 distance measures from keystroke-dynamics literature and
ranked their performance. In that study, the distance measures we list above
performed the best. Distance measures with a threshold can serve as one-class
classifiers. Threshold set-up requires training to be able to differentiate between
nominal and abnormal patterns. In KDS-2, we collected data from 30 users. We
created classifiers using Window 3 of each user for training. The classifiers were
tested on Window 4. KDS-2 offers paired users, i.e., each password is given to
two individuals unbeknown to them. This allows us to test the typing pattern
of user A against her own samples as well as against the typing samples of
Apair, the impostor who knows the password. Windows 3 and 4 were chosen for
training and testing to minimize the effect of variation that occurs in the early
keystroke entries. Password typing entries are feature vectors and their content
has been described in Section 3.1.2.

The distance measure computes a score for each genuine and impostor entry
in their respective testing windows (W4A of User A and W4Apair

for User User
Apair). The manner in which each algorithm trains and then computes the user
and impostor scores have been discussed extensively in literature. [46] explains
the procedure to compute user and impostor scores for this dataset.

Generated scores are used to compute the ROC curve of each classifier. The
ROC curve provides a graphical representation of the classifier’s performance.
It plots a relationship between the classifier’s False Accept Rate (FAR) and
the False Reject Rate (FRR). The FAR refers to the frequency with which the
classifier misses the detection of impostors. The FRR refers to the frequency
at which a genuine user is rejected as an impostor. The zero-miss False Reject
Rate (ZM-FRR) and Equal Error Rate (EER) are two common measures used
to compare the performance of different classifiers without plotting the ROC
curve. The EER is calculated by adjusting the classifier threshold such that the
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Table 10: Performance metrics for the best classifiers from [46] on the password
entries from KDS-2 and KDS-3. For KDS-3, data from Session 8 is used. Each
column reports ‘Mean - Median (Standard Deviation)’.

Classifier ZM-FRR EER
KDS-
2
Short

Mahal. N/A N/A
Man. (scaled) 0.458− 0.411(0.438) 0.113− 0.100(0.142)

O-Count 0.272− 0.050(0.354) 0.087− 0.025(0.111)

KDS-
2
Long

Mahal. N/A N/A
Man. (scaled) 0.238− 0.0(0.380) 0.067− 0.0(0.109)

O-Count 0.142− 0.0(0.304) 0.049− 0.0(0.103)

KDS-
3

Mahal. N/A N/A
Man. (scaled) 0.252− 0.0(0.407) 0.06− 0.0(0.099)

O-Count 0.106− 0.0(0.252) 0.043− 0.0(0.099)

False Accept Rate equals the False Reject Rate. The ZM-FRR is calculated by
adjusting the threshold to report FRR when the FAR is zero.

We analyzed classification performance for short and long passwords. The
results are summarized in Tables 10. The reader can notice that we did not
report the results for the Mahalanobis distance measure, which performed well
in previous studies. The lack of results is due to the fact that Mahalanobis
distance DM (~x) of a multivariate vector ~x = (x1, x2, x3, . . . , xn)T is computed
from a group of m values with mean ~µ = (µ1, µ2, µ3, . . . , µn)T and covariance
matrix S, defined as: DM (~x) =

√
(~x− ~µ)TS−1(~x− ~µ). The covariance matrix

S is of size, m × n, m ≥ n, where m is the sample size and n is the number
of considered variables (features). For m < n, the empirical estimate of the
covariance matrix becomes singular. In our experiment setup, ~x denotes the
keystroke entry being tested while ~µ denotes the mean of the keystroke entries in
the training window. m is the number of keystroke entries in the training window
and is restricted to 10, while n is the length of a keystroke entry (i.e. feature
vector length). n = 24 for short passwords and (at least) 42 for long passwords.
As m < n, the Mahalanobis distance based classifier could not be used. This
natural restriction of the Mahalanobis distance measure is a point of concern
when working with longer passwords. Typical password requirements nowadays
can be more stringent than the uniform format of long passwords considered
here. As password complexity increases, the feature vector length increases. The
nature of the Mahalanobis distance requires a large number of training samples
to create a user model for keystroke dynamics based classification. For example,
training a Mahalanobis distance based classifier using our long password would
require at least 42 keystroke entries by each user. In a real-world application,
this would imply that keystroke authentication must await for weeks before it
is ready for deployment, likely a limiting factor undesirable in most fast pace
environments.

The above experiment was replicated on KDS-3. Since all 51 users typed
the same password, we randomly paired 25 users with other 25 users to act as
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their impostor. As the objective of the experiment is to determine the best
distance measure while removing the effects of habituation, we used keystroke
entries from the last session (Session 8). This ensures that the data with the
least effects of habituation is used. Thus, every distance-based classifier for each
of the 50 users was trained using keystroke entries from Window 3 of Session 8,
and tested on the Window 4 keystroke entries of that user and his/her randomly
paired ‘impostor’ user. The results for this experiment on this dataset are given
in Table 10.

This experiment could not be replicated on KDS-1 since each user in that
dataset entered a different password. Thus, the users could not be paired with
each other. The results from Table 10 are discussed below.

• Between Manhattan distance and Outlier count, we found that the Outlier
Count (z -score) algorithm performs better in all datasets. It was also more
stable as evidenced by its comparatively low variance over all users. Our
results strongly indicate that even when the effects of habituation are
removed, Outlier Count is the better classifier.

• The ZM-FRR of both distance - based classifiers suffered under the short
password scenario (in KDS-2) with an average ZM-FRR of 37.1%. Low
performance is likely due to the small size of the training set, limited here
to 10. However, the purpose of our experiments is to determine variations
in typing patterns over time. Therefore, if the size of the training set in-
creases by including early password entries, variance will increase, making
the distance measures less reliable.

These results indicate that distance based measures may not be appropriate for
keystroke authentication if passwords change often, making the size of available
training samples insufficient.

3.7.2 Does Habituation Affect Authentication Performance?

In Section 3.4, we showed that there is a statistically significant reduction in
total password typing time due to user learning. We also showed in Section
3.5 that there is a significant reduction in the variance of the total typing time,
i.e. the keystroke entries appear to become more uniform. In this section, we
would like to ascertain the effect of habituation on the performance of the au-
thentication classifier trained on KDS-2. This is important because the typing
time and overall variance are cumulative measures, while authentication is based
on the similarities within the multidimensional password keystroke feature vec-
tor. Cumulative typing trends may not necessarily result in an improvement in
classification performance.

In this experiment, we used two classification algorithms. The first is Outlier
Count (z-score), which showed the best performance amongst the unary clas-
sifiers (distance measures) in the previous experiment. The second algorithm
is the binary classifier based on Random Forest, recommended for keystroke
dynamics based user authentication in [6]. Unlike unary classifiers, binary ones
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need to be trained using the positive examples (genuine user’s password typing)
and negative ones (impostor’s typing attempts with the same password). KDS-2
is conducive to binary classification because two individuals are given the same
pair of passwords. Nevertheless, in operational situations, generation of impos-
tor password keystroke entries would likely have to be automated. Automated
generation of impostor keystroke entries for the purpose of training binary clas-
sifiers is outside of the scope of this paper. Random forest algorithm is known to
be resilient to noise, but it also shows greater performance variation in repeated
experiments due to random selection (bootstrapping) of training instances [13].
Random Forest relies on ensemble learning. It generates multiple decision trees
that submit their vote to give the classification result.

In KDS-3, all users were assigned the same password. Each user was paired
randomly with another user, thus generating 51 random user pairs. The keystroke
data from Session 1 was used since the habituation affects the initial session the
most. The KDS-1 dataset was not used for the same reasons as mentioned in
Section 3.7.1, i.e. the users were assigned different passwords. Due to this, they
cannot be paired with another user.

The Outlier Count algorithm was trained and tested in the same manner as
described in Section 3.7.1. The classifier was trained using password training
instances within Window X of User A and tested on instances from Window
Y of users A and Apair. The procedure to train and test the Random Forest
(RF) classifier is different, as it requires genuine and impostor data for training.
Our RF classifier was trained using Window X of both User A and Apair. It
was tested on Window Y of users A and Apair. Random Forest returns the
number of votes from internally generated decision trees in favor of classification
of an instance in one of the two classes. The ROC curve for the RF classifier
is generated by varying the percentage of votes required to make a decision.
Voting percentage acts as the threshold in RF classification.

In order to assess the effect of habituation on authentication performance, we
set up the experiment as follows. Two classifiers for each password were trained
and tested using the window pairs W1−4 and W4−1, where WA−B implies that
the classifier was trained on Window A and tested on Window B. We calculated
the EER for each classifier instance. Thus, we generated 30 classifier instances
per password per window pair (30 user pairs) for KDS-2 dataset and 51 classifier
instances for KDS-3 dataset.

The EERs of these window pairs were compared against each other to test
if there was any statistically significant change in classification performance.
We used the Wilcoxon Signed Rank test for this analysis because we could
not assume normality in this distribution. If there is no difference between
the keystroke entries in the training window and the testing window, then the
classifier should not show significant difference in performance when the training
and test sets are reversed. If habituation in typing patterns exist, there is likely
to be a difference in performance of authentication classifiers trained and tested
on reverse windows.

The results of the experiment are shown in Table 11. We reiterate that
notationWA−B : WC−D means that the EER of the classifier trained on Window
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Table 11: Statistical significance of the difference in classifier performance when
trained and tested using different data. The comparison is made between classi-
fiers built and tested on W1−4 : W4−1. The classifiers tested are Outlier Count
(OC) and Random Forest (RF).

KDS-2 (Short) KDS-2 (Long) KDS-3
OC RF OC RF OC RF

p 0.0427 0.4562 0.0001 0.0025 0.0023 0.2451
Sig. YES NO YES YES YES NO

A and tested on Window B is compared to the EER of the classifier trained
on Window C and tested on Window D. The results lead us to the following
considerations.

• For the long passwords (KDS-2), there is a statistically significant differ-
ence between classification outcomes trained and tested on W1−4 versus
the classification outcomes of the same two algorithms trained and tested
using the reverse windows W4−1 . This shows that the Window W1 con-
tains keystroke entries which differ from those in Window W4 in terms of
the authentication classification performance they generate.

• The EER is higher (i.e. the classifier performs worse) for the classifier
W4−1, which is trained on Window W4. This is because the window W4

contains password keystroke entries which exhibit lower variance compared
toW1. Therefore, the classifier is more likely to misclassify entries fromW1

after being trained on W4. The strength of rejection of the null hypothesis
is further corroborated by the magnitude of rejection in total typing time
and the variance of the total typing time shown earlier in Sections 3.4 and
3.5.

• For the short passwords in KDS-2, the Outlier Count shows a significant
difference in EER. The same cannot be said of Random Forest. We believe
the reason for the lack of significance in classification performance of ran-
dom forest is due to the reduced level of habituation in short passwords.
The magnitude of reduction in total typing time between W1 and W4 was
around 0.1 seconds for short passwords and between 1.5 and 3.0 seconds
for long passwords. Further, random forest classifier is not as sensitive to
“noise” in the training data compared to a distance measure.

• The above trend was observed in KDS-3 dataset too where Outlier Count
showed a significant difference in EER, but Random Forest did not. The
magnitude of reduction in total typing time between W1 and W4 in this
dataset was around 0.4 seconds. This seems to be the major contributor
to the lack of significant difference in performance for the Random Forest
classifier.
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3.7.3 How to Accommodate Habituation in Keystroke -
Enhanced Authentication?

In Section 3.7.2, we observed that training the classifier with keystroke entries of
a user habituated to his or her new password and testing the classifier with the
entries made prior to habituation shows a drop in performance when compared
to the situation in which the classifier is trained with early password entries.
Obviously, the W4−1 train - test scenario is illogical for practical implementa-
tions in which keystroke entries are made available in the chronological order.
It was used only to prove the point related to the impact of habituation on
authentication performance of keystroke dynamics systems.

In this section we analyze and compare the performance of practical au-
thentication classification alternatives. In this case, practical means that the
keystroke entries used for model training precede the ones on which the model
testing. We also limit our attention to the performance of random forest (RF)
classifier, which consistently outperformed the best distance measure in our ex-
periments. We constructed multiple instances of the RF classifier for every user
/ password combination. We used window pairs W1−4, W2−4 and W3−4 for
training and testing, where WA−B denotes that the entries in Window A are
used for model training while Window B are used for classification testing. The
procedure to train the RF classifier was explained in Section 3.7.1. In this ex-
periment, we used the default simple majority voting scheme to determine an
authentication outcome (the ensemble of decision trees within RF vote to decide
the class of a feature vector). We measure the classifier’s performance based on
its accuracy. The classifier accuracy refers to the number of keystroke entries in
the test set that are correctly classified across all users and passwords.

The design of KDS-2 facilitates a pairwise comparison wherein two users are
assigned the same credential. However, due to the nature of KDS-3 wherein all
users are assigned the same credential a pairwise comparison cannot be made
unless pairs of users are randomly matched to each other. The KDS-3 dataset
contains 51 users, a total of 25 user pairs out of a possible 1275 user pairs was
selected for this study.

In order to compute if there is a change in classifier performance emanating
from the selection of the window used for training, we compared the the accuracy
of different classifier instances. To reiterate, accuracy refers to the percentage
of correctly classified instances. For example, we compared the performance
of W1−4 : W2−4, i.e., measured the difference in accuracy when classifiers are
trained using W1 as compared to W2 while using an identical test set W4.

The following hypothesis is tested using Friedman’s Test:

NULL: - The authentication accuracy does not change with different training
windows.

ALT: - The authentication accuracy changes (improves) when the keystroke
training entries and test entries are chronologically close.

The results of this test are shown in Table 12 for KDS-2 and KDS-3. We
draw the following observations:
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Table 12: Statistical comparison of habituation on classifier performance (RF)
for passwords in KDS-2 and KDS-3 at α = 0.05

Friedman’s
test

Post-hoc analysis
W1−4 : W2−4 W2−4 : W3−4 W1−4 : W3−4

KDS-2
Short

p - - -
Sig. NO NO NO

p=0.18 Avg. Accuracy W1−4: 88% W2−4: 90% W3−4: 90%

KDS-2
Long

p 0.47 0.020 0.0416
Sig. NO YES YES

p=0.011 Avg. Accuracy W1−4: 83% W2−4: 83% W3−4: 91%

KDS-3
p 0.0046 0.2382 0.0021

Sig. YES NO YES
p=0.003 Avg. Accuracy W1−4: 86% W2−4: 92% W3−4: 93%

• For short passwords in KDS-2, the reduction in variability in the typ-
ing patterns of keystroke entries between the windows of observation did
not lead to a statistically significant improvement in the accuracy, which
measures authentication performance. Using the later keystroke entries
for model training is no more effective than using early keystroke entries.
This result corroborates earlier experiment in which Random Forest al-
gorithm showed no significant difference between classifiers’ EER based
on W1−4 and W4−1. For short passwords, the null hypothesis cannot be
rejected.

• For long passwords in KDS-2, the classifier accuracy improves significantly
when later keystroke entries are used to train / update classification model.
Later entries exhibit lesser typing rhythm variation and are more uniform.
This translates to better accuracy. Again, this result corroborates the
experimental outcomes from Section 3.5. In most cases, the null hypothesis
is rejected.

• For passwords in KDS-3, the classifier accuracy improves significantly
when later keystroke entries are used to train / update classification model
in Sessions 1, 6, 7 and 8. In most cases, the null hypothesis is not rejected.
This phenomenon is due to the nature of the dataset where a user is asked
to submit a total of 50 entries per user session. This effect is further high-
lighted in Fig. 12. We notice that over time (increasing Session numbers)
the overall accuracy shows a gradual increase. Moreover, the difference in
performance between training and testing with with temporally close and
distant values decreases over time.

Therefore, authentication classifiers trained on the keystroke entries that
reflect habituation perform significantly better than the ones trained on early
keystroke long password entries. This does not mean that a classifier trained on
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Figure 12: Effect of Habituation on classifier accuracy in KDS-3. In the
legend,WX − Y indicates a classifier trained on Window X and tested on Win-
dow Y.

all prior keystroke entries will necessarily perform worse. We analyze this ques-
tion in the next experiment. Current experiment compared models which used
the same size of the training and test entries, thus eliminating the confounding
factor of performance evaluation attributed to the variations in the size of the
training and test datasets. As practitioners develop keystroke-dynamics based
authentication systems, they should remain cognizant of the temporal distance
between training and test data. In the next section, we further explore the per-
formance of additional practical authentication models for keystroke dynamics.

3.8 RQ7: Which training model best leverages
the effect of habituation to develop an effec-
tive keystroke dynamics authentication sys-
tem?

Section 3.7.3 showed that keystroke entries temporally close to authentication
instances (test instances) should be used training. However, authentication
models should find a balance between effectiveness and the ease of deployment.
In this section, we analyze techniques to create most effective authentication
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Table 13: Performance metrics of the four authentication models: accuracy (%)
are followed by their variance (%) over all users, in parentheses

Password Type Model 1 Model 2 Model 3 Model 4

Short 90 (2.00) 93 (0.22) 96 (0.15) 91 (2.27)
Long 87 (3.27) 94 (0.23) 97 (0.11) 93 (1.70)

classifiers. Each model describes a certain approach to train the classifier. We
test each model using KDS-2 dataset and report the performance results in
terms of the accuracy and the variance of accuracy across all users. Each au-
thentication model is developed using the Weka implementation of the Random
Forest algorithm with an ensemble of 500 decision trees and the majority voting
scheme.

The results of the four models are shown in Table 13 and discussed below.

3.8.1 Model 1 - Train on the First 10 Entries

In this static model, the classifier instance for a user is trained using her /
his first 10 password entries. The remaining 30 entries are used for testing.
This is the simplest model to develop, as it is never updated. Overall, the
model achieves a 90% accuracy for short passwords and 87% accuracy for long
passwords. Given the limited training data available, this may be acceptable.
In Sections 3.4 and 3.5, the effects of habituation have been shown to have a
stronger effect on classifier performance for long passwords. Hence, a reduced
performance for long passwords is expected due to the use of early keystroke
entries for training.

3.8.2 Model 2 - Train on the 10 Most Recent Entries

In this a dynamic, continually updated model. The 10 most recent entries are
used to train the classifier. In other words, every test entry uses the classifier
trained on the most recent 10 entries. The classifier is updated every time the
user submits a new entry. This model performs better than Model 1. The
accuracy improves by 3% for short passwords and 7% for long passwords. More
importantly, the variance drops by a factor of 10. Thus, a dynamic model that
retrains itself using the 10 most recent entries is more effective than the static
model. The drawback of this model is that it needs constant updating, which
incurs computational overhead every time someone attempts to log into the
system protected by keystroke dynamics authentication.

3.8.3 Model 3 - Train with All Prior Entries

In this model, all prior entries submitted by the user are used to train the au-
thentication model. All the remaining entries in KDS-2 are used for testing. In
order to keep comparisons with other models fair, this model is trained starting
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with the 11th password entry such that the size of the testing set is the same
as in Models 1 and 2. The results show that this model further improves Model
2. The accuracy for short and long passwords show a 3% improvement. Fur-
thermore, the variance decreases by additional 50% compared to Model 2. A
dynamic model that trains on all prior user entries seems to provide the most
effective authentication. However, the results of this model are confounded by
the different size of the training set compared to Models 1 and 2, which use 10
training instances only. It can be argued that the improvement in performance
is based on the volume of data used to train the classifier. This model has
the highest computational overhead due to the constantly increasing size of the
training set. Furthermore, it is important to remember that our results from
Section 3.7 indicate that changes in the users’ typing patterns significantly affect
authentication performance. Therefore, over the long run, it may be counter-
productive to use early entries to train the classifier. Unfortunately, our datasets
are not large enough to analyze this issue.

