415 research outputs found

    Continuous-time orbit problems are decidable in polynomial-time

    Get PDF
    We place the continuous-time orbit problem in P , sharpening the decidability result shown by Hainry [7

    The Continuous Skolem-Pisot Problem: On the Complexity of Reachability for Linear Ordinary Differential Equations

    Get PDF
    We study decidability and complexity questions related to a continuous analogue of the Skolem-Pisot problem concerning the zeros and nonnegativity of a linear recurrent sequence. In particular, we show that the continuous version of the nonnegativity problem is NP-hard in general and we show that the presence of a zero is decidable for several subcases, including instances of depth two or less, although the decidability in general is left open. The problems may also be stated as reachability problems related to real zeros of exponential polynomials or solutions to initial value problems of linear differential equations, which are interesting problems in their own right.Comment: 14 pages, no figur

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    On the Polytope Escape Problem for Continuous Linear Dynamical Systems

    Get PDF
    The Polyhedral Escape Problem for continuous linear dynamical systems consists of deciding, given an affine function f:Rd→Rdf: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} and a convex polyhedron P⊆Rd\mathcal{P} \subseteq \mathbb{R}^{d}, whether, for some initial point x0\boldsymbol{x}_{0} in P\mathcal{P}, the trajectory of the unique solution to the differential equation x˙(t)=f(x(t))\dot{\boldsymbol{x}}(t)=f(\boldsymbol{x}(t)), x(0)=x0\boldsymbol{x}(0)=\boldsymbol{x}_{0}, is entirely contained in P\mathcal{P}. We show that this problem is decidable, by reducing it in polynomial time to the decision version of linear programming with real algebraic coefficients, thus placing it in ∃R\exists \mathbb{R}, which lies between NP and PSPACE. Our algorithm makes use of spectral techniques and relies among others on tools from Diophantine approximation.Comment: Accepted to HSCC 201

    Decidability and Universality in Symbolic Dynamical Systems

    Full text link
    Many different definitions of computational universality for various types of dynamical systems have flourished since Turing's work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a model-checking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2: minor orthographic changes v3: section 5.2 (collatz functions) mathematically improved v4: orthographic corrections, one reference added v5:27 pages. Important modifications. The formalism is strengthened: temporal logic replaced by finite automata. New results. Submitte
    • …
    corecore