7,455 research outputs found

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Specification and Verification of Context-dependent Services

    Full text link
    Current approaches for the discovery, specification, and provision of services ignore the relationship between the service contract and the conditions in which the service can guarantee its contract. Moreover, they do not use formal methods for specifying services, contracts, and compositions. Without a formal basis it is not possible to justify through formal verification the correctness conditions for service compositions and the satisfaction of contractual obligations in service provisions. We remedy this situation in this paper. We present a formal definition of services with context-dependent contracts. We define a composition theory of services with context-dependent contracts taking into consideration functional, nonfunctional, legal and contextual information. Finally, we present a formal verification approach that transforms the formal specification of service composition into extended timed automata that can be verified using the model checking tool UPPAAL.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Chainspace: A Sharded Smart Contracts Platform

    Full text link
    Chainspace is a decentralized infrastructure, known as a distributed ledger, that supports user defined smart contracts and executes user-supplied transactions on their objects. The correct execution of smart contract transactions is verifiable by all. The system is scalable, by sharding state and the execution of transactions, and using S-BAC, a distributed commit protocol, to guarantee consistency. Chainspace is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT), and extremely high-auditability, non-repudiation and `blockchain' techniques. Even when BFT fails, auditing mechanisms are in place to trace malicious participants. We present the design, rationale, and details of Chainspace; we argue through evaluating an implementation of the system about its scaling and other features; we illustrate a number of privacy-friendly smart contracts for smart metering, polling and banking and measure their performance

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    From usability to secure computing and back again

    Full text link
    Secure multi-party computation (MPC) allows multiple parties to jointly compute the output of a function while preserving the privacy of any individual party’s inputs to that function. As MPC protocols transition from research prototypes to realworld applications, the usability of MPC-enabled applications is increasingly critical to their successful deployment and widespread adoption. Our Web-MPC platform, designed with a focus on usability, has been deployed for privacy-preserving data aggregation initiatives with the City of Boston and the Greater Boston Chamber of Commerce. After building and deploying an initial version of the platform, we conducted a heuristic evaluation to identify usability improvements and implemented corresponding application enhancements. However, it is difficult to gauge the effectiveness of these changes within the context of real-world deployments using traditional web analytics tools without compromising the security guarantees of the platform. This work consists of two contributions that address this challenge: (1) the Web-MPC platform has been extended with the capability to collect web analytics using existing MPC protocols, and (2) as a test of this feature and a way to inform future work, this capability has been leveraged to conduct a usability study comparing the two versions ofWeb-MPC. While many efforts have focused on ways to enhance the usability of privacy-preserving technologies, this study serves as a model for using a privacy-preserving data-driven approach to evaluate and enhance the usability of privacy-preserving websites and applications deployed in realworld scenarios. Data collected in this study yields insights into the relationship between usability and security; these can help inform future implementations of MPC solutions.Published versio
    corecore