3.8.4 Model 4 - Train From the Most Recent Window of
10 Entries

This model is similar to Model 2. However, instead of updating the model
every time the user submits a keystroke entry, this model is updated once every
10 keystroke entries. Thus, the first iteration trains using entries 1 − 10 and
is tested on the entries 11 − 20. The classifier is then rebuilt using entries
11− 20 and tested on entries 21− 30, and so forth. This model alleviates some
of the computational overhead caused by the rapid retraining of authentication
models after every new password entry. This model performs better than Model
1. However, it does not match the performance of Models 2 and 3. Although it
is very similar to Model 2, the variance of Model 1 increases by a factor of 10.
We attribute increased variance to the delayed model update in the phases of
active habituation.

3.8.5 Conclusions

Our results indicate that Model 3, which uses all prior entries for training of-
fers the best authentication performance. However, this model is not the best
to use in a real-world system because of the large volume of training data re-
quired. Therefore, training the classifier using only the most recent user-specific
keystroke entries (Model 2) is practical and beneficial. We have shown in Sec-
tion 3.4 and 3.5, the user’s typing pattern changes significantly over time. It
appears fair to observe that the best models should be retrained using only the
most recent keystroke entries while discarding the older ones. Based on the
authentication performance and ease of classifier generation compared to other
models, Model 2 offers the best balance between authentication performance
and computational overhead.
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3.9 Leveraging event sequences to create better
keystroke dynamics based authentication sys-
tems

3.9.1 Motivation

User model development in keystroke dynamics is based on two primary at-
tributes: hold time and delay time. As described in Section 2.1.1, hold time
refers to the duration of a keypress and delay time refers to the latency between
two consecutive keypresses. Due to their inherent nature, hold and delay times
are dependent on the user’s typing speed. A fast typist exhibits shorter hold
and delay times compared to a slow typist. This leads to better discriminability
between users with different typing speeds. However, their disadvantage is that
users with similar typing speeds are easily confused by the classifier. In order to
overcome this problem, we propose a new type of attribute for keystroke dynam-
ics called event sequences. This section is organized as follows: Subsection 3.9.2
lays out the concepts, terms and representations used. Subsection 3.9.3 provides
a brief overview of the various keyboard layouts currently in use. Subsection
3.9.4 elaborates on event sequences and its causes. Subsection 3.1.2 provides a
description of the data set collected for the purposes of this study. The effective-
ness of user authentication performed using event sequences is experimentally
analyzed in Subsection 3.9.5.

3.9.2 Terms and representations

For the purposes of this section, the character keys (defined in 3.9.3) are denoted
using the character that they output on the screen when using the ISO-US
English layout. All keys other than the character keys are denoted using the
abbreviations shown in Table 14.

We define a string as the string of characters that are to be created using the
keyboard. A string can be a single character, a word, a sentence or a paragraphs
or a set of these.

A keystroke is defined as the act of pressing and releasing a key. It consists
of two events: Key down (KeyDn) and Key up (KeyUp). The KeyDn event of
any key X is denoted as Xd and the KeyUp event as Xu. If the KeyDn and
KeyUp events of a key occur consecutively, it is denoted as Xdu.

Keystroke dynamics data is derived from the time stamps of the KeyDn and
KeyUp events. The primary attributes that are used to derive other metrics are
hold and delay times. The delay time is the time between two successive key
presses, i.e. between two successive KeyDn events. The hold time is the time
for which a key is pressed, i.e. the time elapsed between the KeyDn and KeyUp
events for a key.

We also define a notation to represent the event schema and the event se-
quence. The event sequence is the temporal sequence of all KeyDn and KeyUp
events performed to type a string. This includes the KeyDn and KeyUp events
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of character keys and of special keys (Caps Lock, Left Shift, Right Shift, etc)
that are used to modify the character key output. The event schema is a gen-
eralized representation of similar event sequences. The following example is an
illustration:

Suppose a user types the string W Ehat where the underlined E indicates
that the user erased it using the backspace (Bk) key. One possible event se-
quence for this string is {RsdWduRsu LsdEdu LsuBkdu hdu adu tdu}. Note that
the Right Shift key (Rs) is used to type W while the Left Shift key (Ls) is used to
type E. Different Shift keys could be used to type the uppercase letters, resulting
in multiple event sequences for this string. All of these event sequences can be
represented using the event schema {ShdWdu Shu ShdEdu ShuBkdu hdu adu tdu},
where Sh denotes any Shift key.

3.9.3 Keyboard Layouts

A computer keyboard consists of character keys, modifier keys for altering the
functions of character keys, navigation keys for moving the text cursor on the
screen, etc. Extended keyboards also have a numeric keypad to facilitate cal-
culations. A keyboard layout refers to the arrangement of the keys, key labels
or key mappings on a keyboard. Keyboard layouts can be categorized based on
three criteria:

1. Mechanical layout refers to the physical keys and their placement on a
keyboard. Most keyboards use one of three mechanical layouts. The
layouts include:

(a) ISO layout is dictated by the ISO/IEC 9995 framework [39].

(b) ANSI layout follows the ANSI-INCITS 154− 1988 framework [3].

(c) JIS layout follows the Japanese Industrial Standard JIS X 6002 : 1980
framework [40].

2. Visual layout refers to the arrangement of the legends (labels, markings,
engravings) that appear on the keys of a keyboard.

3. Functional layout describes the software-based association of a key to char-
acter(s) for all keys on the keyboard. The functional layout determines the
key sequence required to enter a character. For example, one functional
layout outputs a character X by pressing a certain key, while another lay-
out would do so using another key (possibly with a modifier key such as
a Shift). Advanced users can also create custom functional layouts using
off-the-shelf software [70]. Thus the functional layout determines the keys
to be pressed to output a character.

A functional layout organizes characters that the keyboard can generate into
levels. There are generally two levels on a keyboard. However, the ISO standard
also allows for the level 3. Characters at Level 1 are accessed by simply pressing
the corresponding key. Characters at higher levels are accessed using modifier
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Table 14: Key abbreviations used in Section 3.9
Key Notation Key Notation
Alt Al Right Shift Rs

Left Alt Lt Left Shift Ls
Right Alt Rt Either Shift Sh
Caps-lock Cl Numpad 0− 9 N0-N9

Numpad N+, N-, N/,
symbols N*, N., N=

Table 15: Type I and II characters on an ISO-US layout
Punctuation Symbols

Type I Type II Type I Type II
; : [ @ ˆ <
’ ” ] # & { >
, ! \ $ ( }

? % ) |

keys. Level 2 characters are accessed using the Shift key and Level 3 characters
(in ISO layout) are accessed via the AltGr key (The ISO layout renames the
right Alt key to AltGr) [53]. In addition, the Caps-lock key can be used to
change the case for some characters that are dual-case, e.g, the Latin alphabets
A-Z on an ANSI-US layout. The key types relevant to this study are enumerated
below. These keys are present on all mechanical layouts:

1. Character keys: These are the keys denoted by letters A-Z, digits 0 − 9,
punctuation marks, and symbols on a US layout.

2. Modifier keys: These are the Alt, and Shift keys. A set of these is located
on either side of the keyboard (with the right Alt key replaced by the
AltGr key in an ISO layout). We also include the Caps-lock key in this
category.

3. Numeric keypad: The keypad comprises of number keys 0 − 9 and the
math operator keys (+, -, /, {*}, .).

3.9.4 Causes of Variations in Event Sequences

The number of event sequences for a given string is determined by the keyboard’s
functional layout, the variations in use of modifier keys, the types of characters
in the string and their order. For clarity, we use the ANSI-based US functional
layout to explain the effect of each of these variables on the number of possible
event sequences.
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The effect of change in modifier key usage

The event sequence of prior character(s) affects possible event sequences to type
the subsequent character in a string. For example, consider a simple 2 letter
string ‘KA’. Assuming that the Caps-lock is initially disabled, the user can type
the string using 8 different event sequences:

1. {ShdKduAdu Shu} - This event schema represents two distinct event se-
quences where the user can use the Right Shift (Rs) or the Left Shift (Ls)
key.

2. {ShdKdu Shu ShdAdu Shu} - Each of the two characters can be typed
using either of the two Shift keys resulting in 4 event sequences.

3. {ShdKdu Shu ClduAdu} - Using either of the two Shift keys, the string
can be typed in this schema using 2 distinct event sequences.

However, if the first character is typed after first enabling the Caps-lock, it
can be entered as {ClduKduAdu}. Thus, the string KA can be typed using 9
different event sequences.

The effect of string content

Another reason for the variation in the number of event sequences for a fixed
string is the contents of the string itself. In order to understand this, the char-
acters need to be divided according to the number of event sequences that they
can possibly be typed through. For the ANSI-US layout, various characters can
be typed using the character and modifier keys. They can be classified into 3
types based the number of event sequences that they can emerge from:

1. Type I characters can be typed using only one event sequence irrespective
of the characters before or after. Table 15 lists these for the US layout. For
example, the semicolon (;) can only be typed with the event sequence {;du }
even when it occurs with other characters, e.g. {ShdAdu Shu ;du wdu}.

2. Type II characters can be typed with just one event sequence only when
they are typed in isolation, e.g. the character ‘&’ as in {Shd &du Shu}.
However, when typed together with other characters, they can be typed us-
ing different event sequences, e.g. {ShdAdu &duShu} or {ShdAdu Shu Shd &duShu}.
Table 15 lists the Type II characters for the US layout.

3. Type III characters include all those not in Type I and II. These can
be entered using more than one event sequence both when isolated or
when part of a string. On the ANSI-US layout, alphabets A-Z (lowercase
or uppercase) may be entered either by first enabling Caps-lock such as
{ClduAdu} or by using a Shift key, e.g. {ShdAdu Shu}. Numbers 0 − 9
can be typed using the standard number keys such as {6du} or using
the numeric keypad e.g., {N6du}. Mathematical operators (+ − ∗/) can
be typed using either the numeric keypad such as {N+du} or using the
number keys e.g., {Shd +du Shu}.
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Table 16: The number of possible event sequences changes due to the string
length or the order of characters within the string.

String
String 1 String 2

Event sequences
Length String 1 String 2

1 K 4 3 2
2 KA 4! 11 4
3 KA: 4!K 24 20
4 KA:a 4!Ka 30 40
4 KAa: 4!aK 38 36
5 KA:a3 4!Ka5 60 80
5 KAa:3 4!aK5 76 72

The effect of character order

Table 16 demonstrates how the number of possible event sequences varies based
on the character types in the string and their order. Notice that strings with
the same length or same characters can have different number of possible event
sequences due to the change in character order.

3.9.5 Experimental Analysis of Event Sequences

Having demonstrated the variations in event sequences for any given string,
we proceed to demonstrate observations from a realistic usage scenario. Fur-
ther, we want to learn whether different event sequences have negative impact
on keystroke - based user authentication. For the experimental analysis, we
used KDS-2 dataset described in Section 3.1.2. In Sections 3.9.6-3.9.8, a user-
password combination in the dataset is referred to as a subject. A subject pair
refers to the user pair when they are typing the same password. There are 60
subject pairs in the study (each of the 15 user pairs is given two passwords, each
can be used as a genuine / impostor attempt).

We set up the experiments to answer three research questions:

1. Do pairs of users employ similar event sequences when typing the same
string over a period of time?

2. Is there any correlation between typing proficiency and event sequences
exposed by a user?

3. What is the effect of time and habituation on the event sequences of a
user?
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Figure 13: Computing the similarity between ant two paired subjects with re-
spect to event signatures: For the current sliding window, user A has 8 entries
with the same event signatures as user B, while user B has 2 entries that are
similar to user A. The non-match score for user A is 0.2 while it is 0.8 for user
B.

3.9.6 RQ8: Do pairs of users employ similar event se-
quences when typing the same string over a period
of time?

In this experiment, we quantitatively measure the similarity amongst paired
users with respect to the event sequences observed while they typed their pass-
words. To do so, all keystroke entries in the dataset were first represented with
an event signature as shown in Fig. 13. For each subject, there are 40 event
signatures ordered temporally. Each signature represents one password entry.
Event signature is an abbreviated version of the event sequence described in
Section 3.9. It does not convey the same amount of information as the event se-
quence. However, it is easier to construct from the data and, given the knowledge
of the specific string, it can adequately represent every unique event sequence
for that string.

The event signature consists of concatenated tokens, as shown in Fig. 13.
The first token is numeric and represents the number of events in the event
sequence for that keystroke entry. The remaining tokens indicate the user’s
decision to use or omit using the Shift or Capslock key at instances where it
was necessary to do so. These instances occurred primarily when the case of
the next character to be typed was different. The remaining tokens are one of
four types: S, NotS, C, NotC. ‘S ’ and ‘C ’ indicate that the user used the Shift
or Capslock key, respectively, while ‘NotS ’ and ‘NotC ’ indicate that he/she did
not. As mentioned in Section 3.1.2, the dataset does not contain information
on whether the right or left Shift key was used.
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A sliding window is used on each subject pair (UserA-PasswordX and UserApair-
PasswordX) to calculate the percentage of event sequences that are unique to
each subject. This technique is illustrated in Fig. 13. The idea behind this ex-
periment is to simulate a scenario where an impostor has access to the genuine
user’s password and attempts to use it. In this sense, each user in a pair acts as
the impostor to the other while they are compared for similarity on the basis of
their event signatures only.

The sliding window technique generates 31 non-match scores for every sub-
ject. Each non-match score indicates the percentage of entries in the window
that are distinct from the paired subject with respect to their event signature,
i.e. a higher non-match score indicates less similarity between subjects. The
mean and median non-match score for each of the 60 subjects was computed
and the distribution of these scores is tabulated in Table 17. The results can be
summarized as follows:

1. Across all subjects, event signatures were distinct amongst subjects in
˜61% of the entries in any given window.

2. Table 17 also shows the percentage of subjects that had a mean and median
non-match score of 100%, > 75% and > 50% for any given window. For
˜31% of the subjects, event sequences are completely distinct from those
of the paired subject in every single window, i.e. these subject pair did
not have a single similar event sequence throughout the study.

3. This percentage is much higher (42.8%) when considering the median non-
match score. This is because although subjects sometimes displayed high
but less than perfect scores for some windows, calculating the median score
for a subject over all windows would still give a median score of 10. Thus,
a larger percentage of users appear to have a perfect score.

4. Another important observation is the degree of variation in similarity be-
tween subjects. 62% of the subjects showed a score greater than 50%. For
this group, the mean score was 91.3%. The mean recall rate for subjects
with a score less than 50% was 11.5%. This uneven distribution of scores
is further illustrated in the histogram in Fig. 14.

The experimental results offer empirical evidence that users display considerably
different patterns when typing. Only 30% of the subjects had non-match scores
between 10% and 90%. The distribution of non-match scores indicates that the
variations in keystroke sequences create a distinguishing factor in the majority
of cases. Furthermore, as we previously mentioned, this dataset does not contain
information on which Shift key (right or left) was used. Based on results reported
by other authors on the importance of Shift key behavior [6], we believe that
using this information would distinguish users even further and boost the non-
match scores.
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Table 17: Distribution chart for recall rates using event sequence signatures
% of users

Mean recall rate Median Mean
= 100% 42.3% 30.8%
> 75% 48.1% 46.2%
> 50% 61.5% 61.5%
Overall 60.5% 60.8%

Recall when > 50% 91.3% 89.5%
Recall when < 50% 11.5% 14.9%

Figure 14: This distribution illustrates the number of users exhibiting specific
non-match scores, i.e. the degree of similarity to their paired users. A higher
score indicates less similarity.
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Table 18: Calculating correlation between typing proficiency (TT stands for
Typing Time) and event sequence usage

Subject # Grp A users Grp B users Difference
TT Recall TT Recall TT Recall

1 9348 0.975 7158 0.975 2190 0
2 4299 0.075 5979 0.75 −1680 0.025
... ... ... ... ... ... ...
60 8657 0.75 4693 0.925 3963 0.175

Correlation 0.016

3.9.7 RQ9: What is the Correlation Between Typing Pro-
ficiency and Event Sequence?

Upon observing the uneven distribution of recall rates for the subject pairs, we
hypothesized that there may be a relation between the user’s typing proficiency
and event sequences used. We theorized that fast typists tend to type in a
manner that may be dissimilar to slower typists and that this may be the cause
of the uneven distribution of non-match scores observed in the previous exper-
iment. Therefore, the objective of this experiment is to determine if there is
any correlation between the typing proficiency of users and the event sequences
they might use. In order to test this, we first computed the difference in median
typing time and, additionally, the difference in non-match score for each subject
pair, as shown in Table 18. We computed the correlation coefficient between
these two sets of values. This value quantifies the correlation between the differ-
ence in typing proficiency in a subject pair and the dissimilarity between their
event sequences.

The analysis indicated a Pearson’s correlation coefficient of 0.016. This low
correlation value means that for a given pair of users, there is little or no corre-
lation between the difference in typing proficiency and a preference for certain
event sequences over the others. In other words, users do not seem to prefer
certain event sequences over others based on their typing proficiency. Event se-
quences are independent of user’s typing-proficiency. This result suggests that
event sequences provide a discriminatory authentication dimension that is not
dependent on user typing proficiency, but rather on other behavioral character-
istics of each user. Upon examining the dataset further, we observed that some
hunt-and-peck users would use the same event sequence as their paired user
who were proficient typists. While we could not identify the reasons behind this
observation, the users do not seem to prefer certain event sequences over others
due to their typing proficiency. Therefore, allowing users to type a string in
the manner they wish to should be helpful in differentiating between users even
if they have similar typing proficiency. However, almost the entire keystroke
authentication literature ignores typing sequences.
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3.9.8 RQ10: What is the Effect of Time and Habituation
on the Event Sequences Used by a User?

In [73], we showed that as users type a string more frequently, they exhibit
habituation that reduces the time required to type the string. We theorized
that, in a similar manner, users will tend to use fewer event sequences as they
habituate to typing a given string.

In order to analyze this behavior, we used the event signature representa-
tion of keystrokes described in Section 3.9.6. Using a sliding window of ten
entries, the similarity in event signatures was measured using a similarity score
S that assigns a higher score when fewer variations within event signatures are
observed. The similarity score is described in more detail below. Since every
subject contributes 40 entries, using a sliding window of 10 entries gives 31 sim-
ilarity scores as shown in Steps 1 and 2 in Fig. 15. As shown in Step 2 in Fig.
15, scores denoted 2 to 31, for each subject, are split into 3 windows of equal
length and the median similarity score for each window is calculated. Thus,
each of the 60 subject pairs contributes a median similarity score for Windows
1, 2, and 3.

Our objective is to measure if there is a significant difference in the similarity
scores of any of the three windows. This would indicate that users’ typing
pattern stabilizes and exhibits fewer variations in event sequences over time. To
test this hypothesis, we used the Friedman’s test.

Friedman’s test

The Friedman test is a non-parametric test for treatment differences in a ran-
domized complete block design [25]. It is used to test for differences between
three or more paired groups when the dependent variable being measured is
ordinal. The groups in this experiment are the windows. The N subjects and k
windows are considered separate independent variables in the analysis. The test
statistic for the Friedman’s test is a Chi-square with (k− 1) degrees of freedom.
Thus, the hypotheses for comparison across the windows are:

H0: The distributions are the same across the windows

H1: The distributions across the windows are different

Here, ‘distribution’ refers to the distribution of similarity scores in any given
window. As shown in Fig. 15, for a set of N subjects, 3 groups (windows) are
being compared to test if there are differences in similarity scores between any
two. The values (similarity scores) across each row are rank-ordered. The result-
ing ranks are then summed for each column. The null hypothesis asserts that
there is no difference amongst the 3 groups. Therefore, the sum of ranked scores

in each column Rj should approximately be k(N+1)
2 . To measure the degree to

which each observed sum of ranked column varies from the null hypothesis value,
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the Chi-square statistic χ2
r for Friedman test is calculated as

χ2
r =

12

Nk(k + 1)

k∑
j = 1

R2
j − 3N(k + 1)

The results of the Friedman test are defined by the parameters χ2
r and p.

