128,491 research outputs found

    Contract-based approach to analyze software components

    Get PDF
    International audienceComponent-based software development focuses on building large software systems by integrating existing software components to reduce cost, risk and time. However, behavioural and compositional conflicts among components constitute a crucial barrier to successful software composition. In this paper, we present a contract-based approach to analyze and model the properties of components and their composition in order to detect and correct composition errors. With this approach we characterize the structural, interface and behavioural aspects, and a specific form of evolution of these components. Enabling this, we propose the use of the LOTOS language as an Architecture Description Language (ADL) for formalising these aspects

    Contract-based approach to analyze software components

    Get PDF
    International audienceComponent-based software development focuses on building large software systems by integrating existing software components to reduce cost, risk and time. However, behavioural and compositional conflicts among components constitute a crucial barrier to successful software composition. In this paper, we present a contract-based approach to analyze and model the properties of components and their composition in order to detect and correct composition errors. With this approach we characterize the structural, interface and behavioural aspects, and a specific form of evolution of these components. Enabling this, we propose the use of the LOTOS language as an Architecture Description Language (ADL) for formalising these aspects

    Towards a design-by-contract based approach for realizable connector-centric software architectures

    Get PDF
    Despite being a widely-used language for specifying software systems, UML remains less than ideal for software architectures. Architecture description languages (ADLs) were developed to provide more comprehensive support. However, so far the application of ADLs in practice has been impeded by at least one of the following problems: (i) advanced formal notations, (ii) lack of support for complex connectors, and (iii) potentially unrealizable designs. In this paper we propose a new ADL that is based on Design-by-Contract (DbC) for specifying software architectures. While DbC promotes a formal and precise way of specifying system behaviours, it is more familiar to practising developers, thus allowing for a more comfortable way of specifying architectures than using process algebras. Furthermore, by granting connectors a first-class status, our ADL allows designers to specify not only simple interaction mechanisms as connectors but also complex interaction protocols. Finally, in order to ensure that architectural designs are always realizable we eliminate potentially unrealizable constructs in connector specifications (the connector “glue”)

    A Framework for Agile Development of Component-Based Applications

    Get PDF
    Agile development processes and component-based software architectures are two software engineering approaches that contribute to enable the rapid building and evolution of applications. Nevertheless, few approaches have proposed a framework to combine agile and component-based development, allowing an application to be tested throughout the entire development cycle. To address this problematic, we have built CALICO, a model-based framework that allows applications to be safely developed in an iterative and incremental manner. The CALICO approach relies on the synchronization of a model view, which specifies the application properties, and a runtime view, which contains the application in its execution context. Tests on the application specifications that require values only known at runtime, are automatically integrated by CALICO into the running application, and the captured needed values are reified at execution time to resume the tests and inform the architect of potential problems. Any modification at the model level that does not introduce new errors is automatically propagated to the running system, allowing the safe evolution of the application. In this paper, we illustrate the CALICO development process with a concrete example and provide information on the current implementation of our framework

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug Injection

    Full text link
    Security attacks targeting smart contracts have been on the rise, which have led to financial loss and erosion of trust. Therefore, it is important to enable developers to discover security vulnerabilities in smart contracts before deployment. A number of static analysis tools have been developed for finding security bugs in smart contracts. However, despite the numerous bug-finding tools, there is no systematic approach to evaluate the proposed tools and gauge their effectiveness. This paper proposes SolidiFI, an automated and systematic approach for evaluating smart contract static analysis tools. SolidiFI is based on injecting bugs (i.e., code defects) into all potential locations in a smart contract to introduce targeted security vulnerabilities. SolidiFI then checks the generated buggy contract using the static analysis tools, and identifies the bugs that the tools are unable to detect (false-negatives) along with identifying the bugs reported as false-positives. SolidiFI is used to evaluate six widely-used static analysis tools, namely, Oyente, Securify, Mythril, SmartCheck, Manticore and Slither, using a set of 50 contracts injected by 9369 distinct bugs. It finds several instances of bugs that are not detected by the evaluated tools despite their claims of being able to detect such bugs, and all the tools report many false positivesComment: ISSTA 202

    Towards Validating Risk Indicators Based on Measurement Theory (Extended version)

    Get PDF
    Due to the lack of quantitative information and for cost-efficiency, most risk assessment methods use partially ordered values (e.g. high, medium, low) as risk indicators. In practice it is common to validate risk indicators by asking stakeholders whether they make sense. This way of validation is subjective, thus error prone. If the metrics are wrong (not meaningful), then they may lead system owners to distribute security investments inefficiently. For instance, in an extended enterprise this may mean over investing in service level agreements or obtaining a contract that provides a lower security level than the system requires. Therefore, when validating risk assessment methods it is important to validate the meaningfulness of the risk indicators that they use. In this paper we investigate how to validate the meaningfulness of risk indicators based on measurement theory. Furthermore, to analyze the applicability of the measurement theory to risk indicators, we analyze the indicators used by a risk assessment method specially developed for assessing confidentiality risks in networks of organizations
    corecore