26,510 research outputs found

    SIMBOL-X : a new generation hard X-ray telescope

    Full text link
    SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length X-ray mirror to achieve an unprecedented angular resolution (30 arcsec HEW) and sensitivity (100 times better than INTEGRAL below 50 keV) in the hard X-ray range. SIMBOL-X will allow to elucidate fundamental questions in high energy astrophysics, such as the physics of accretion onto Black Holes, of acceleration in quasar jets and in supernovae remnants, or the nature of the hard X-ray diffuse emission. The scientific objectives and the baseline concepts of the mission and hardware design are presented.Comment: 12 pages, 16 fig., Proc. SPIE conf. 5168, San Diego, Aug. 200

    Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)

    Get PDF
    The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects

    A fundamental work on THz measurement techniques for application to steel manufacturing processes

    Get PDF
    The terahertz (THz) waves had not been obtained except by a huge system, such as a free electron laser, until an invention of a photo-mixing technique at Bell laboratory in 1984 [1]. The first method using the Auston switch could generate up to 1 THz [2]. After then, as a result of some efforts for extending the frequency limit, a combination of antennas for the generation and the detection reached several THz [3, 4]. This technique has developed, so far, with taking a form of filling up the so-called THz gap . At the same time, a lot of researches have been trying to increase the output power as well [5-7]. In the 1990s, a big advantage in the frequency band was brought by non-linear optical methods [8-11]. The technique led to drastically expand the frequency region and recently to realize a measurement up to 41 THz [12]. On the other hand, some efforts have yielded new generation and detection methods from other approaches, a CW-THz as well as the pulse generation [13-19]. Especially, a THz luminescence and a laser, originated in a research on the Bloch oscillator, are recently generated from a quantum cascade structure, even at an only low temperature of 60 K [20-22]. This research attracts a lot of attention, because it would be a breakthrough for the THz technique to become widespread into industrial area as well as research, in a point of low costs and easier operations. It is naturally thought that a technology of short pulse lasers has helped the THz field to be developed. As a background of an appearance of a stable Ti:sapphire laser and a high power chirped pulse amplification (CPA) laser, instead of a dye laser, a lot of concentration on the techniques of a pulse compression and amplification have been done. [23] Viewed from an application side, the THz technique has come into the limelight as a promising measurement method. A discovery of absorption peaks of a protein and a DNA in the THz region is promoting to put the technique into practice in the field of medicine and pharmaceutical science from several years ago [24-27]. It is also known that some absorption of light polar-molecules exist in the region, therefore, some ideas of gas and water content monitoring in the chemical and the food industries are proposed [28-32]. Furthermore, a lot of reports, such as measurements of carrier distribution in semiconductors, refractive index of a thin film and an object shape as radar, indicate that this technique would have a wide range of application [33-37]. I believe that it is worth challenging to apply it into the steel-making industry, due to its unique advantages. The THz wavelength of 30-300 ÂĽm can cope with both independence of a surface roughness of steel products and a detection with a sub-millimeter precision, for a remote surface inspection. There is also a possibility that it can measure thickness or dielectric constants of relatively high conductive materials, because of a high permeability against non-polar dielectric materials, short pulse detection and with a high signal-to-noise ratio of 103-5. Furthermore, there is a possibility that it could be applicable to a measurement at high temperature, for less influence by a thermal radiation, compared with the visible and infrared light. These ideas have motivated me to start this THz work

    SKA studies of nearby galaxies : star-formation, accretion processes and molecular gas across all environments

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceThe SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with ÎĽ\muJy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.Peer reviewedFinal Published versio

    Candidate Rotating Toroids around High-Mass (Proto)Stars

    Full text link
    Using the OVRO, Nobeyama, and IRAM mm-arrays, we searched for ``disk''-outflow systems in three high-mass (proto)star forming regions: G16.59-0.05, G23.01-0.41, and G28.87+0.07. These were selected from a sample of NH3 cores associated with OH and H2O maser emission and with no or very faint continuum emission. Our imaging of molecular line (including rotational transitions of CH3CN and 3mm dust continuum emission revealed that these are compact, massive, and hot molecular cores (HMCs), that is likely sites of high-mass star formation prior to the appearance of UCHII regions. All three sources turn out to be associated with molecular outflows from CO and/or HCO+ J=1--0 line imaging. In addition, velocity gradients of 10 -- 100 km/s per pc in the innermost densest regions of the G23.01 and G28.87 HMCs are identified along directions roughly perpendicular to the axes of the corresponding outflows. All the results suggest that these cores might be rotating about the outflow axis, although the contribution of rotation to gravitational equilibrium of the HMCs appears to be negligible. Our analysis indicates that the 3 HMCs are close to virial equilibrium due to turbulent pressure support. Comparison with other similar objects where rotating toroids have been identified so far shows that in our case rotation appears to be much less prominent; this can be explained by the combined effect of unfavorable projection, large distance, and limited angular resolution with the current interferometers.Comment: Accepted by ApJ main journal, the paper with the original quality figures are available from http://subarutelescope.org/staff/rsf/publication.htm

    Search for the light dark matter with an X-ray spectrometer

    Get PDF
    Sterile neutrinos with the mass in the keV range are interesting warm dark matter (WDM) candidates. The restrictions on their parameters (mass and mixing angle) obtained by current X-ray missions (XMM-Newton or Chandra) can only be improved by less than an order of magnitude in the near future. Therefore the new strategy of search is needed. We compare the sensitivities of existing and planned X-ray missions for the detection of WDM particles with the mass ~1-20 keV. We show that existing technology allows an improvement in sensitivity by a factor of 100. Namely, two different designs can achieve such an improvement: [A] a spectrometer with the high spectral resolving power of 0.1%, wide (steradian) field of view, with small effective area of about cm^2 (which can be achieved without focusing optics) or [B] the same type of spectrometer with a smaller (degree) field of view but with a much larger effective area of 10^3 cm^2 (achieved with the help of focusing optics). To illustrate the use of the "type A" design we present the bounds on parameters of the sterile neutrino obtained from analysis of the data taken by an X-ray microcalorimeter. In spite of the very short exposure time (100 sec) the derived bound is comparable to the one found from long XMM-Newton observation.Comment: 9pp, revtex
    • …
    corecore