The test statistic χ2
r is distributed according to the χ2

r distribution with k − 1
degrees of freedom. The value p defines the probability that the calculated
χ2
r value will be obtained if the null hypothesis were true. In our experiment,

we chose a significance level of p = 0.05, i.e. we reject the null hypothesis if
p ≤ 0.05.

The Friedman’s test only provides a test to determine if there is a differ-
ence in the distribution of similarity scores amongst the windows. It does not
provide any information on which pair(s) of windows are different. For this
information, a post-hoc analysis is carried out using Wilcoxon signed-rank tests
for multiple comparisons between the treatments. A Bonferroni correction is ap-
plied to adjust for the multiple comparisons that are being made [11]. We refer
the reader to [73] for a detailed explanation of the Wilcoxon test in this scenario.

Similarity score S

The similarity in user typing pattern was measured over a window of consecutive
entries using a score. This similarity measure S is formulated as,

S =
Ncommon

Nseq

whereNseq is the number of different event sequences in the window andNcommon

is the number of times the most common event sequence was typed. For exam-
ple, consider the window for Subject 1 shown in Fig. 15. Here Nseq = 2 and
Ncommon = 6 and thus S = 3.
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Figure 15: Procedure for testing user habituation using Friedman’s test
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Results

The procedure and calculated probability values for the Friedman’s test are given
in Step 3 in Fig. 15. The p value for the χ2

r statistic was calculated to be 0.0011.
This indicates a significant probability that the event sequence pattern of users
changed over time. Additionally, the post-hoc analysis indicated p = 0.0002 for
Window3-Window1 and p = 0.0679 for Window3-Window2. This means that
there is a significant difference between event sequence patterns of Windows 3
and 1, and a near significant difference (the value of p slightly higher that 0.05)
between the subsequent Windows 3 and 2.

The results reveal that entries that are typed later are far more representative
of the user as compared to earlier entries. The implications of these results
inform authentication model development and update strategies for keystroke
dynamics systems. These results reinforce those presented in [73] where user
habituation in the context of hold times and delay times was first analyzed.
When combined, these results show that in the course of an acclimation period,
the user’s typing profile (based upon hold time, delay time, total time, event
sequence used, etc.) changes significantly. Therefore, keystroke dynamics based
authentication that relies on complex strings would see improved performance
if users are asked to train on a string before accepting it as a password. Such
training would stabilize the event sequence too. Furthermore, to leverage the
discriminatory power of keystroke dynamics and event sequences it is necessary
to discard early password entries whenever more mature ones become available.

3.9.9 Event sequence usage in publicly available datasets

The concept of event sequences that is introduced in this work is a novel re-
search idea although it is fairly intuitive. Our survey for research on it did not
yield any related work. We refer the reader to Banerjee et al. [5] for a com-
prehensive survey of the keystroke dynamics research. The survey shows that
researchers have made significant efforts in developing better performing algo-
rithms. However, the data used for research has not stepped out of the early
experimental bounds. Table 19 summarizes the type of strings for which the
keystroke dynamics data was collected and made publicly available. As can be
seen, current research has been limited in attempting to leverage the differences
caused by strings containing both uppercase and lowercase letters. In the case
of Montalvao et al. [56], one of the databases contains free text data which does
contain strings with uppercase and lowercase letters. However, no information
on the modifier keys exists in any of the datasets. While Killourhy and Maxion
[46] used a complex string, an analysis of the dataset shows that the users were
restricted to typing the strings using only one event sequence.

Bartlow and Cukic [6] showed that using data from the Shift key modifier
in passwords resulted in an improved classifier performance. The passwords
used were of the same form as those used in this paper. However, as has been
explained in this work, such a string can be typed using many different event
sequences. The authors did not discuss if and how the users and impostors were
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Table 19: Characteristics of current publicly available keystroke datasets
Dataset Words used Remarks

Montalvao et al.
[56]

“chocolate, zebra, banana,
taxi.”, “computador

calcula.”

Lower case string. Single event
sequence.

Free text Contains uppercase letters but
no shift or Caps-lock data

Killourhy and
Maxion [46]

“.tie5Roanl” Single event sequence

Giot et al. [28] “greyc laboratory” Single event sequence
Allen [2] “pr7q1z”, “jeffrey allen”,

“drizzle”
Lower case string, single event

sequence.
Bello et al. [7] Paragraphs from Spanish

translation of: One
Thousand and One

Arabian Nights and War
and Peace

Lower case paragraph, case
insensitive. Quotes, dashes,

hyphens removed. Users were
allowed to make mistakes but
researchers used digraphs for

analysis

restricted, if at all, towards uniform event sequences.

3.10 Threats to Validity

3.10.1 Threats to Internal validity

1. Maturation - In all data collections, users may have experienced boredom
while typing the same passwords repeatedly. This problem was addressed
by asking the users to submit as many entries as they were comfortable
within each session. The duration of the study also allowed sufficient
time for the subjects to submit the required number of entries. The users
habituated to the password over time. This effect has been a key part of
our study and, hence, not a threat to its validity.

2. Instrumentation - The keyboard type was not controlled during the
collection in KDS-1 and KDS-2. Different keyboards may exhibit differing
hold and delay times based on their layout and comfort level. Additionally,
users may have used different keyboards while entering the same password
leading to additional variation in their typing patterns. This threat to
validity was reduced by monitoring the IP address and asking the user to
specify their keyboard type at the beginning of each session. Users were
asked to memorize their passwords prior to typing them too. However, it
is impossible to ensure that each user did so.

3. Impostor Data - Both KDS-1 and KDS-2 coupled users into pairs where
one unknowingly acted as the impostor for the other. However, in the real

65



world, impostor keystroke samples could vary dramatically. Only a study
with a larger user base would allow us to automatically generate impostor
keystroke data and, subsequently, build reasonable impostor models.

4. Selection - When analyzing KDS-2 in Sections 3.9.6-3.9.8, we used a
user-password combination as a subject while performing statistical tests.
Since each user typed 2 passwords, each user appeared as 2 subjects in the
study. Independence between the subjects is required for the Friedman’s
test. It would be possible to suggest that there is a relationship between
these“two”subjects due to the fact they represent the same user. However,
our reasoning is that since the passwords being typed are different, the two
subjects represented by a single user are likely independent.

5. Diffusion or imitation - In KDS-1, subjects were asked to type their
username and passwords, followed by the user / password credentials of a
few other users. There was no attempt to habituate impostor users typing
someone else’s credentials, or having them see/hear how the credential’s
owner types them. Motivated intruders would likely engage in social and
training activities that may enhance the probability of a successful intru-
sion.

3.10.2 Threats to External Validity

1. Interaction of selection and treatments - In all datasets, the age
of users who participated in collections ranged from low-twenties to late
sixties. They were of both genders and with varying typing skills. Very few
users listed “hunt and peck” as their typing proficiency, and even amongst
them all showed a typing speed of at least 5 characters per second. “Hunt
and peck” typists may be a more common demographic in the real world,
hence it may be argued that the test population is not representative of a
broader population.

2. Interaction of settings and treatments - The users who participated
in the KDS-1 and KDS-2 data collection were allowed to submit their data
at their own convenience. The objective was to conduct the study in a
realistic setting. Thus, factors such as posture, external environment, the
number of consecutive password entries, and other distractions were not
taken into account and may have an impact on the external validity of our
findings.
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3.11 Chapter Summary

In this chapter, we analyzed two aspects of keystroke dynamics, the first being
user habituation. This refers to the change in a user’s typing behavior with
time as he or she becomes familiarized with the password. We conducted an
experimental study to determine the statistical effects of habituation in typing
short, simple or long, complex passwords. We demonstrated that there is a
statistically significant reduction in typing time over consecutive entries for both
short and long passwords. We also showed that the variance of the users’ total
typing time reduces significantly for both types of passwords. This indicates
that, over time, typing behavior gravitates to a user specific but uniform pattern.

The separability of paired users did not show a statistically significant dif-
ference in short passwords, likely due to the commonality of the words selected
as passwords. For long passwords, we observed that while inter-user separa-
tion decreases over time, the intra-user variation also decreases leading to more
uniform password typing patterns that are easily distinguishable.

With respect to the effect of habituation on authentication performance,
when classifiers were trained using early (noisy) keystroke entries, the perfor-
mance was significantly worse in comparison with those trained with more uni-
form data. Such effects of habituation must be taken into account by when
deploying keystroke dynamic based authentication systems. When a user is as-
signed a credential set their typing behavior will show initial high variance until
they gain proficiency and convert the patterns to muscle memory. The most
effective authentication model in our experience is one that trains on the most
recent keystroke entries from each user.

The second aspect of keystroke dynamics analyzed in this chapter is the
concept of event sequences. It is based on the flexibility that keyboards offer in
typing a complex string using different keystroke sequences. Current keystroke
datasets have been recorded by restricting the user to type a single event se-
quence. Using a locally collected dataset, we performed a series of experiments
with keystroke event sequences. These experiments ascertained the effective-
ness offered by event sequences in distinguishing users, the correlation between
users’ typing proficiency and the event sequences, and the effect of habituation
on the event sequences used by any user. The results demonstrated that event
sequences increase separability between individual users in keystroke dynamics.
We provided empirical proof that event sequences are an attribute independent
of a user’s typing proficiency unlike traditional keystroke dynamics attributes.
Lastly, we showed that as users habituate to a given string, the variations in the
event sequences decrease significantly.
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Chapter 4

Touch Based Recognition

4.1 Motivation

Mobile touch screen devices have become ubiquitous in today’s world. Unlike
personal computers, their portability allows them to be held in a variety of
positions and used while moving around. Furthermore, they come in various
sizes and from various manufacturers. Due to their pervasive nature, a continual
authentication system based on this modality holds considerable promise. An
ideal authentication system would leverage the various usage scenarios for mobile
devices (posture, device type, user movement, etc.) to achieve a balance between
practicality and effectiveness.

This chapter investigates the effect of three factors on the authentication
performance of a touch-based authentication system: user posture, device size
and device manufacturer. Each of these has the potential to affect the device us-
age behavior of a user and thus, the authentication performance. We investigate
the effect of these factors by conducting an experimental data collection. This
data collection is structured such that each of the three factors (posture, device
type and device manufacturer) can be controlled. Using the collected dataset,
we conduct a benchmark analysis of various classification algorithms. We then
perform statistical tests and performance analysis to determine the effect of
each of the three factors on the authentication performance of our touch-based
authentication system. The results of these statistical tests will allow us to de-
termine those factors that must be accounted for when developing a user model.
For example, if changing the user posture is found to have a significant impact
on the classifier performance, it would be advisable to develop separate user
models for different postures.

This section of the document is structured as follows: Section 4.2 described
the app developed to use in the data collection. Section 4.3 explains the exper-
iment design. Section 4.4 describes the format of the collected data, and the
noise removal and feature extraction techniques applied to the dataset. Section
4.5 described the procedure to sample training and testing sets for the purposes
of the experiments. Sections 4.6-4.10 answer various questions pertaining to
touch dynamics based on an empirical analysis of the dataset. Section 4.13
summarizes the conclusions from the analyses. Section 4.12 critically discusses
the assumptions of the dataset and the threats to the validity of the conclu-
sions. Section 5.3 concludes this chapter with a discussion of future directions
for research.
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Table 20: Characteristics of devices used in the study
ID Manufacturer Model Device Type Display Size OS version

T10 Samsung Tab 2 10” Tablet 10” 4.1
T7 Samsung Tab 2 7” Tablet 7” 4.1
S3 Samsung S3 Smartphone 4.8” 4.1

EVO HTC Evo 4G LTE Smartphone 4.7” 4.1

4.2 Device selection and design of the data col-
lection app

Four devices were selected for the purposes of this study: two tablets of different
display sizes and two smartphones of the same display size but different man-
ufacturers. Their characteristics are described in Table 20. These particular
devices were chosen specifically to answer our research questions. In order to
minimize the effect of extraneous factors such as installed apps and software
aging, the devices were factory reset to their default settings before conducting
the data collection. No additional software was installed on the devices except
for the data collection app. All selected devices were based on the Android oper-
ating system. We chose Android for multiple reasons: According to a developer
survey conducted in April-May 2013, Android is used by 71% of mobile-software
developers [54]. Furthermore, Android has close to 80% market share in global
smartphone shipments in 2013 [27]. Thus, any results we obtain on these de-
vices would be applicable to the larger segment of the mobile device population.
Furthermore, Google, Android’s developer, provides a customized Eclipse IDE
for Android app development. This allows for rapid development, prototyping
and testing of apps [66].

The motivation behind developing a custom app was to create a means to
capture the natural horizontal and vertical strokes from the user. The app
consisted of a photo matching game where the objective is to find a randomly
displayed image from a list of images. The flow of activities when using this
app is shown in Fig. 16. When the user begins the game, on Screen 1, he/she
attempts to find the displayed photo by scrolling vertically through a list of
images. Once the matching photo is found, the user clicks it. At this, Screen 2
is displayed with another image that must be found. On this screen, however, the
user must swipe sideways to find the displayed photo. Once the matching photo
is found, the user clicks the ‘Back’ button which causes Screen 1 to reappear
with another randomly selected image. This pair of activities repeat five times.
The game ends after the fifth iteration.

As the user interacts with the app, the touch data is collected in the back-
ground. The structure and type of touch data collected is explained later in
Section 4.4.
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Figure 16: Activity flow in the image-matching app
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4.3 Experiment design

As part of the data collection, we recruited 31 test subjects. In a given session,
the subject played the game three times on each of the four devices. To reiterate,
a game refers to finding a total of ten images in the app (five through scrolling
and five through swiping). Each game typically required 3 minutes. One game
was played on each of the following postures:

1. P1: Device lying flat on a table in portrait orientation

2. P2: Device held in portrait orientation

3. P3: Device held in landscape orientation

These set of 3 games when played on each of the four devices is referred to as a
‘session’ in the rest of the work. All test subjects used the same set of devices
and were required to be in a seated position. The same set of pictures was
used on all devices and throughout the data collection. The data collection was
primarily conducted in a laboratory setting. The subjects took part in 8 sessions
so that adequate data could be gathered for training and testing user models.
The reason for choosing 8 sessions was based on a pilot study performed on 7
users explained later in Section 4.6.

4.4 Noise removal & Feature extraction

The touch data was collected in the app via the standard Android library and the
provided methods. The raw touch data gathered by our custom app contains
the X/Y coordinates of a touch event, the pressure applied at that spot and
the time of the event (measured in nanoseconds). Other collected information
included device specific characteristics such as dots per inch, screen resolution
in the corresponding orientation, etc.

On the Android OS, the atomic touch data for a gesture consists of a series
of touch events. These events are:

1. ACTION DOWN: A pressed gesture has started, the event contains the
initial starting location

2. ACTION MOVE: A change has happened during a press gesture (between
ACTION DOWN and ACTION UP). The motion contains the most re-
cent point, as well as any intermediate points since the last down or move
event.

3. ACTION UP: A pressed gesture has finished, the motion contains the final
release location as well as any intermediate points since the last down or
move event.

Thus, a touch gesture consists of an Action Down event, followed by a series of
Action Move events and, finally, an Action Up event. Each event has an X/Y
coordinate, pressure and timestamp associated with it.
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Before performing feature extraction, we removed certain types of strokes
from the dataset. These strokes did not meet the characteristics that we desired
to use in our touch based authentication system. These strokes are:

1. Those that changed direction mid-way.

2. Touch presses that consisted only of an Action Down and an Action Up
event without any Action Move events in between.

Strokes of all lengths were preserved even if they happened to be short. While it
has been shown in literature that very short strokes possess less discriminatory
power [24], we chose to keep them in the dataset and let the classifier decide their
usefulness. Once the dataset was pre-processed in this manner, we extracted 18
features for each gesture. These are listed in Table 21.

Once the unwanted strokes were removed and the features extracted for
each stroke, the dataset was pruned so that all subjects had an equal number of
strokes in all device-posture scenarios. This pruning was performed to remove
any confounding effect in the results due to some users having a larger number
of strokes in their dataset than others.

Table 21: List of features generated and their description
Feature Description

StartX, StartY,
StartPressure

Abscissa, ordinate and pressure at the
location where the gesture began

StopX, StopY,
StopPressure

Abscissa, ordinate and pressure at the
location where the gesture ended

StrokeDuration Duration of stroke (in µs)
Length EE, Angle EE Distance and angle between beginning

and end point ( in pixels)
Length Trj Length of gesture’s trajectory
Ratio TrjLen2EELen This ratio between Length EE and

Length Trj. This is a measure of
deviation of the gesture from a
straight line.

AverageVelocity The average velocity of the gesture
InterStrokeTime Delay between successive strokes
MidPressVal Pressure at the midpoint of the gesture
PairedVel20, PairedVel50,
PairedVel80

Average velocity after 20/50/80% of
the stroke has been executed

Direction Primary direction of the stroke
(Horizontal/Vertical)
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4.5 Stroke sampling for generating training-testing
sets, classifier testing procedure and perfor-
mance metrics

The process of selecting strokes to create training and testing sets and generate
performance metrics is illustrated in Fig. 17. The process is divided into seven
steps, each described in detail below:
For any given user,

• Step 1: For creating the genuine train and test sets, strokes from the
user’s genuine dataset is sampled such that alternating batches of five
strokes across the entire genuine dataset are collated together into groups
to form the training and testing sets. Let the total number of such groups
formed from the genuine strokes be 2L. Thus, the entire genuine dataset
of the user is sampled evenly for groups of strokes. In doing so, we remove
the effects of user habituation that may affect classifier performance if a
single contiguous block of strokes from one point in time was employed as
the training set
We sampled groups of strokes instead of single strokes under the reasonable
assumption that touch gestures over a short period of time are similar to
each other and would thus lead to a more stable user model.

• Step 2: For creating the impostor train and test sets, an equal number
of groups of strokes are sampled from each impostor such that the total
number of sampled groups is equal to 2L. For each impostor, the groups in
his or her dataset are sampled evenly across their entire dataset. This helps
account for the effects of habituation that may change that impostor’s
behavior over time.

• Step 3: The train and test sets are created by combining the correspond-
ing genuine and impostor sets. Both the train and test sets contain 2L
groups of strokes.

The horizontal and vertical strokes are stored separately. Their train and
test sets are constructed separately using Steps 1, 2 and 3. The train
and test sets from horizontal and vertical strokes are then concatenated
to create the final train and test sets.

• Step 4: The classifier is trained on the training set and a user model is
generated.

• Step 5: Once the user model is constructed, its performance is bench-
marked on the testing set. Since the testing set consists of groups of five
strokes, each of these groups is tested on the classifier.

• Step 6: Each stroke in a group is assigned its own confidence value by the
classifier. The confidence value is a measure of the classifier’s certainty in
labeling the stroke with a particular class label (genuine or impostor).
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• Step 7: In order to generate performance metrics, a confidence value
threshold is set. Based on this threshold, each stroke within the groups is
labeled a genuine (if their corresponding value is greater than the thresh-
old) or impostor. The majority class label within the group is then as-
signed to all gestures in the group. Thus, if the five strokes in a group
are labeled as genuine by the classifier with confidence values 0.30, 0.79,
0.65, 0.91, and 1.00, then based on a confidence value threshold of 0.60,
all strokes in the group will be labeled as genuine. Once the entire testing
set has been classified in this manner, the False Accept Rate and False
Reject Rate are calculated:
FalseAcceptRate = # of impostor instances classified as genuine

Total# of impostor instances

FalseRejectRate = # of genuine instances classified as impostor
Total# of genuine instances

The confidence value threshold can be lowered to make the classifier user-
friendly (and less trustworthy). It can also be increased to make the classi-
fier highly restrictive (and more trustworthy). For example, in a Random
Forest classifier, the threshold parameter refers to the number of trees
in the ensemble that voted for a particular class. At a certain threshold
value, the FAR is equal to the FRR. This FAR/FRR value is called the
Equal Error Rate (EER). The EER serves as a single-valued performance
metric for the classifier. In our experiments, the EER was chosen as the
default performance metric unless otherwise noted.
When the classification threshold is varied in steps across its range, and the
FAR and True Positive Rate (1-FRR) are plotted at each data point, the
resulting graph is called the Receiver Operating Characteristics (ROC)
curve. The ROC curve for a classifier, shown in Fig. 18, illustrates its
performance as a trade off between selectivity and sensitivity.
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Figure 17: The procedure for extracting training and testing sets from the touch data, training the classifier, and generating
performance metrics
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Figure 18: A sample ROC curve illustrating the trade-off between selectivity
and sensitivity of a classifier [30]

4.6 Variation in classifier performance with change
in size of training set

Before the full fledged data collection, we conducted a pilot study over 7 users on
the T7 tabet.. This preliminary study was conducted to determine the amount
of training data necessary to create an adequate user model. This in turn would
help us define the number of sessions we needed to conduct per user in the
actual data collection. To answer this question, each of the 7 users took part in
10 sessions. We reiterate that a session refers to playing 3 games on each of the
four devices with each of the 3 games played in a different posture. The touch
data was then pre-processed as described in Section 4.4. In order to determine
the optimal amount of training data needed to create an adequate user model,
we performed the following steps:

1. The user data was split equally into train and test data. The training and
testing data was extracted as described in Section 4.5.

2. 10 train sets of varying sizes were created by varying the amount of training
data from 10%-100% of the complete training data (in steps of 10%).

3. Each of the 10 training sets was used to create a user model based on the
Random Forest classifier.

4. For every user, the 10 user models were tested against the testing set
(which is of a constant size).

5. The mean EER for all users at every training set size was calculated.
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Figure 19: Variation in EER as the size of the training set size is increased

The variation in mean equal error rate with training set size is shown in Fig.
19. Note that once the training set size reaches 80% (data from 4 sessions),
the EER of the classifier does not decrease by more than 1% upon adding more
training data. Based on this analysis, we decided to collect data over 8 sessions
to gather sufficient data for training and testing sets in the full-fledged data
collection.

4.7 Determining the best performing classifica-
tion algorithm

The next objective was to determine the best classification algorithm and use
it as the basis for further experiments. We tested five algorithms based on a
benchmark study performed by Serwadda et al [67]. The authors here reported
that Logistic Regression, SVM, Random Forest, Naive Bayes, and Multi-layer
Perceptron were the best performing algorithms. To find the best classifier,
we followed the same steps as described in Section 4.6. However, for every user
model in the previous example, we developed five in this experiment, where each
user model was created using one of the five benchmark classification algorithms.

The variation in EER for each classifier for this experiment is illustrated
in Fig. 20. The mean EER and its standard deviation for each classifier for
all users are given in Table 22. It is evident that the Random Forest classifier
performed the best amongst all algorithms. When using only 10% of the total
training set, it records an EER of 17.6%. As the training set size is increased,
the performance increases to provide a benchmark EER of 5.4%. Compara-
tively, Multi-layer Perceptron was the worst performing classifier. Table 22 also
indicates that Random Forest provides the most reliable classification. This is
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evident from the smaller change in performance as the training set size is in-
creased. Furthermore, it exhibits a lower standard deviation as compared to the
other classifiers, indicating that it provides more reliable performance across a
spectrum of users. Based on these results, we decided to use Random Forest to
generate user models for the remainder of the experiments.

Interestingly, the classification algorithms exhibited oscillation in the Equal
Error Rate as the training set size was increased. This behavior was most
pronounced for the Naive Bayes and Multi-layer Perceptron algorithms. It may
be suggested that this behavior is due to difference in user behavior over time.
Thus, a shorter training set would reflect the user in his/her earlier stages of
familiarity with the app. However, we would like to remind the user that the
entire training set was sampled evenly in order to generate a smaller training
set. This was done to remove the effects of variation in user behavior over time.
The reason for this fluctuation in performance requires further investigation.

Using the same experimental setup, we evaluated the effectiveness of the
features used to construct the user model. An Information Gain evaluator was
used to determine the discriminatory power of a feature and the attributes were
ranked according to their individual evaluations. The results of this test are
shown in Table 23. A key point to note from the analysis is that, within this
dataset, the pressure data possesses negligible discriminatory power. The most
effective features are based on gesture coordinates, length and speed. This may
be because the pressure readings from touchscreen devices are not accurate
enough to be used for identification purposes. A key reason for this is the
manner in which pressure data is gathered on touch screen devices. This has
been explained in Section 2.2.9. To reiterate, the pressure is interpreted via the
size of contact area between the finger tip and the screen, and not via a dedicated
pressure sensor. It is probably due to these reasons that this indirectly sensed
pressure data does not have sufficient discriminatory power.

4.8 Experiment 1: Given a posture, does device
size affect the user profile w.r.t. classifier
performance?

With the rapid rise in popularity of mobile devices, it is a common trend that
users have multiple touch screen devices. In such cases, a highly desirable char-
acteristic of a touch based authentication system is to use the collate data from
multiple devices and use it across different devices. This will either allow a user
profile developed on one device to be ported to another device. Furthermore,
it may even be possible to merge two profiles from different devices together to
rapidly create a user model or a more robust authentication system. Based on
this motivation, we decided to study whether the device size has any effect on
the user profile.

In this experiment we restricted the user posture in order to remove a con-
founding variable. We argue that in a practical system, it is quite possible to
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Figure 20: Performance of various classifiers with variation in training set size.
The Random Forest classifier performed the best followed by SVM.

Table 22: Mean classifier performance over all 31 users as the training set size
is varied. The values in parentheses show the standard deviation.

Training
Data

Used %

Random Forest SVM Logistic Regression Näıve Bayes MLP

10 17.6% - (7.8%) 24.1% - (8.6%) 31.4% - (15.0%) 23.9% - (7.8%) 53.0% - (17.6%)
20 12.0% - (7.5%) 20.1% - (8.0%) 33.7% - (18.7%) 17.1% - (7.5%) 57.2% - (18.4%)
30 9.3% - (6.8%) 19.6% - (8.1%) 28.2% - (12.8%) 16.0% - (6.8%) 54.0% - (14.7%)
40 8.7% - (5.8%) 19.3% - (7.6%) 35.0% - (16.8%) 12.3% - (5.8%) 61.0% - (12.2%)
50 7.2% - (5.8%) 19.0% - (7.9%) 25.0% - (11.8%) 11.9% - (5.8%) 57.5% - (13.0%)
60 6.5% - (5.9%) 18.7% - (7.7%) 24.9% - (11.0%) 10.8% - (5.9%) 61.4% - (12.6%)
70 6.4% - (4.9%) 18.8% - (8.0%) 34.0% - (14.5%) 10.6% - (4.9%) 60.8% - (15.5%)
80 5.9% - (4.6%) 18.8% - (7.9%) 34.3% - (14.0%) 9.8% - (4.6%) 58.4% - (12.3%)
90 5.6% - (4.2%) 18.9% - (8.3%) 35.1% - (12.8%) 8.6% - (4.2%) 61.9% - (11.8%)
100 5.4% - (4.1%) 18.8% - (7.8%) 33.7% - (12.7%) 8.6% - (4.1%) 60.8% - (13.1%)
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Table 23: Effectiveness of features used to generate user models
Rank Info.

Gain
Feature Rank Info.

Gain
Feature

1 0.4072 StartX 11 0.061 StartPressure
2 0.3654 StopX 12 0.051 PairedVel20
3 0.1891 StopY 13 0.0496 PairedVel80
4 0.1301 MidPressVal 14 0.0182 StopPressure
5 0.109 AverageVelocity 15 0 Ratio TrjLen2EELen
6 0.0923 StartY 16 0 StrokeDuration
7 0.092 Length Trj 17 0 Angle EE
8 0.0906 Length EE 18 0 Direction
9 0.0769 PairedVel50
10 0.0706 InterStrokeTime

develop user profile based on user postures since the posture can be detected
using the device’s inbuilt accelerometer and gyrometer readings. In order to
study the effect of device size, we performed a statistical comparison using the
following steps. The test setup is illustrated in Table 24:

1. From the touch data for a given user and posture, 3 pairs of training and
testing sets were extracted using the approach described in Section 4.5.
Each set contained the same number of strokes and was constructed using
the touch data from one of three devices (T10: 10” tablet, T7: 7” tablet
and S3: 4.7” smartphone). These three devices, described in Section 4.2
are all made by Samsung. We excluded the HTC Evo from this experiment
in order to keep the device manufacturer same for all devices under test.
The training sets for a user are labeled TrainT10, TrainT7, and TrainS3.
The testings set are labeled TestT10, T estT7, and TestS3.

2. Three user models were constructed using TrainT10, TrainT7, and TrainS3

with the Random Forest classifier.

3. Each model was then tested on each of the three testing sets and the Equal
Error Rate was calculated in every instance. The EER when training on
Device X and testing on Device Y for User i is labeled EER iXY .
For example, in order to determine the effect of change in device size on
User x’s model from the T10 device: We restrict the posture and con-
struct the user model for User x using the train set for User x from T10
(TrainT10) and then benchmark on the test sets for User x from T10, T7,
and S3 (Test10, TestT7, and TestS3). This provides the EERs EER xT10

T10,
EER xT10

T7 and EER xT10
S3 for that posture.

When this procedure is performed over all users, it provides a distribution
of EER scores as shown in Table 24.
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4. To test the effect of device size on authentication performance of a user
model based on TrainX , the EER distributions EERX

T10, EER
X
T7, EER

X
S3

are compared to each other using a one-sided Student’s t-test with Holm-
Bonferroni correction.

4.8.1 Student’s t-test

The student’s t-test is a method of testing hypothesis about the mean of a
small sample drawn from a normally distributed population when the population
standard deviation is unknown. The formulated null hypothesis states that there
is no effective difference between the observed sample mean and the hypothesized
or stated population mean, i.e., that any measured difference is due only to
chance.

In general, a t-test may be either two-sided (also termed two-tailed), stating
simply that the means are not equivalent. The t-test may also be one-sided,
specifying whether the observed mean is larger or smaller than the hypothe-
sized mean. The test statistic t is then calculated. If the observed t-statistic is
more extreme than the critical value determined by the appropriate reference
distribution, the null hypothesis is rejected. The appropriate reference distri-
bution for the t-statistic is the t distribution. The critical value depends on the
significance level (alpha level) of the test. This is the probability of erroneously
rejecting the null hypothesis [22].

4.8.2 Holms-Bonferroni Correction

Since this experiment (and the following ones) employs multiple statistical tests,
it is possible to reject the null hypothesis even if it is correct. This is because
as the number of statistical tests increases, the probability of rejecting a null
hypothesis at a given alpha level also increases resulting in the inflation of the al-
pha level. In order to compensate for this problem, we use the Bonferroni-Holm
correction for multiple comparisons. This is a sequentially rejective version of
the simple Bonferroni correction for multiple comparisons and strongly controls
the family-wise error rate at level alpha. It works as follows:

1. All p-values are sorted in order of smallest to largest, where m is the
number p-values.

2. If the 1st p-value is greater than or equal to α/m, the procedure is stopped
and no p-values are significant. Else, continue.

3. The 1st p-value is declared significant and now the second p-value is com-
pared to α/(m− 1).

4. If the 2nd p-value is greater than or equal to α/(m− 1), the procedure is
stopped and no further p-values are significant.

5. This process continues for all p-values.
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4.8.3 Results

Table 25 shows the statistical results of the experiments. Each statistical test is a
two-tailed test, i.e. the p-value indicates whether the two distributions of EERs
are equal. In our experiments, we required a significance level α = 0.05 i.e, the
p-value must be lower than 0.01 to reject the NULL hypothesis, i.e. to conclude
that the distributions are not equal. The conclusions from the experiment are
as follows:

1. As Table 25 shows, the performance of a user model trained on any device
is very different from when that same profile is used on another device.

2. This effect is explained in Table 26 where the EER on each device for this
experiment are shown. When a user model trained on Device X is used
on a test set from Device Y , the performance of the model is equivalent
to a coin toss, i.e. the classifier is unable to distinguish between a genuine
and impostor user. This shows that based on the current state-of-the-art
techniques for feature generation, it is not possible to use user models
across devices.

3. The abysmal performance of Train-on-X-Test-on-Y classifiers is somewhat
less for the T7 and S3 pair. This seems to suggest that similar device
sizes do lead to similar profiles. To evaluate this further, we carried out
this same experiment on two devices of the same size but from different
manufacturers. This experiment is explained later in Section 4.10.

4. We note that when training and testing on data from the same device, the
10” tablet offers the best authentication performance with EER as low as
3.8%. Comparatively, the S3 smartphone has the worst performance (as
low as 8.8%). This suggests that touch based authentication is more effec-
tive on devices with a larger touch screen area. This is possibly because
the large screen area provides users with greater freedom to select certain
screen areas to execute gestures.

5. In all cases where the model is trained and tested on the same device
and posture, the classifier performance is either better or equivalent to
the benchmark performances in literature. This has also been achieved
by using fewer features (18) than other studies in literature. For example,
Frank et al. [24] used 27 features, Feng et al. [23] used 53 features and
Serwadda et al. [67] used 28 features.
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Table 24: Test setup to measure the effect of device on authentication accuracy (given a specific posture).

User
TrainT10 TrainT7 TrainS3

TestT10 TestT7 TestS3 TestT10 TestT7 TestS3 TestT10 TestT7 TestS3

1 EER 1T10
T10 EER 1T10

T7 EER 1T10
S3 EER 1T7

T10 EER 1T7
T7 EER 1T7

S3 EER 1S3
T10 EER 1S3

T7 EER 1S3
S3

... ... ... ... ... ... ... ... ... ...
n EER nT10

T10 EER nT10
T7 EER nT10

S3 EER nT7
T10 EER nT7

T7 EER nT7
S3 EER nS3

T10 EER nS3
T7 EER nS3

S3

Table 25: List of p-values of statistical tests conducted to determine the effect of device-to-device variation when the posture
is controlled. Values in red indicate a rejection of the NULL hypothesis. The data shows that there is a very strong difference
between touch profiles built using the three devices in any posture.

Train Device: TrainT10 TrainT7 TrainS3

EERs compared: TestT10-TestT7 TestT10-TestS3 TestT7-TestT10 TestT7-TestS3 TestS3-TestT10 TestS3-TestT7

Posture 1 7.94E-18 7.03E-20 1.32E-16 1.00E-16 4.37E-16 1.80E-13
Posture 2 3.08E-15 4.92E-22 3.08E-15 2.96E-12 6.31E-18 2.30E-14
Posture 3 1.05E-16 2.66E-17 4.59E-16 2.82E-13 2.83E-15 2.89E-14

Table 26: Mean EER (over all users) when the model is trained on one device and tested on another device (while the posture
is controlled)

Posture
TrainT10 TrainT7 TrainS3

TestT10 TestT7 TestS3 TestT10 TestT7 TestS3 TestT10 TestT7 TestS3

Posture 1 5.36% 56.58% 58.69% 58.75% 6.64% 33.97% 55.02% 29.52% 8.81%
Posture 2 5.16% 53.01% 56.75% 52.33% 5.49% 34.30% 54.45% 27.51% 7.14%
Posture 3 3.80% 56.05% 54.37% 55.03% 5.42% 32.19% 51.82% 28.89% 6.60%
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4.9 Experiment 2: Given a device, does posture
affect the user profile w.r.t. classifier per-
formance?

One of the major advantanges of portable devices is that users are not confined
to a certain location or fixed posture to use them. A robust touch-based authen-
tication system must be able to authenticate users even when the user posture
changes. This experiment was performed to determine the effects of changes in
user posture on authentication performance. The experiment setup is similar
to the previous experiment described in Section 4.8. However, in this case, the
device type is controlled while the posture type is varied to create training and
testing sets. The test setup is illustrated in Table 27 and the experiment is
setup as follows:

1. From the touch data for a given user and device, 3 pairs of training and
testing sets were extracted using the interleaved approach. The training
and testing sets contained the same number of strokes.

2. The training/testing sets were extracted using the touch data from three
postures (P1: device on table, P2: device held in portrait orientation and
P3: device held in landscape orientation). The training sets for a user
are labeled TrainP1, TrainP2, and TrainP3. The testings set are labeled
TestP1, T estP2, and TestP3.

3. Three user models were constructed using TrainP1, TrainP2, and TrainP3.

4. Each model was then tested on each of the three testing sets and the equal
error rate was calculated in every instance. The EER when training on
Posture X and testing on Posture Y for User i is labeled EER iXY .
For example, in order to determine the effect of change in posture on User
x’s model based on Posture 1: We restrict the device type and construct
the user model for User x using the train set for User x from Posture 1
(TrainP1) and then benchmark on the test sets for User x from Postures 1,
2 and 3 (TestP1, TestP2, and TestP3). This provides the EERs EER xP1

P1,
EER xP1

P2 and EER xP1
P3 for that posture.

When this procedure is performed over all users, it provides a distribution
of EER scores as shown in Table 27.

5. To test the effect of posture on authentication performance of a user model
based on Posture X, the EER distributions EERX

P1, EER
X
P2, EER

X
P3 are

compared to each other using a one-sided Student’s t-test with Holm-
Bonferroni correction.

4.9.1 Results

Table 28 shows the statistical results of the experiments. Each statistical test
is a two-tailed test, i.e. the p-value indicates whether the two distributions are
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equal. If a significance level α = 0.05 is assumed, the p-value must be lower
than 0.01 to reject the NULL hypothesis, i.e. to conclude that the distributions
are not equal.

1. As Table 28 shows, the performance of a user model trained on any posture
is very different from when that same profile is used on another posture.
However, the p-value is much less than the previous experiment. This
indicates that the difference caused by posture, although significant, is
much less than that caused by device to device variation.

2. This effect is further explained in Table 29 where the EER for each posture
for this experiment are shown. When a user model trained on Posture X
is used on a test set from Posture Y , the performance of the model drops
by 3-4 times on the T10 and up to 10 fold on the S3. Comparing between
Posture 1 and Posture 2, the difference in performance is at least 4 fold
although both postures required a portrait orientation (the only difference
between the two postures is that the device was either laid flat on the table
or held in one hand).

3. The difference in performance, however, is more pronounced when the
model is trained on a landscape orientation and tested on a portrait ori-
entation (or vice-versa). This is to be unexpected since the user interface
changes drastically between these two orientations. In order to mitigate
this problem, a possible area of future research would be to refer to gesture
coordinates in terms of its proximity to certain UI elements, and not in
absolute X and Y coordinates.

4. Lastly, a common trend in all scenarios was that Posture 1 (device lying
flat on table) had the worst performance. Contrastingly, Posture 3 (device
held in landscape mode) offered the best performance. It seems that the
users touch profile becomes more specific when the device is held in the
hand. Based on this analysis, we believe that utilizing the 3-dimensional
orientation data of a device may offer an even better user-specific profile
when it is held in the hand(s).
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Table 27: Test setup to measure the effect of posture on authentication accuracy (given a specific device)

User
TrainP1 TrainP2 TrainP3

TestP1 TestP2 TestP3 TestP1 TestP2 TestP3 TestP1 TestP2 TestP3

1 EER 1P1
P1 EER 1P1

P2 EER 1P1
P3 EER 1P2

P1 EER 1P2
P2 EER 1P2

P3 EER 1P3
P1 EER 1P3

P2 EER 1P3
P3

... ... ... ... ... ... ... ... ... ...
n EER nP1

P1 EER nP1
P2 EER nP1

P3 EER nP2
P1 EER nP2

P2 EER nP2
P3 EER nP3

P1 EER nP3
P2 EER nP3

P3

Table 28: List of p-values of statistical tests conducted to determine the effect of posture variation when the device type is
controlled. Values in red indicate a rejection of the NULL hypothesis. The data shows that there is a strong difference between
touch profiles based on what posture the user is in. However, it is much less than the differences in touch profile caused by
device-to-device variation.

Train Posture: TrainP1 TrainP2 TrainP3

EERs compared: TestP1-TestP2 TestP1-TestP3 TestP2-TestP1 TestP2-TestP3 TestP3-TestP1 TestP3-TestP2

T10 4.66E-06 1.24E-08 2.71E-08 1.24E-08 1.40E-10 3.03E-11
T7 8.52E-08 4.44E-10 1.23E-08 1.50E-09 2.52E-12 1.08E-10
S3 1.62E-07 8.14E-12 9.78E-10 2.76E-12 2.81E-14 6.64E-12

Table 29: Mean EER (over all users) when the model is trained on one posture and tested on another posture (while the device
type is controlled)

Device
TrainP1 TrainP2 TrainP3

TestP1 TestP2 TestP3 TestP1 TestP2 TestP3 TestP1 TestP2 TestP3

T10 5.36% 21.11% 36.83% 20.78% 5.16% 23.94% 41.84% 30.14% 3.80%
T7 6.64% 23.31% 34.00% 21.37% 5.49% 26.31% 35.75% 27.45% 5.42%
S3 8.81% 19.67% 33.65% 21.64% 7.14% 37.02% 39.86% 37.05% 6.60%
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4.10 Experiment 3: Does the type of manufac-
turer affect a user’s touch profile w.r.t. au-
thentication performance?

Generally, manufacturers source parts from Original Equipment Manufacturers
(OEMs). For example, the processor ships from one company, the touchscreen
digitizer from another, etc. The touch screen brand may have an effect on
the screen sensitivity and response time of the device. Additionally, the effects
on performance due to hardware and software specifications cannot be easily
discerned. The above experiments show that the posture both posture and
device size have a significant effect on the a touch dynamics based authentication
system. We also noted that the T7 and S3, being closer in size, displayed better
performance when their user models were cross-tested. Thus, our next step was
to determine the effect of the device manufacturer and if a user model is portable
between similar sized devices.

To do so, the experiment was setup exactly as in Section 4.8. However, only
two devices were used in this experiment: the HTC EVO and the Samsung S3.
This is because both devices have the same display size (4.7”). The test setup
is illustrated in Table 30. To reiterate:

1. From the touch data for a given user and posture, 2 pairs of training and
testing sets were extracted using the interleaved approach. The training
and testing sets contained the same number of strokes.

2. The training/testing sets were extracted using the touch data from two
devices (S3 and EVO). The training sets for a user are labeled TrainS3,
and TrainEV O. The testings set are labeled TestS3, and TestEV O.

3. Two user models were constructed using TrainS3, and TrainEV O.

4. Each model was then tested on each of the two testing sets and the equal
error rate was calculated in every instance. The EER when training on
Device X and testing on Device Y for User i is labeled EER iXY .
For example, in order to determine the effect of using the EVO model on
the S3 for User x: We restrict the posture and construct the user model
for User x using the train set for User x from EVO (TrainEV O) and then
benchmark on the test sets for User x from EVO and S3 (TestEV O and
TestS3). This provides the EERs EER xT10

EV O and EER xT10
S3 for that

posture.
When this procedure is performed over all users, it provides a distribution
of EER scores as shown in Table 30.

5. To test the effect of device size on authentication performance of a user
model based on Device X, the EER distributions EERX

S3 and EERX
EVO

are compared to each other using Student’s t-test with Holm-Bonferroni
correction.

87



4.10.1 Results

Table 31 shows the statistical results of the experiments. Each statistical test is
a two-tailed test, i.e. the p-value indicates whether the two EER distributions
are equal. A significance level α = 0.05 is assumed. Therefore, the p-value must
be lower than 0.01 to reject the NULL hypothesis, i.e. to conclude that the
EER distributions are not equal.

1. As Table 31 shows, the performance of a user model trained on one man-
ufacturer is significantly different from when that same profile is used on
another manufacturer’s device.

2. This effect is explained in Table 32 where the mean EERs on each device
for this experiment are shown. When a user model trained on Device X
is used on a test set from Device Y , the error rate roughly doubles in each
case. This happens even though the device size and posture is the same.
It should be noted that the drop in performance is far less compared to
Experiment 1 where a different sized device from the same manufacturer
was used.

3. Based on the observations in Section 4.8 and from this experiment, it is
evident that a similar device size results in a similar user profile. In this
experiment, since the manufacturers of the devices are different, this may
have led to a larger drop in EER when the user model is ported over. The
exact reasons for variation in performance forms an interesting area for
further research.

4. When training and testing on data from the same device, the S3 offers bet-
ter authentication performance compared to the EVO. This may be due
to the hardware and/or software configuration of the devices. However,
determining the exact play of variables that cause this performance dif-
ference is infeasible because a computer is a combination of hardware and
software components that function together to create its unique behavior.
Thus, testing each component independently is not possible.

5. We note that the trend from Experiment 2 is exhibited here too: Posture
1 provides the worst authentication performance, while Posture 3 provides
the best performance for the EVO and S3 smartphones.
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Table 30: Test setup to measure the effect of manufacturer on authentication accuracy

User
TrainS3 TrainEV O

TestS3 TestEV O TestS3 TestEV O

1 EER 1S3
S3 EER 1S3

EV O EER 1EV O
S3 EER 1EV O

EV O

... ... ... ... ...
n EER nS3

S3 EER nS3
EV O EER nEV O

S3 EER nEV O
EV O

Table 31: List of p-values of statistical tests conducted to determine the effect of manufacturer variation when the posture is
controlled. Values in red indicate a rejection of the NULL hypothesis. The data shows that there is a strong difference between
touch profiles based on the phone manufacturer.

Train Device: TrainS3 TrainEV O

EERs compared: TestS3-TestEV O TestEV O-TestS3

Posture 1 2.51E-08 1.72E-10
Posture 2 7.79E-08 2.01E-11
Posture 3 2.86E-10 2.84E-09

Table 32: Mean EER (over all users) when the model is trained on one device and tested on the other manufacturer’s device
Posture 1 Posture 2 Posture 3

TestS3 TestEV O TestS3 TestEV O TestS3 TestEV O

TrainS3 8.8% 16.5% 7.1% 14.6% 6.6% 14.0%
TrainEV O 17.5% 8.1% 17.4% 6.7% 16.7% 5.5%
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4.11 Time to authentication

A continual authentication system actively monitors user behavior for impostors.
Due to the unconstrained nature of this authentication mechanism, there may be
a lull in user activity, preventing the system from rapidly determining the user’s
identity. Due to this, a continual authentication system requires more time
to authenticate a user as compared to static authentication measures. Thus,
the time to authentication is an important performance metric for continual
authentication systems.

Table 33 illustrates the procedure to calculate the time to authentication
for the touch-based authentication system proposed in Section 4.5. Note that
our system requires 5 strokes to generate a decision. Based on this information
and statistics from the collected dataset, our calculations show that given any
device-posture combination, our authentication system is able to determine the
user’s identity in 18 seconds. If the user model native to that device-posture
combination is used for authentication, then our proposed system achieves the
performance summarized in Table 34 within a span of 18 seconds.

Please note that this performance and time-to-authenticate is based upon
the frequency with which users submitted strokes during the data collection.
Due to the focused nature of the data collection where the users interacted with
the device without a pause, 18 seconds is possibly the shortest possible time-
to-authentication for our system. In practical situations, the user may be less
focused and may execute gestures with reduced frequency leading to a longer
time to authentication. This problem can be offset by reducing the number
of strokes used to make a decision. This, however, would impact the system
performance.

It is highly likely that the system’s authentication performance is propor-
tional to the number of strokes used to make a decision about the user’s identity.
For example, using ten strokes to authenticate a person will probably reduce
the EER further, but increase the time-to-authentication. This trade-off be-
tween strokes-to-decsion and time-to-decision is an interesting research topic
that merits further investigation.

4.12 Critical discussion

4.12.1 Experimental setup

During the data collection, a maximum of four test subject submitted data con-
currently. In all cases, the order in which the devices were used was randomized.
Subjects did not sit near each other so they could not imitate each other. The
same set of devices was used for all test subjects to minimize the effect of device
variation. The devices were reset to their factory default to remove the effect of
software slowdown. The data submission process typically took 1-2 weeks. This
format was used in order to incorporate information on user acclimatization and
the effect of device usage over multiple sessions.
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Table 33: Statistics on an average user’s in the collected dataset and expected
time to authentication. Please note that the provided statistics are for any given
device-posture combination

Total number of sessions 8
Avg. time taken to complete a session 9mins.

Total strokes recorded 1252
# of strokes executed/min. 1252

8×9 = 17

Strokes reqd. for authentication 5
Time to authentication 5

17 × 60 =∼ 18 seconds
% of strokes lost in noise removal 13%
Strokes/user in pruned dataset 1090

Horizontal:Vertical strokes 5 : 1
# of horizontal strokes 908

# of vertical strokes 182

Table 34: Mean EER for our touch-based authentication system when using the
native device-posture user models. (Posture 1: Device on table; Posture 2:
Device held in portrait mode; Posture 3: Device held in landscape mode).

Device
Posture

P1 P2 P3
T10 5.36% 5.16% 3.80%
T7 6.64% 5.49% 5.42%
S3 8.81% 7.14% 6.60%
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4.12.2 Controlling confounding factors

The experimental setup allowed us to control certain confounding factors:

1. Variations due to the type of device used as the manufacturer, model,
touch screen technology (capacitive, resistive), screen size, screen resolu-
tion, aspect ratio, and touch screen sampling rate. This was controlled by
using the same set of devices for all test subjects.

2. Variations caused by user movement during device interaction. This was
controlled by conducting the data collection in a laboratory environment
with the same desk and table for all test subjects.

3. Variations in user behavior due to extended device use. The users were
expected to complete one session per sitting. The reason for this was to
extract a user behavior over a period of time. At the same time, users
would have learnt to use the app as they familiarized with it. However,
this behavior was part of the study and is not considered a confounding
factor.

Some confounding factors in this study are:

1. Repeated testing - The users habituated to the app over time. However,
This was done intentionally in order to incorporate information on user
habituation into the data. Hence, it is not a threat to its validity.

2. Impostor Data - Due to the limited number of test subjects in our study,
we cannot generate a sufficiently varied impostor model. In the real world,
impostor touch data could vary dramatically. Only a study with a larger
user base would allow us to build reasonable impostor models.

3. Targeted attack verses random attack - While other test subjects
function as impostors for a given subject, they did not try to mimic the
touch behavior of the user. A more sophisticated impostor would watch
the user for some time and mimic his/her behavior. However, as a coun-
terpoint, it seems improbable that an impostor could learn to mimic the
amount of pressure and of acceleration at different parts of the stroke just
by watching the genuine user.

4. Interaction of selection and treatments - All test subjects in this data
collection were students with ages ranging from 16-30. This demographic
is not representative of the general population. Furthermore, only one
subject indicated that he/she used a mobile touch screen device weekly.
Three subjects indicated that they had rarely or never used a touch screen
device before. Once again, this is not representative of the general popula-
tion. However, it should be noted that an continual authentication system
based on touch dynamics will primarily be used by people who own such
a device. In this case, it is preferable that the dataset only contain users
who are used to a touch screen device so that we obtain realistic results.
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5. Effect of user specific characteristics - Gender, dominant hand, men-
tal state may have an effect on the user behavior. While the gender and
dominant hand characteristics were collected as part of the dataset, we
did not use it in the data analysis.

6. Environmental variables - While the environment was controlled, users
were free to come in at any time of the data to complete their sessions.
The time of day may have had an effect on the touch data collected.

4.12.3 Extending the results to other usage scenarios

Our app simulates a particular usage scenario where the user searches for a
particular image. No literature exists that has studied usage context and its
effect on the touch profile. Thus, it is possible that our results do not extend
to other apps and activities such as web browsing, e-mail, watching video, etc.
Future research will need to determine whether this is the case. In the event
that it is not, usage context may prove to be a valuable dimension to leverage
for more reliable and accurate authentication system.

4.12.4 Influence of sample size

We performed the data collection over a period of 2 weeks per subject. We finally
used 31 subjects in this this experimental analysis. This sample size is sufficient
for the statistical tests that we are conducting. However, a real-world setting
has a significantly large number of users and impostors. Currently, further data
collection is underway to further enlarge the dataset. One of the future areas of
research on this expanded dataset is to analyze the impact on performance as
the sample size increases.

4.12.5 Data density per test subject

While the data was collected from multiple test subjects, some subjects used far
more strokes to complete a game. In order to elicit the most uniform results,
we equalized the number of strokes used per subject to build a model. To do so,
each subject’s dataset was pruned such that the number of strokes per subject
was the same as that of the subject with the lowest number of strokes. While
this gives us the benefit of a uniform classifier, it must be noted that additional
strokes are available for most users and were not used in the data analysis.

4.12.6 Normalized features

During data analysis, we noted that the pressure sensing and reading was dif-
ferent across the various devices. On some devices, the default pressure reading
was non-zero. The upper and lower limit of the pressure value would vary. This
variation may have played a role in helping distinguish between devices. One
of the future areas of research is to study the effect of normalizing the pressure
readings such that all devices show pressure readings within the same range.
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4.13 Chapter Summary

This chapter investigated the underlying dynamics of touch based authentica-
tion. Specifically, we analyzed the effect of device size, user posture, and device
manufacturer on a touch-based authentication system’s performance using a lo-
cally collected dataset. Various parameters such as user environment, devices
used, session length, etc. were controlled in order to remove confounding factors.

• Based on a benchmark analysis of five classification algorithms, we deter-
mined that the Random Forest algorithm was the most stable and reliable
algorithm for our system.

• Our approach resulted in a classifier performance that is either better or
equivalent to the benchmark performances reported in literature.

• This benchmark performance has been achieved by using fewer features
than other studies in literature. For example, Frank et al. [24] used 27
features, Feng et al. [23] used 53 features and Serwadda et al. [67] used
28 features.

• We demonstrated that the user posture, device size, and device manufac-
turer have a significant effect on the classifier performance, with the device
size having the greatest effect and the device manufacturer the least. We
concluded that these factors must be accounted for when building a touch-
based authentication system.

• These findings exposes the limitations of current state-of-the-art tech-
niques for feature generation in touch dynamics. These attributes are
ineffective when porting a user model from one device to another, from
one posture to another, or from one device manufacturer to another de-
vice manufacturer. We provide suggestions for techniques to develop more
robust attributes in Section 5.3.
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Chapter 5

Conclusion

5.1 Comparing keystroke-dynamics and touch-
dynamics

Keystroke dynamics has traditionally been associated with desktop and laptop
computers. This is because a mechanical keyboard is a standard input device
for computers and is vital to leverage this biometric modality. In a continual
authentication scenario, a keystroke dynamics authentication system generates
a user model based on the typing rhythm of digraphs, tri-graphs and/or n-
graphs. When a string of characters is typed by the user, the system parses its
constituent n-graphs and compares them to those present in the user model.
A modern extended keyboard has 110-112 keys. A user model based on every
possible n-graph is impractical as it will lead to an unreasonably large search
space for the classifier. To mitigate this issue, only the most commonly typed
n-graphs are incorporated into the user model, thus considerably reducing the
search space.

Touch-based authentication, on the other hand, is tailored towards touch-
screen devices as it relies solely upon the gestures executed by the user. As the
touchscreen is the solitary medium of input and due to its relatively small size,
the search space for a touch-based continual authentication system is relatively
small compared to a keystroke-dynamics based system. This results in a simpler
user model at the expense of lower authentication performance.

Both keystroke dynamics and touch dynamics are behavioral biometrics.
Due to this, they are more susceptible to noise compared to physiological bio-
metrics such as iris and fingerprint. For example, keystroke-dynamics based
systems are affected by the user’s mood, user posture, time keyboard type,
computer specifications, and the software layers between the user and the sys-
tem. Touch-based systems are similarly affected by the user’s movement, mood,
posture, and the device to device variations in touch sampling rates. However,
modern touchscreen devices have a number of sensors such as an accelerometer,
gyroscope and a GPS. Research has shown that augmenting touch-based au-
thentication with other modalities provides improved performance [10]. Unlike
desktop computers, the user’s posture, movement and device location can be
detected via these sensors. This data enables the development of user models
with varying levels of granularity. Research investigating the effect of each of
these modalities is currently lacking and merits further investigation.

Keystroke dynamics based authentication for cellphones has been explored
since before the touchscreen era [17, 14, 51]. With the arrival of touchscreen de-
vices, initial research was performed in incorporating keystroke dynamics when
using PINs [38]. However, limited progress has been made in implementing con-
tinual authentication on a full-fledged software keyboard [63, 79, 29]. There are
various reasons for this:

95



1. Unlike mechanical keyboards that have keyboard layout standards [3, 39,
40], software keyboards have not yet been standardized. A standardized
layout allows for easier portability of user models across multiple devices.
Currently, software keyboards vary across operating systems and device
manufacturers making it difficult to develop a system that works across
all keyboard layouts. Furthermore, even within a particular device and
operating system environment, various developers offer their own keyboard
layouts [59, 50] further complicating the user model development.

2. Due to the small screen size and the limited space to display the keyboard,
developers use different strategies to incorporate character keys into the
software keyboard. These strategies differ according to the software de-
veloper. Some developers use a special softkey that must be held down
to pop-up a secondary keyboard to type special characters [50]. On the
default Android keyboard, special characters are entered by holding down
regular character keys for an extended period of time.

3. Modern software keyboard offer unique ways to type words. Apps such
as Swiftkey [50] and Swype [59] allow the user to swipe through a string
of keys and the app intelligently detects the word that the user wished
to type. Using data from such gestures and character input techniques
requires novel techniques for feature generation. The feature generation
techniques from traditional keystroke dynamics cannot be ported to mod-
ern software keyboards. Recently, Trojahn and Ortmeier have proposed
techniques for feature generation for such keyboards[75].

4. The Android operating system does not allow two programs to access the
same touch data. Once a touch event is recorded by one program, it is
’destroyed’ and cannot be read by another program. Due to this issue, it is
not possible to develop a background keystroke-dynamics/touch-dynamics
based authentication program using an unmodified Android operating sys-
tem. Thus, all experiments conducted to determine the feasibility of touch
based authentication can only be performed using simulated apps and en-
vironments. This severely limits the ability of practitioners to develop
robust touch-based authentication systems.

5.2 Conclusion

Traditional password based access control systems are based on a ‘what-you-
know’ paradigm. Keystroke dynamics, however, has an additional security layer
based on the ‘who-you-are’ paradigm. This makes it more secure to impostor
attacks. It seems unlikely that passwords will be replaced by another access
control system in the near future. This provides a strong motivation to incorpo-
rate keystroke dynamics based biometrics into conventional systems as it does
not require additional infrastructure for implementation. Our work provides an
empirical analysis of the effect of user habituation on the user’s typing behavior
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and leveraging event sequences to improve authentication performance. These
contributions lead to better keystroke dynamics based authentication systems.

Touch screen devices have experienced a rapid rise in popularity in recent
years. Currently used security measures on these devices such as PINs and
passwords have been imported from desktop computers. Comparatively, touch-
based authentication is the most natural means to continually authenticate users
on touch screen devices. Our work provides a rigorous empirical analysis of
the effects of three important factors that affects the performance of a touch-
based authentication system: user posture, device size, and device manufacturer.
These contributions allow practitioners to recognize the limitations of the cur-
rent state-of-the-art attributes and develop novel attributes that lead to more
robust touch-based authentication systems.

To reiterate, this work provides three main contributions:

1. We analysed of the effect of user habituation in keystroke dynamics on a
user’s keystroke dynamics profile, its effect on inter-user profile separabil-
ity with time, and its impact on authentication performance. We showed
that user habituation has a statistically significant impact upon the user
profile and the performance of keystroke dynamics based authentication
schemes. Based on our findings, we tested several training models and
concluded that the best model to improve the accuracy of keystroke dy-
namics authentication systems is one that retrains on the most recent set
of keystroke entries.

2. We demonstrated that event sequences are an effective attribute for use
in keystroke dynamics based authentication systems. The event sequence
is the temporal sequence of all key-press and key-release events performed
to type a string. This includes the key-press and key-release events of
character keys and of special keys (Caps Lock, Left Shift, Right Shift,
etc) that are used to modify the character key output. In contrast to the
traditional approach in literature of ignoring these variations, we showed
using empirical analysis that including variations in event sequences in
keystroke dynamics based authentication systems leads to better perfor-
mance and reliability. We also demonstrated that event sequences possess
discriminatory information that is independent of typing proficiency. This
is in contrast to currently existing keystroke dynamics based attributes,
all of which rely on inter-user variations in typing proficiency.

3. We demonstrated that the user’s posture, the device size and the device
manufacturer have a significant impact on the authentication performance
of a touch-based authentication system. We showed that the attributes
used in current state-of-the-art touch-based authentication systems lead to
a user model that is incapable of providing constant, reliable performance
when any of the above-mentioned three factors are changed.
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5.3 Future work

5.3.1 Keystroke dynamics

1. The KDS-2 dataset comes from a continual collection process and, in a
future iteration, users will be asked to submit the same credentials to
determine a trend between the commonality of a password and its effec-
tiveness. Furthermore, we plan to ask users to observe each others typing
rhythm and attempt to mimic it when entering impostor credentials.

2. With respect to event sequences, it is important to note that further re-
search is needed to offer a better understanding of the user habituation
behavior demonstrated in Section 3.9.6. While we have shown that event
sequences differentiate the keystroke sequences of paired users, it is nec-
essary to conduct the experiment over a larger user sample to obtain gen-
eralizable results.

3. In this work, we demonstrated the discriminatory power of event sequences
and its independence from a user’s typing speed. A promising area of
research is the development of a novel keystroke dynamics authentication
system that fuses traditional keystroke dynamics attributes with event
sequences. Such a system would be able to fuse the discriminatory power
of traditional attributes (that can distinguish based on typing speed) and
event sequences (that are independent of typing speed) to deliver better
authentication performance.

4. Our experimental results show that the password acclimatization period
takes more than 30 entries after which the user uses fewer variations of
event sequences to type the password. We theorize that some users prob-
ably exhibit a shorter acclimatization period compared to others. Fur-
thermore, the password acclimatization period may also depend on the
complexity of the string and the frequency with which users type it. A
deeper investigation of this topic would be appropriate.

5.3.2 Touch dynamics

Touch-based authentication is a relatively new field with considerable scope for
further research. The dataset created during the course of this work will be
made publicly available in the near future. Within and without this dataset,
there are a number of research areas that need to be investigated. Some of these
are described below:

1. User habituation: The experiment was designed so that the effect of user
habituation could be captured in the dataset. The test subjects were
only allowed to take part in one session in a sitting. Due to this, the
dataset incorporates touch data over many sittings. Initially, the users
were unfamiliar with the app and would have exhibited a different behav-
ior. However, as they familiarized to the app and the devices, we believe
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that their gestures would have changed to a certain extent. An evaluation
of this change in user behavior would provide insight into the amount of
time it may take a user to settle into a steady pattern. This stable profile
may be more robust and provide better authentication performance.

2. Effect of User Interface design on performance: As Section 4.8 showed,
there is a significant drop in performance when a user model is ported to
a larger or smaller device. We believe one of the major reasons for this is
that the UI expands and contracts with screen size. This in turn effects
the coordinates of the touch (such as start and stop points). Since this
data forms one of the key features of the user model, it is natural for user
models to be incompatible between devices of significantly different screen
sizes. The effect of this problem could be reduced in one of two ways:

(a) Transformation size-specific features by scaling them to the ported
device. For example, if a user model from a larger tablet is ported
to a smaller smartphone, the coordinates of a gestures start and stop
points may be non-existent on a smartphone due to its smaller size.
These coordinates could be scaled according to the smartphone’s di-
mensions to approximate the user’s behavior on a smaller device.

(b) Instead of referring to a gesture’s location by its absolute coordinates,
referring to its location with reference to UI elements may be a more
natural means to determine user behavior. We believe that the lo-
cation where the users tend to execute gestures is dependent not on
the physical screen device, but rather on the UI. For example, during
our data collection, we observed that users prefer to touch the photos
themselves and not on their side, even when they changed the screen
orientation (and thus the screen aspect ratio) in different postures.

3. An analysis of the dataset revealed that each device employed its own
scheme for representing pressure. Some devices used a scale of 0.00 to 1.00,
while others functioned within a much narrower scale. While this functions
as identifying characteristic for different devices, it also causes issues when
a user model needs to be ported. One area of future research would be
to normalize pressure readings according to the destination device. This
would increase compatibility between different devices.

4. While each test subject took part in the same number of sessions, the
number of strokes submitted by each user varied. This is because some
users chose to use shorter strokes when navigating, thus employing more
strokes to finish their session. The effect of the number of strokes was
removed from this study in order to remove a confounding factor. However,
the typical length of a user’s stroke and the number of strokes used would
form a useful feature that could be incorporated in a user’s touch model.
This topic requires further investigation.
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5. While our dataset consists of both horizontal and vertical strokes stored
separately, our classifier was trained on a combination of both. Other
researchers have taken the approach of constructing separate classifiers
for each stroke type [67]. This strategy may lead to better performance
as it simplifies the data supplied to each classifier.

6. As described in Section 4.5, sequential groups of strokes were used in
generating a training set. In our experiments, each group contained 5
strokes. It is possible that increasing the group size in the training set will
lead to more reliable performance. Similarly, the increasing the group size
in the testing set may lead to better results at the expense of greater time
to authentication. The trade-off between these variables is an interesting
area for further research.
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Chapter 6

Appendix

A Benchmark analysis of classification algorithms

In Section 4.7, in order to determine the best performing classifier for our touch-
based authentication system, we performed a benchmark analysis using our
dataset using the following steps:

1. 50% of the user data was assigned to the testing set. The training and
testing data was extracted as described in Section 4.5.

2. 10 training sets of varying sizes were created by varying the amount of
training data from 10%-100% of the complete training set.

3. Each of the 10 training sets was used to create a user model based on the
Random Forest classifier.

4. For every user, the 10 user models were tested against the testing set
(which is of a constant size) and their EERs calculated.

5. The mean EER for all users at every training set size was calculated.

We tested five classification algorithms: Logistic Regression, SVM, Random For-
est, Naive Bayes, and Multi-layer Perceptron. This section of the appendix lists
the EERs calculated at Step 4 for all 31 users for each classification algorithm.
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Table 35: EERs for Random Forest - Users 1-10
Users

TrainSet% 1 2 3 4 5 6 7 8 9 10
10 0.1743 0.133 0.2271 0.1147 0.172 0.1537 0.1238 0.0206 0.172 0.2179
20 0.0275 0.1009 0.117 0.1422 0.1629 0.1147 0.1078 0.0069 0.1238 0.0665
30 0.0527 0.0596 0.0963 0.0849 0.1124 0.094 0.1078 0.0069 0.1009 0.0757
40 0.0482 0.078 0.0757 0.078 0.1055 0.0872 0.078 0.0069 0.0665 0.0665
50 0.0367 0.055 0.0665 0.0596 0.0963 0.0757 0.0826 0.0023 0.0504 0.0459
60 0.0344 0.039 0.0642 0.0688 0.0734 0.0849 0.0619 0.0023 0.0459 0.0459
70 0.0413 0.0436 0.0642 0.0734 0.0665 0.0665 0.0573 0.0069 0.0344 0.0573
80 0.0344 0.0252 0.055 0.055 0.0573 0.0803 0.0619 0.0023 0.0298 0.039
90 0.0344 0.0321 0.0688 0.0665 0.055 0.0757 0.039 0.0023 0.039 0.0481
100 0.0275 0.0275 0.0482 0.0527 0.0413 0.078 0.039 0.0023 0.0367 0.0413102



Table 36: EERs for Random Forest - Users 11-20
Users

TrainSet% 11 12 13 14 15 16 17 18 19 20
10 0.3463 0.0757 0.0963 0.2225 0.0367 0.1881 0.1697 0.1927 0.2707 0.2179
20 0.1674 0.0849 0.0711 0.1858 0.0115 0.0986 0.1284 0.0803 0.1422 0.1216
30 0.1376 0.0206 0.0573 0.1606 0.0206 0.1124 0.1376 0.0872 0.1353 0.0895
40 0.1216 0.0482 0.0665 0.1376 0.016 0.0734 0.1078 0.0917 0.1193 0.0688
50 0.1147 0.0298 0.0482 0.1261 0.0069 0.0734 0.0986 0.0734 0.1124 0.0527
60 0.0757 0.0367 0.0482 0.1147 0.0069 0.0573 0.0757 0.0711 0.0826 0.0619
70 0.0895 0.0252 0.0459 0.1009 0.0115 0.0757 0.0894 0.0573 0.0917 0.0573
80 0.0894 0.0252 0.0573 0.0963 0.0115 0.0596 0.0917 0.0482 0.0573 0.0527
90 0.0803 0.016 0.0482 0.0894 0.0069 0.0596 0.078 0.0459 0.0596 0.0344
100 0.0573 0.016 0.0482 0.0826 0.0069 0.055 0.0734 0.0528 0.0665 0.0482
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Table 37: EERs for Random Forest - Users 21-31
Users

TrainSet% 21 22 23 24 25 26 27 28 29 30 31
10 0.172 0.2339 0.2064 0.1353 0.0825 0.2638 0.1583 0.2385 0.2225 0.2385 0.172
20 0.094 0.1904 0.1651 0.1101 0.0642 0.2133 0.1193 0.2385 0.1606 0.1697 0.1445
30 0.0665 0.0986 0.117 0.094 0.016 0.1399 0.0481 0.1721 0.1514 0.1606 0.0826
40 0.0803 0.1055 0.094 0.0986 0.0344 0.1169 0.0642 0.1743 0.1583 0.1307 0.1078
50 0.0527 0.0619 0.0711 0.0665 0.016 0.1147 0.0482 0.1399 0.1216 0.133 0.0872
60 0.0573 0.0665 0.0849 0.0642 0.0275 0.1009 0.0367 0.1124 0.1032 0.1078 0.1009
70 0.0596 0.0734 0.0711 0.0688 0.0298 0.0986 0.0482 0.1055 0.0895 0.0963 0.0803
80 0.0573 0.0619 0.0711 0.0642 0.0138 0.0963 0.039 0.1055 0.1124 0.1124 0.0803
90 0.0482 0.0757 0.0688 0.0436 0.0275 0.0963 0.0459 0.0849 0.0872 0.1009 0.0826
100 0.0482 0.078 0.0688 0.0436 0.0229 0.0826 0.0413 0.0963 0.094 0.1124 0.0711
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Table 38: EERs for SVM - Users 1-10
Users

TrainSet% 1 2 3 4 5 6 7 8 9 10

10 0.3188 0.1559 0.4037 0.2271 0.211 0.1284 0.2408 0.273 0.1445 0.1949
20 0.0642 0.1307 0.1353 0.1904 0.1628 0.1812 0.1422 0.0114 0.1972 0.1307
30 0.1009 0.0573 0.1583 0.2982 0.1307 0.1353 0.1766 0.2637 0.1032 0.1927
40 0.0573 0.1009 0.1881 0.0872 0.1606 0.094 0.094 0.0137 0.117 0.1147
50 0.0482 0.0826 0.1376 0.1078 0.1904 0.1307 0.1262 0.0229 0.094 0.0895
60 0.0642 0.0734 0.1468 0.1216 0.1147 0.0642 0.1032 0.0069 0.0642 0.172
70 0.0711 0.1078 0.1445 0.1216 0.1399 0.0986 0.0917 0.0069 0.0803 0.1078
80 0.0757 0.0734 0.1055 0.0826 0.1147 0.117 0.1193 0.0046 0.0665 0.0849
90 0.0413 0.078 0.1101 0.0734 0.0779 0.094 0.0963 0.0138 0.0665 0.0619
100 0.0551 0.0482 0.0986 0.1124 0.1193 0.0849 0.1032 0.0137 0.0573 0.0734
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Table 39: EERs for SVM - Users 11-20
Users

TrainSet% 11 12 13 14 15 16 17 18 19 20

10 0.4404 0.1514 0.1445 0.1995 0.2729 0.2592 0.2202 0.3509 0.2523 0.227
20 0.3372 0.0849 0.1192 0.234 0.0206 0.2064 0.1674 0.211 0.211 0.1766
30 0.195 0.0367 0.0826 0.1881 0.1078 0.211 0.1674 0.1789 0.1904 0.1192
40 0.2133 0.0436 0.078 0.1491 0.0321 0.0986 0.1399 0.0963 0.1468 0.1537
50 0.1422 0.0206 0.0734 0.1835 0.0206 0.094 0.1537 0.1514 0.1537 0.1055
60 0.1399 0.0596 0.0413 0.1491 0.0115 0.1147 0.1055 0.117 0.1032 0.1284
70 0.1697 0.0871 0.0527 0.1537 0.0115 0.0803 0.0917 0.0963 0.1284 0.094
80 0.1124 0.094 0.0436 0.1468 0.0023 0.0849 0.0963 0.0895 0.1147 0.0826
90 0.1216 0.0436 0.039 0.1238 0.0183 0.0688 0.0757 0.094 0.1147 0.0688
100 0.094 0.0436 0.0344 0.1238 0.0092 0.0872 0.0917 0.0849 0.1009 0.0596
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Table 40: EERs for SVM - Users 21-31
Users

TrainSet% 21 22 23 24 25 26 27 28 29 30 31

10 0.1835 0.2156 0.3395 0.2156 0.1192 0.2431 0.1697 0.3165 0.2385 0.289 0.2683
20 0.1238 0.2202 0.1927 0.1422 0.1629 0.2523 0.1261 0.3303 0.1972 0.2959 0.1582
30 0.1124 0.1514 0.1674 0.1514 0.0596 0.2775 0.1192 0.3188 0.1605 0.2156 0.1376
40 0.1445 0.1651 0.1193 0.1606 0.0229 0.1903 0.0803 0.2362 0.1697 0.2294 0.1216
50 0.1124 0.1032 0.1651 0.0986 0.0482 0.1812 0.0665 0.2569 0.2156 0.1858 0.1147
60 0.094 0.0757 0.0917 0.0986 0.0367 0.2179 0.094 0.3096 0.133 0.1537 0.1399
70 0.117 0.0894 0.0734 0.1055 0.0436 0.1904 0.0619 0.2408 0.1307 0.1697 0.1284
80 0.0917 0.1124 0.1537 0.0688 0.0413 0.1628 0.0803 0.2339 0.1697 0.1216 0.0986
90 0.0803 0.1239 0.0963 0.0803 0.0344 0.1583 0.0665 0.211 0.1216 0.1399 0.0826
100 0.0734 0.0986 0.0849 0.078 0.0504 0.1261 0.0596 0.2041 0.1353 0.1674 0.0986
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Table 41: EERs for Multi-layer Perceptron - Users 1-10
Users

TrainSet% 1 2 3 4 5 6 7 8 9 10

10 0.7454 0.5848 0.4495 0.7294 0.4633 0 0.7844 0.3578 0.422 0.4426
20 0.7339 0.7431 0.7638 0.75 0.6514 0.5918 0.75 0.4771 0 0.4863
30 0.5321 0.2317 0.4243 0.7133 0.5505 0.75 0.75 0.7179 0.5298 0.3303
40 0.7317 0.7339 0.7431 0.7546 0.4174 0.4931 0.7546 0.7385 0.5504 0.5183
50 0.7339 0.5229 0.5023 0.6881 0.6353 0.6743 0.75 0.516 0.5184 0.6881
60 0.75 0.6835 0.672 0.75 0.7431 0.7408 0.75 0.7179 0.4633 0.6514
70 0.7661 0.75 0.4243 0.75 0.711 0.5183 0.75 0.6376 0.7362 0.4725
80 0.7431 0.7408 0.4794 0.3417 0.6812 0.4564 0.75 0.7248 0.6996 0.5138
90 0.4702 0.7615 0.6055 0.4725 0.5321 0.7225 0.7316 0.7386 0.5825 0.6239
100 0.5505 0.5527 0.6698 0.7248 0.5482 0.4633 0.75 0.727 0.7202 0.6353
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Table 42: EERs for Multi-layer Perceptron - Users 11-20
Users

TrainSet% 11 12 13 14 15 16 17 18 19 20

10 0.75 0.3899 0.4839 0.7477 0.7385 0.6537 0.7454 0.5895 0.5688 0.539
20 0.5596 0.1675 0.4473 0.7018 0.6675 0.6973 0.7041 0.4885 0.5115 0.7523
30 0.4174 0.3624 0.3647 0.539 0.5619 0.5918 0.6651 0.75 0.4335 0.5046
40 0.6605 0.4908 0.3555 0.75 0.6216 0.7477 0.5069 0.7133 0.6009 0.406
50 0.4381 0.4656 0.4243 0.5665 0.75 0.75 0.3922 0.75 0.7454 0.5803
60 0.5321 0.4518 0.5138 0.7546 0.5803 0.75 0.6376 0.7408 0.4633 0.5046
70 0.6697 0.1606 0.5711 0.75 0.6973 0.7041 0.8119 0.6973 0.75 0.3555
80 0.6904 0.3739 0.5344 0.7019 0.6261 0.7477 0.5092 0.7133 0.5849 0.6605
90 0.7408 0.5023 0.3005 0.711 0.656 0.75 0.672 0.7684 0.75 0.578
100 0.6537 0.4725 0.2821 0.7408 0.6285 0.4519 0.633 0.7661 0.75 0.3692
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Table 43: EERs for Multi-layer Perceptron - Users 21-31
Users

TrainSet% 21 22 23 24 25 26 27 28 29 30 31

10 0.6996 0.4335 0.5619 0.3555 0.25 0.578 0.4243 0.3715 0.6032 0.5757 0.4013
20 0.4174 0.5895 0.5527 0.75 0.3119 0.6009 0.594 0.3876 0.4381 0.6858 0.7707
30 0.4014 0.7546 0.6537 0.5207 0.4358 0.383 0.3532 0.5619 0.6468 0.6216 0.6927
40 0.6261 0.75 0.6468 0.7248 0.5528 0.6261 0.4358 0.5459 0.4863 0.6812 0.5596
50 0.5069 0.7408 0.3647 0.2959 0.4954 0.5895 0.5665 0.5252 0.6697 0.4725 0.5
60 0.5734 0.6032 0.5229 0.5161 0.3463 0.6996 0.328 0.6972 0.5413 0.6101 0.7569
70 0.3784 0.75 0.6032 0.5069 0.4702 0.6582 0.4816 0.6743 0.4908 0.7064 0.4473
80 0.3624 0.5046 0.5436 0.4036 0.5826 0.4748 0.6491 0.5138 0.5505 0.6216 0.6353
90 0.5527 0.6812 0.5367 0.7431 0.5183 0.6583 0.4633 0.6766 0.672 0.4312 0.5894
100 0.5023 0.7523 0.3922 0.7523 0.4771 0.6239 0.6789 0.7431 0.6743 0.578 0.578
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Table 44: EERs for Logistic Regression - Users 1-10
Users

TrainSet% 1 2 3 4 5 6 7 8 9 10

10 0.1514 0.1652 0.2156 0.1812 0.1697 0.2179 0.1927 0.0321 0.2913 0.2592
20 0.0642 0.1422 0.1995 0.1835 0.1583 0.195 0.1124 0.0367 0.2156 0.2179
30 0.094 0.1284 0.1835 0.1789 0.1651 0.1766 0.1193 0.0298 0.3005 0.2087
40 0.0688 0.1514 0.2041 0.1973 0.1743 0.1697 0.1101 0.0413 0.25 0.1949
50 0.0803 0.1376 0.1651 0.1537 0.211 0.1491 0.1147 0.0367 0.3142 0.2225
60 0.0826 0.1307 0.2018 0.1743 0.1766 0.1675 0.1147 0.0229 0.2661 0.211
70 0.0734 0.1307 0.2202 0.1674 0.1743 0.156 0.1124 0.0183 0.2684 0.2202
80 0.0803 0.1101 0.1835 0.172 0.1743 0.1697 0.1009 0.0275 0.2592 0.2018
90 0.055 0.1238 0.2064 0.1583 0.1651 0.1651 0.1147 0.0275 0.2707 0.2202
100 0.055 0.1399 0.1995 0.1743 0.1812 0.1743 0.1078 0.0275 0.2684 0.2064
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Table 45: EERs for Logistic Regression - Users 11-20
Users

TrainSet% 11 12 13 14 15 16 17 18 19 20

10 0.3165 0.1101 0.1789 0.3142 0.0573 0.234 0.1995 0.3784 0.2775 0.3417
20 0.2844 0.0734 0.1399 0.2133 0.0596 0.156 0.1881 0.2293 0.273 0.2271
30 0.25 0.0436 0.1193 0.234 0.0596 0.1262 0.1651 0.25 0.2408 0.234
40 0.2546 0.039 0.133 0.2087 0.0573 0.1307 0.1583 0.2293 0.2431 0.1904
50 0.2477 0.0596 0.1216 0.1927 0.0482 0.1399 0.156 0.2431 0.2821 0.1995
60 0.2569 0.039 0.1284 0.2133 0.0436 0.1215 0.1606 0.211 0.2454 0.188
70 0.2523 0.0436 0.1284 0.211 0.039 0.1307 0.1674 0.2271 0.2385 0.1904
80 0.2454 0.0413 0.1216 0.1927 0.0482 0.1284 0.1743 0.2454 0.2523 0.2225
90 0.2982 0.039 0.1307 0.2019 0.0436 0.1261 0.172 0.2271 0.2523 0.2064
100 0.25 0.0482 0.1262 0.1995 0.0459 0.1445 0.1628 0.2179 0.2408 0.2179
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Table 46: EERs for Logistic Regression - Users 21-31
Users

TrainSet% 21 22 23 24 25 26 27 28 29 30 31

10 0.2798 0.2317 0.2431 0.2638 0.2523 0.3326 0.3509 0.3647 0.2133 0.3463 0.3051
20 0.2409 0.2615 0.2202 0.2385 0.2477 0.3716 0.2661 0.3601 0.172 0.2982 0.195
30 0.1881 0.2156 0.2179 0.2018 0.2569 0.3142 0.2684 0.3372 0.1927 0.3601 0.2294
40 0.2362 0.2156 0.2317 0.2248 0.234 0.2982 0.2661 0.3372 0.1835 0.3372 0.2087
50 0.1812 0.195 0.2133 0.2156 0.2294 0.2936 0.2409 0.3555 0.1743 0.3234 0.2018
60 0.1651 0.2019 0.2385 0.1881 0.1972 0.2982 0.2546 0.3417 0.1812 0.3257 0.2339
70 0.172 0.211 0.2317 0.1927 0.2018 0.2982 0.2752 0.3372 0.1766 0.344 0.2087
80 0.1812 0.1927 0.234 0.1927 0.2271 0.2982 0.2684 0.3303 0.1743 0.3532 0.2179
90 0.1514 0.2156 0.2385 0.1927 0.2294 0.2867 0.2752 0.3532 0.1674 0.3372 0.2133
100 0.1491 0.2087 0.2408 0.195 0.2294 0.2798 0.2706 0.3326 0.1743 0.3509 0.2225
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Table 47: EERs for NaiveBayes - Users 1-10
Users

TrainSet% 1 2 3 4 5 6 7 8 9 10

10 0.1307 0.1812 0.25 0.1789 0.1996 0.1766 0.1445 0.328 0.3005 0.25
20 0.1124 0.1583 0.1858 0.1399 0.1743 0.1697 0.1216 0.2798 0.25 0.2386
30 0.1193 0.1812 0.2064 0.156 0.1514 0.1651 0.1422 0.039 0.2982 0.2408
40 0.3211 0.1193 0.3486 0.1789 0.3808 0.1583 0.1606 0.039 0.2821 0.2317
50 0.3257 0.1514 0.2087 0.1445 0.1628 0.1697 0.1445 0.039 0.2638 0.2156
60 0.3257 0.1491 0.4289 0.3395 0.195 0.156 0.3532 0.0298 0.2706 0.2294
70 0.3463 0.1261 0.484 0.3532 0.3899 0.3326 0.3646 0.039 0.2408 0.2271
80 0.3807 0.3303 0.539 0.3555 0.3784 0.3578 0.3922 0.0298 0.2752 0.2363
90 0.3647 0.3303 0.5459 0.3555 0.3647 0.3716 0.406 0.0321 0.2523 0.2385
100 0.3647 0.328 0.5367 0.3555 0.3601 0.3509 0.3991 0.0321 0.2569 0.2385
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Table 48: EERs for Naive Bayes - Users 11-20
Users

TrainSet% 11 12 13 14 15 16 17 18 19 20

10 0.3349 0.1193 0.1307 0.2959 0.0321 0.25 0.1743 0.4083 0.3486 0.1996
20 0.3326 0.0849 0.0849 0.2798 0.039 0.4105 0.3853 0.4312 0.4518 0.1491
30 0.4771 0.305 0.1032 0.4473 0.0344 0.3899 0.3647 0.4128 0.3119 0.3257
40 0.4587 0.3027 0.1147 0.4449 0.039 0.4587 0.4427 0.4793 0.6055 0.1376
50 0.4518 0.1009 0.1101 0.2867 0.039 0.2316 0.1353 0.1927 0.2523 0.133
60 0.3693 0.0757 0.1124 0.4082 0.039 0.2271 0.3463 0.3968 0.2798 0.1261
70 0.4404 0.0757 0.1009 0.4266 0.039 0.4289 0.4197 0.461 0.5574 0.1353
80 0.4748 0.0848 0.1009 0.2936 0.039 0.4106 0.3991 0.4472 0.5 0.1284
90 0.4564 0.3004 0.1078 0.4014 0.039 0.4243 0.4037 0.4564 0.5482 0.1422
100 0.4587 0.2913 0.1055 0.3005 0.039 0.422 0.3968 0.4518 0.5275 0.1238
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Table 49: EERs for Naive Bayes - Users 21-31
Users

TrainSet% 21 22 23 24 25 26 27 28 29 30 31

10 0.4977 0.4839 0.5184 0.4587 0.4564 0.5092 0.4105 0.5481 0.4174 0.5734 0.4404
20 0.5527 0.6101 0.5321 0.5183 0.4794 0.4679 0.4839 0.6537 0.5183 0.6376 0.5
30 0.3807 0.2248 0.3601 0.3601 0.4312 0.2798 0.4014 0.4174 0.3876 0.4404 0.1812
40 0.2454 0.5551 0.4816 0.4357 0.4495 0.4404 0.3807 0.5803 0.4931 0.6078 0.4702
50 0.2683 0.4152 0.3555 0.3348 0.4083 0.3097 0.3647 0.3762 0.3693 0.4106 0.3716
60 0.2615 0.2477 0.1881 0.1376 0.2775 0.3211 0.3693 0.344 0.2248 0.2936 0.1835
70 0.3693 0.2477 0.4473 0.4335 0.4564 0.4174 0.4082 0.4977 0.4312 0.4197 0.4128
80 0.2294 0.4908 0.4083 0.3899 0.4266 0.3876 0.3991 0.5206 0.4312 0.3876 0.4174
90 0.367 0.2546 0.4105 0.3853 0.4266 0.3876 0.3945 0.4931 0.4197 0.3945 0.3991
100 0.2294 0.2569 0.4037 0.3807 0.4151 0.3876 0.3968 0.4679 0.4013 0.3899 0.3876

116



B Effect of device size on authentication perfor-
mance

In Section 4.8, we performed an empirical analysis to measure the effect of
device size on the authentication performance of a touch-based authentication
system. In this experiment we restricted the user posture in order to remove a
confounding variable. In order to study the effect of device size, we performed
a statistical comparison using the following steps:

1. From the touch data for a given user and posture, 3 pairs of training and
testing sets were extracted using the approach described in Section 4.5.
Each set contained the same number of strokes and was constructed using
the touch data from one of three devices (T10: 10” tablet, T7: 7” tablet
and S3: 4.7” smartphone). These three devices, described in Section 4.2
are all made by Samsung. We excluded the HTC Evo from this experiment
in order to keep the device manufacturer same for all devices under test.
The training sets for a user are labeled TrainT10, TrainT7, and TrainS3.
The testings set are labeled TestT10, T estT7, and TestS3.

2. Three user models were constructed using TrainT10, TrainT7, and TrainS3

with the Random Forest classifier.

3. Each model was then tested on each of the three testing sets and the Equal
Error Rate was calculated in every instance. The EER when training on
Device X and testing on Device Y for User i is labeled EER iXY . This
procedure was performed over all users.

4. To test the effect of device size on authentication performance of a user
model based on TrainX , the EER distributions EERX

T10, EER
X
T7, EER

X
S3

are compared to each other using a one-sided Student’s t-test with Holm-
Bonferroni correction.

This section of the appendix lists the EERs calculated at Step 3 for all 31 users.
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Table 50: EERs when the posture is Posture 1
T10 T7 S3

User T10 T7 S3 T10 T7 S3 T10 T7 S3

1 0.0275 0.6951 0.666 0.7018 0.0488 0.4547 0.7523 0.2805 0.1466
2 0.0275 0.7642 0.5603 0.5964 0.0752 0.2694 0.5298 0.2439 0.1121
3 0.0482 0.6443 0.6595 0.5619 0.0813 0.2952 0.5895 0.248 0.0581
4 0.0527 0.6972 0.6897 0.7271 0.0203 0.3491 0.7591 0.3557 0.0453
5 0.0413 0.6402 0.7737 0.6858 0.0833 0.3707 0.6789 0.1463 0.0798
6 0.078 0.5122 0.4116 0.367 0.0427 0.3319 0.445 0.4004 0.0538
7 0.039 0.5387 0.6314 0.5918 0.0528 0.3297 0.4633 0.2744 0.1013
8 0.0023 0.3963 0.334 0.3991 0.1341 0.2974 0.1147 0.2967 0.0991
9 0.0367 0.2703 0.4548 0.4404 0.0468 0.3211 0.4679 0.311 0.0431
10 0.0413 0.4715 0.4677 0.7638 0.0386 0.278 0.5275 0.1748 0.0538
11 0.0573 0.3455 0.638 0.445 0.0447 0.278 0.6353 0.2459 0.0905
12 0.016 0.6565 0.5603 0.8624 0.0671 0.4505 0.4174 0.3171 0.1702
13 0.0482 0.748 0.6379 0.6399 0.1199 0.6573 0.6606 0.4269 0.0819
14 0.0826 0.4858 0.5905 0.5734 0.0996 0.2759 0.5298 0.2337 0.0755
15 0.0069 0.4024 0.7479 0.9496 0.0224 0.4138 0.7798 0.3272 0.1013
16 0.055 0.5223 0.5517 0.5963 0.1057 0.4246 0.6284 0.4736 0.0927
17 0.0734 0.5488 0.7155 0.3119 0.0712 0.4246 0.5459 0.2724 0.0927
18 0.0528 0.4736 0.5366 0.5115 0.1057 0.3836 0.4931 0.3394 0.1142
19 0.0665 0.5915 0.3728 0.3807 0.0691 0.2845 0.2523 0.2114 0.1099
20 0.0482 0.6321 0.653 0.6697 0.0976 0.3729 0.672 0.3313 0.1142
21 0.0482 0.5244 0.681 0.7087 0.0528 0.3556 0.7133 0.2927 0.0754
22 0.078 0.7358 0.7715 0.5986 0.0305 0.2177 0.6812 0.3679 0.0646
23 0.0688 0.6687 0.416 0.5826 0.0427 0.2802 0.4885 0.2155 0.0581
24 0.0436 0.3354 0.6013 0.3302 0.0731 0.2931 0.3096 0.2541 0.1487
25 0.0229 0.8008 0.7651 0.7569 0.0244 0.2586 0.6881 0.1931 0.0776
26 0.0826 0.3516 0.3534 0.4886 0.0508 0.2974 0.4909 0.4492 0.0776
27 0.0413 0.3679 0.4806 0.3716 0.067 0.4224 0.4587 0.4695 0.0647
28 0.0963 0.7601 0.6229 0.75 0.0732 0.3319 0.5206 0.2459 0.0754
29 0.094 0.5732 0.5862 0.5803 0.0691 0.2414 0.4886 0.2947 0.0647
30 0.1124 0.6423 0.6056 0.5413 0.0773 0.3944 0.617 0.2459 0.1121
31 0.0711 0.7439 0.6573 0.7271 0.0711 0.1746 0.656 0.2134 0.0776
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Table 51: EERs when the posture is Posture 2
T10 T7 S3

User T10 T7 S3 T10 T7 S3 T10 T7 S3

1 0.057 0.5659 0.5915 0.7807 0.025 0.4978 0.8048 0.3477 0.0938
2 0.0483 0.5955 0.558 0.761 0.0478 0.6875 0.6952 0.3068 0.0915
3 0.0746 0.7591 0.7054 0.6448 0.0613 0.404 0.5855 0.2477 0.0804
4 0.0636 0.425 0.5313 0.6733 0.0455 0.1473 0.6623 0.2227 0.0201
5 0.0439 0.7296 0.6228 0.7149 0.0478 0.192 0.739 0.225 0.0424
6 0.0592 0.3681 0.6205 0.4101 0.0455 0.3772 0.5373 0.3477 0.0647
7 0.0153 0.4296 0.4174 0.5921 0.041 0.1674 0.489 0.1432 0.0246
8 0.0373 0.5523 0.7009 0.3969 0.0977 0.4464 0.4342 0.2568 0.0603
9 0.0877 0.3159 0.5268 0.5285 0.041 0.2366 0.5943 0.275 0.0603
10 0.0241 0.7068 0.4955 0.4781 0.0636 0.2098 0.5767 0.2114 0.0402
11 0.0175 0.5818 0.4152 0.4233 0.0387 0.279 0.4145 0.3182 0.0558
12 0.0504 0.1955 0.3839 0.7741 0.0863 0.3884 0.4715 0.2341 0.1004
13 0.0658 0.35 0.6607 0.3377 0.0818 0.3103 0.261 0.2432 0.1094
14 0.0548 0.4295 0.587 0.1667 0.0273 0.4353 0.4693 0.1659 0.0982
15 0.0461 0.7727 0.7567 0.5768 0.0273 0.7433 0.4825 0.3068 0.029
16 0.0351 0.2318 0.4263 0.4277 0.1091 0.4754 0.6776 0.3228 0.1451
17 0.0483 0.4841 0.4196 0.7259 0.0205 0.1696 0.5636 0.2159 0.0647
18 0.0877 0.6568 0.5446 0.3399 0.0341 0.3616 0.4868 0.2364 0.0603
19 0.0285 0.3728 0.6808 0.3289 0.1023 0.3259 0.2938 0.3046 0.0893
20 0.0746 0.6886 0.5357 0.7412 0.0568 0.4152 0.7018 0.35 0.1138
21 0.0921 0.5886 0.5625 0.6338 0.0591 0.2322 0.6733 0.1273 0.0714
22 0.0197 0.2863 0.4241 0.4737 0.0455 0.3594 0.6075 0.3227 0.0513
23 0.0219 0.6909 0.7879 0.4671 0.0341 0.2299 0.5373 0.2409 0.0513
24 0.0746 0.5932 0.4688 0.3048 0.075 0.3281 0.3004 0.1886 0.1094
25 0.0373 0.4591 0.5179 0.6732 0.0068 0.1965 0.6338 0.1545 0.0157
26 0.0592 0.4341 0.6629 0.443 0.0591 0.5446 0.5263 0.4864 0.0558
27 0.0987 0.4319 0.6295 0.6294 0.075 0.3169 0.546 0.3795 0.0536
28 0.0899 0.5046 0.5826 0.4649 0.0682 0.3482 0.511 0.2795 0.1071
29 0.0285 0.7705 0.6161 0.4583 0.0841 0.259 0.4671 0.3182 0.0893
30 0.0285 0.7 0.5514 0.4605 0.0478 0.3103 0.5175 0.4296 0.0826
31 0.0285 0.7614 0.6071 0.3925 0.0478 0.2388 0.6185 0.3205 0.0826
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Table 52: EERs when the posture is Posture 3
T10 T7 S3

User T10 T7 S3 T10 T7 S3 T10 T7 S3

1 0.0302 0.7441 0.574 0.8922 0.0413 0.382 0.8729 0.3386 0.092
2 0.0323 0.4193 0.748 0.4978 0.0571 0.49 0.528 0.2854 0.086
3 0.0345 0.6319 0.568 0.569 0.0571 0.264 0.6466 0.189 0.042
4 0.0388 0.5926 0.548 0.6099 0.0256 0.152 0.6444 0.1398 0.016
5 0.0302 0.6929 0.592 0.653 0.0846 0.27 0.6724 0.1831 0.072
6 0.0539 0.4468 0.43 0.4547 0.0532 0.388 0.4332 0.3347 0.048
7 0.0366 0.7854 0.858 0.7327 0.0531 0.168 0.5496 0.1772 0.054
8 0.0108 0.4252 0.732 0.5345 0.0787 0.302 0.597 0.3307 0.056
9 0.0151 0.4528 0.324 0.5022 0.0787 0.324 0.306 0.3347 0.09
10 0.0215 0.5728 0.4 0.5798 0.0275 0.226 0.487 0.1359 0.064
11 0.0474 0.4862 0.364 0.556 0.0728 0.336 0.3578 0.3189 0.058
12 0.0108 0.7441 0.386 0.7586 0.1004 0.332 0.4979 0.3563 0.098
13 0.0151 0.6457 0.384 0.4526 0.063 0.39 0.4052 0.4232 0.084
14 0.0388 0.2795 0.344 0.2974 0.0571 0.228 0.2694 0.2401 0.074
15 0.0215 0.3347 0.702 0.2758 0.0177 0.668 0.3707 0.3268 0.034
16 0.041 0.4961 0.572 0.5043 0.0866 0.544 0.472 0.374 0.124
17 0.056 0.7815 0.698 0.5086 0.0177 0.228 0.5323 0.2027 0.02
18 0.0151 0.3819 0.38 0.2177 0.0492 0.364 0.3815 0.3701 0.1
19 0.0474 0.5807 0.506 0.5151 0.0689 0.284 0.3793 0.378 0.126
20 0.069 0.5334 0.592 0.6617 0.0965 0.216 0.6789 0.3583 0.062
21 0.0323 0.2618 0.46 0.3599 0.0216 0.122 0.3793 0.1221 0.05
22 0.0862 0.5748 0.52 0.5065 0.0079 0.386 0.4504 0.3248 0.068
23 0.0711 0.5728 0.476 0.5 0.0177 0.27 0.4892 0.2008 0.068
24 0.0194 0.2716 0.328 0.2543 0.061 0.272 0.2436 0.1949 0.05
25 0.0281 0.8228 0.854 0.8384 0.0197 0.164 0.7586 0.0886 0.03
26 0.069 0.5748 0.466 0.5754 0.0866 0.576 0.5281 0.3288 0.042
27 0.0151 0.7638 0.452 0.6034 0.0669 0.346 0.4397 0.5059 0.058
28 0.0194 0.5236 0.67 0.6271 0.0807 0.298 0.6358 0.3327 0.056
29 0.0538 0.5059 0.642 0.5668 0.0394 0.358 0.6229 0.3405 0.066
30 0.1013 0.6319 0.612 0.5582 0.0492 0.31 0.5517 0.4035 0.074
31 0.0172 0.8445 0.672 0.8965 0.0413 0.32 0.8836 0.3169 0.084
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C Effect of posture on authentication perfor-
mance

In Section 4.9, we performed an empirical analysis to measure the effect of
user posture on the authentication performance of a touch-based authentication
system. In this experiment we restricted the device size in order to remove a
confounding variable. In order to study the effect of user posture, we performed
a statistical comparison using the following steps:

1. From the touch data for a given user and device, 3 pairs of training and
testing sets were extracted using the interleaved approach. The training
and testing sets contained the same number of strokes.

2. The training/testing sets were extracted using the touch data from three
postures (P1: device on table, P2: device held in portrait orientation and
P3: device held in landscape orientation). The training sets for a user
are labeled TrainP1, TrainP2, and TrainP3. The testings set are labeled
TestP1, T estP2, and TestP3.

3. Three user models were constructed using TrainP1, TrainP2, and TrainP3.

4. Each model was then tested on each of the three testing sets and the equal
error rate was calculated in every instance. The EER when training on
Posture X and testing on Posture Y for User i is labeled EER iXY . When
this procedure is performed over all users, it provides a distribution of
EER scores as shown in Table 27.

5. To test the effect of posture on authentication performance of a user model
based on Posture X, the EER distributions EERX

P1, EER
X
P2, EER

X
P3 are

compared to each other using a one-sided Student’s t-test with Holm-
Bonferroni correction.

This section of the appendix lists the EERs calculated at Step 4 for all 31 users.
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Table 53: EERs when the device type is Device 1 (T10)
Posture 1 Posture 2 Posture 3

User P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.0275 0.1404 0.0926 0.0826 0.0285 0.0798 0.0917 0.1272 0.0302
2 0.0275 0.2149 0.4914 0.1445 0.0285 0.4547 0.4725 0.4321 0.0323
3 0.0482 0.1184 0.2435 0.1216 0.057 0.2909 0.4106 0.5066 0.0345
4 0.0527 0.1118 0.2414 0.117 0.0483 0.2414 0.1422 0.1206 0.0388
5 0.0413 0.2434 0.3233 0.2271 0.0746 0.2608 0.4037 0.4145 0.0302
6 0.078 0.1206 0.472 0.1193 0.0636 0.4138 0.3968 0.3772 0.0539
7 0.039 0.1535 0.1659 0.1858 0.0439 0.1271 0.2569 0.1929 0.0366
8 0.0023 0.6732 0.9483 0.2386 0.0592 0.1314 0.9473 0.1667 0.0108
9 0.0367 0.0789 0.2155 0.2087 0.0153 0.2091 0.1927 0.1118 0.0151
10 0.0413 0.1732 0.3233 0.3188 0.0373 0.3168 0.3692 0.4342 0.0215
11 0.0573 0.2193 0.5 0.1881 0.0877 0.513 0.4243 0.5395 0.0474
12 0.016 0.1272 0.1444 0.0573 0.0241 0.0646 0.133 0.1426 0.0108
13 0.0482 0.1535 0.1379 0.0619 0.0175 0.0927 0.2133 0.1601 0.0151
14 0.0826 0.2412 0.5345 0.2844 0.0504 0.4569 0.3326 0.3312 0.0388
15 0.0069 0.682 0.9138 0.3876 0.0658 0.0474 0.8371 0.1535 0.0215
16 0.055 0.0723 0.4526 0.0895 0.0548 0.1875 0.2477 0.2456 0.041
17 0.0734 0.0658 0.1573 0.1238 0.0461 0.1659 0.211 0.1404 0.056
18 0.0528 0.2938 0.6142 0.2225 0.0351 0.2134 0.5848 0.3838 0.0151
19 0.0665 0.114 0.2241 0.2064 0.0483 0.3038 0.4014 0.3312 0.0474
20 0.0482 0.2193 0.2974 0.1812 0.0877 0.3664 0.4885 0.4364 0.069
21 0.0482 0.1316 0.1401 0.1812 0.0285 0.1854 0.4106 0.329 0.0323
22 0.078 0.1886 0.3858 0.1491 0.0746 0.3922 0.6101 0.557 0.0862
23 0.0688 0.1798 0.4354 0.172 0.0921 0.4267 0.5665 0.4978 0.0711
24 0.0436 0.0811 0.459 0.2041 0.0197 0.1207 0.3624 0.2281 0.0194
25 0.0229 0.0373 0.2608 0.1032 0.0219 0.1638 0.4335 0.3882 0.0281
26 0.0826 0.3048 0.5539 0.2844 0.0746 0.4268 0.3876 0.4978 0.069
27 0.0413 0.3355 0.4203 0.594 0.0373 0.0711 0.7202 0.1097 0.0151
28 0.0963 0.3574 0.388 0.3761 0.0592 0.1659 0.4908 0.2215 0.0194
29 0.094 0.193 0.2263 0.1812 0.0987 0.1918 0.25 0.3092 0.0538
30 0.1124 0.3465 0.4699 0.3074 0.0899 0.2845 0.4312 0.2961 0.1013
31 0.0711 0.1733 0.1832 0.3234 0.0285 0.056 0.75 0.1601 0.0172
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Table 54: EERs when the device type is Device 2 (T7)
Posture 1 Posture 2 Posture 3

User P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.0488 0.075 0.4094 0.124 0.025 0.2697 0.374 0.4091 0.0413
2 0.0752 0.15 0.3071 0.2195 0.0478 0.1831 0.2256 0.1364 0.0571
3 0.0813 0.1455 0.2972 0.1972 0.0613 0.2146 0.2988 0.2046 0.0571
4 0.0203 0.159 0.2697 0.2947 0.0455 0.187 0.378 0.2591 0.0256
5 0.0833 0.1841 0.187 0.1931 0.0478 0.1693 0.2907 0.2727 0.0846
6 0.0427 0.1318 0.439 0.1423 0.0455 0.4803 0.4797 0.5386 0.0532
7 0.0528 0.6023 0.6555 0.4228 0.041 0.1988 0.4045 0.1387 0.0531
8 0.1341 0.2613 0.4015 0.2297 0.0977 0.2894 0.3699 0.2841 0.0787
9 0.0468 0.2682 0.498 0.1423 0.041 0.3504 0.3598 0.2591 0.0787
10 0.0386 0.2591 0.3169 0.1199 0.0636 0.2854 0.2724 0.3296 0.0275
11 0.0447 0.2455 0.4272 0.1707 0.0387 0.439 0.4227 0.3477 0.0728
12 0.0671 0.2068 0.3583 0.1646 0.0863 0.6161 0.5122 0.5159 0.1004
13 0.1199 0.1568 0.3543 0.3171 0.0818 0.3898 0.3476 0.2909 0.063
14 0.0996 0.2114 0.1988 0.2825 0.0273 0.2067 0.376 0.1636 0.0571
15 0.0224 0.1137 0.2303 0.122 0.0273 0.2244 0.372 0.275 0.0177
16 0.1057 0.3659 0.4409 0.3435 0.1091 0.4291 0.4248 0.3568 0.0866
17 0.0712 0.6409 0.7854 0.5305 0.0205 0.0335 0.6098 0.0795 0.0177
18 0.1057 0.3613 0.2303 0.4492 0.0341 0.4764 0.376 0.2137 0.0492
19 0.0691 0.1432 0.2697 0.2276 0.1023 0.2205 0.3252 0.3 0.0689
20 0.0976 0.2704 0.2421 0.248 0.0568 0.185 0.2845 0.2182 0.0965
21 0.0528 0.3523 0.4527 0.1728 0.0591 0.0788 0.7459 0.4841 0.0216
22 0.0305 0.1387 0.1929 0.1118 0.0455 0.187 0.1403 0.2205 0.0079
23 0.0427 0.1636 0.1831 0.065 0.0341 0.1496 0.1992 0.1773 0.0177
24 0.0731 0.175 0.2854 0.2033 0.075 0.3012 0.3333 0.2796 0.061
25 0.0244 0.0478 0.0335 0.0996 0.0068 0.0452 0.0976 0.0296 0.0197
26 0.0508 0.2227 0.622 0.1098 0.0591 0.4429 0.5915 0.4296 0.0866
27 0.067 0.1909 0.2834 0.1483 0.075 0.2323 0.2459 0.2136 0.0669
28 0.0732 0.2659 0.2579 0.1626 0.0682 0.191 0.1382 0.1818 0.0807
29 0.0691 0.4273 0.3937 0.2561 0.0841 0.2677 0.4533 0.3705 0.0394
30 0.0773 0.125 0.374 0.1301 0.0478 0.2973 0.3578 0.3887 0.0492
31 0.0711 0.1659 0.1417 0.2256 0.0478 0.1161 0.2744 0.1409 0.0413
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Table 55: EERs when the device type is Device 3 (S3)
Posture 1 Posture 2 Posture 3

User P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.1466 0.4063 0.454 0.2996 0.0938 0.426 0.3923 0.4442 0.092
2 0.1121 0.2098 0.288 0.2177 0.0915 0.534 0.3707 0.2857 0.086
3 0.0581 0.25 0.346 0.1207 0.0804 0.53 0.2802 0.4955 0.042
4 0.0453 0.0513 0.278 0.3362 0.0201 0.2 0.3685 0.2143 0.016
5 0.0798 0.1741 0.184 0.2414 0.0424 0.26 0.2263 0.1875 0.072
6 0.0538 0.3214 0.528 0.2521 0.0647 0.428 0.5237 0.4576 0.048
7 0.1013 0.1339 0.286 0.1659 0.0246 0.338 0.2328 0.2121 0.054
8 0.0991 0.1808 0.346 0.2845 0.0603 0.544 0.6875 0.5826 0.056
9 0.0431 0.0937 0.308 0.0884 0.0603 0.312 0.2802 0.3014 0.09
10 0.0538 0.1384 0.208 0.1314 0.0402 0.278 0.3469 0.3862 0.064
11 0.0905 0.1161 0.436 0.1293 0.0558 0.382 0.4418 0.3281 0.058
12 0.1702 0.2143 0.5 0.2241 0.1004 0.574 0.4763 0.5268 0.098
13 0.0819 0.3951 0.368 0.5172 0.1094 0.668 0.4892 0.5402 0.084
14 0.0755 0.2165 0.268 0.209 0.0982 0.522 0.334 0.3169 0.074
15 0.1013 0.192 0.554 0.2758 0.029 0.588 0.4634 0.5268 0.034
16 0.0927 0.4308 0.478 0.3513 0.1451 0.41 0.4957 0.3482 0.124
17 0.0927 0.2232 0.254 0.2823 0.0647 0.112 0.4354 0.2701 0.02
18 0.1142 0.1786 0.478 0.2608 0.0603 0.398 0.4289 0.3058 0.1
19 0.1099 0.1607 0.458 0.1789 0.0893 0.356 0.334 0.3058 0.126
20 0.1142 0.3214 0.59 0.2393 0.1138 0.36 0.3362 0.3482 0.062
21 0.0754 0.1429 0.244 0.3082 0.0714 0.428 0.6961 0.7299 0.05
22 0.0646 0.1786 0.426 0.1875 0.0513 0.47 0.5797 0.5736 0.068
23 0.0581 0.0647 0.234 0.1207 0.0513 0.24 0.278 0.2567 0.068
24 0.1487 0.221 0.22 0.2091 0.1094 0.388 0.4612 0.4888 0.05
25 0.0776 0.0424 0.084 0.1229 0.0157 0.082 0.1789 0.029 0.03
26 0.0776 0.1897 0.134 0.1746 0.0558 0.126 0.2371 0.1853 0.042
27 0.0647 0.1987 0.314 0.222 0.0536 0.37 0.4591 0.433 0.058
28 0.0754 0.1629 0.25 0.1358 0.1071 0.24 0.4267 0.4531 0.056
29 0.0647 0.1361 0.144 0.1078 0.0893 0.186 0.2306 0.2366 0.066
30 0.1121 0.2232 0.354 0.2241 0.0826 0.298 0.4439 0.3795 0.074
31 0.0776 0.1295 0.416 0.0905 0.0826 0.428 0.4224 0.3348 0.084
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D Effect of manufacturer on authentication per-
formance

In Section 4.10, we performed an empirical analysis to measure the effect of
device manufacturer on the authentication performance of a touch-based au-
thentication system. In this experiment, we controlled the device size and user
posture in order to remove a confounding variable. In order to study the effect
of device size, we performed a statistical comparison using the following steps:

1. From the touch data for a given user and posture, 2 pairs of training and
testing sets were extracted using the interleaved approach. The training
and testing sets contained the same number of strokes.

2. The training/testing sets were extracted using the touch data from two
devices (S3 and EVO). The training sets for a user are labeled TrainS3,
and TrainEV O. The testings set are labeled TestS3, and TestEV O.

3. Two user models were constructed using TrainS3, and TrainEV O.

4. Each model was then tested on each of the two testing sets and the equal
error rate was calculated in every instance. The EER when training on
Device X and testing on Device Y for User i is labeled EER iXY . When
this procedure is performed over all users, it provides a distribution of
EER scores as shown in Table 30.

5. To test the effect of device size on authentication performance of a user
model based on Device X, the EER distributions EERX

S3 and EERX
EVO

are compared to each other using Student’s t-test with Holm-Bonferroni
correction.

This section of the appendix lists the EERs calculated at Step 4 for all 31 users.
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Table 56: EERs when the training device type is Device 3 (S3)
Posture 1 Posture 2 Posture 3

User S3 EVO S3 EVO S3 EVO

1 0.1466 0.1802 0.0938 0.25 0.092 0.1859
2 0.1121 0.178 0.0915 0.1414 0.086 0.2179
3 0.0581 0.1036 0.0804 0.2323 0.042 0.1624
4 0.0453 0.0564 0.0201 0.0429 0.016 0.0385
5 0.0798 0.1306 0.0424 0.1515 0.072 0.2201
6 0.0538 0.25 0.0647 0.2399 0.048 0.2243
7 0.1013 0.1148 0.0246 0.1035 0.054 0.1645
8 0.0991 0.1599 0.0603 0.1111 0.056 0.1368
9 0.0431 0.1509 0.0603 0.0732 0.09 0.1325
10 0.0538 0.187 0.0402 0.1212 0.064 0.0577
11 0.0905 0.1645 0.0558 0.1389 0.058 0.1261
12 0.1702 0.2387 0.1004 0.3358 0.098 0.1966
13 0.0819 0.223 0.1094 0.202 0.084 0.156
14 0.0755 0.2139 0.0982 0.1161 0.074 0.1837
15 0.1013 0.1261 0.029 0.1187 0.034 0.0834
16 0.0927 0.3559 0.1451 0.2626 0.124 0.235
17 0.0927 0.1261 0.0647 0.0732 0.02 0.0834
18 0.1142 0.1735 0.0603 0.2045 0.1 0.1752
19 0.1099 0.223 0.0893 0.2449 0.126 0.2072
20 0.1142 0.1892 0.1138 0.2045 0.062 0.1602
21 0.0754 0.169 0.0714 0.0808 0.05 0.1026
22 0.0646 0.1261 0.0513 0.0757 0.068 0.0727
23 0.0581 0.0788 0.0513 0.1237 0.068 0.1304
24 0.1487 0.2319 0.1094 0.1742 0.05 0.1453
25 0.0776 0.1216 0.0157 0.0328 0.03 0.0427
26 0.0776 0.1148 0.0558 0.0808 0.042 0.0513
27 0.0647 0.178 0.0536 0.1086 0.058 0.1132
28 0.0754 0.1238 0.1071 0.106 0.056 0.1389
29 0.0647 0.1373 0.0893 0.1161 0.066 0.1111
30 0.1121 0.1982 0.0826 0.1464 0.074 0.1218
31 0.0776 0.0924 0.0826 0.1035 0.084 0.1517
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Table 57: EERs when the training device type is Device 4 (Evo)
Posture 1 Posture 2 Posture 3

User S3 EVO S3 EVO S3 EVO

1 0.2091 0.1081 0.3817 0.106 0.476 0.0748
2 0.2004 0.1193 0.2545 0.101 0.216 0.1026
3 0.1509 0.036 0.1942 0.0581 0.162 0.0791
4 0.2393 0.0292 0.0402 0.0025 0.056 0.0149
5 0.1509 0.0721 0.2299 0.1111 0.222 0.0705
6 0.153 0.0699 0.2009 0.0606 0.198 0.0556
7 0.1185 0.0315 0.1518 0.0555 0.122 0.0491
8 0.1573 0.1103 0.1786 0.0656 0.2 0.032
9 0.0905 0.0968 0.0982 0.0328 0.152 0.0663
10 0.1617 0.0879 0.1563 0.0581 0.09 0.032
11 0.153 0.0586 0.1317 0.0707 0.152 0.0427
12 0.2737 0.1081 0.2746 0.1288 0.358 0.1133
13 0.1358 0.1351 0.1964 0.0606 0.282 0.0812
14 0.1789 0.1103 0.1429 0.0454 0.188 0.0106
15 0.1789 0.0338 0.1339 0.053 0.102 0.0128
16 0.3879 0.16 0.279 0.1161 0.22 0.1261
17 0.2198 0.0541 0.1317 0.0151 0.06 0.0085
18 0.181 0.1126 0.1607 0.0959 0.13 0.0491
19 0.1703 0.1103 0.2567 0.0505 0.244 0.094
20 0.1961 0.1081 0.2522 0.0732 0.162 0.062
21 0.1745 0.0699 0.1629 0.053 0.07 0.0406
22 0.1509 0.0744 0.1004 0.0328 0.064 0.0149
23 0.1616 0.0833 0.1027 0.0656 0.114 0.0299
24 0.278 0.1283 0.2567 0.106 0.148 0.0855
25 0.0884 0.0473 0.0379 0.0227 0.046 0.0192
26 0.1314 0.027 0.1428 0.0328 0.124 0.0085
27 0.1422 0.0564 0.1496 0.0581 0.182 0.0577
28 0.1401 0.0788 0.183 0.0833 0.186 0.0705
29 0.1099 0.0721 0.1183 0.053 0.108 0.0577
30 0.2564 0.0923 0.1741 0.1086 0.178 0.0555
31 0.0969 0.0428 0.1161 0.0858 0.15 0.1004
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E.1 Journal papers and articles
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