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1. Introduction

In this paper, we study the linear dynamical system
whose dynamics is described by a linear differential equa-
tion. Formally, given a matrix A ∈ Kn×n and a vector 
�ζ ∈Kn , the trajectory of the system, �x(t) for t ∈R≥0, is de-
fined as the solution of the following Cauchy problem:{

d�x
dt = A�x
�x(0) = �ζ .

(1)

Here K is an arbitrary field and R is the real field.
Linear dynamical systems have found applications in 

a wide range of scientific areas, for instance, theoretical 
biology, economics, and quantum computing. One of the 
basic algorithmic questions regarding a linear dynamical 
system is the orbit problem, which can be formulated as 
follows: Given the trajectory �x(t) determined by A ∈ Kn×n
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and �ζ ∈ Kn , and a point �ξ ∈ Kn , decide whether there ex-
ists some time t ∈ R≥0 such that �x(t) = �ξ . Namely, whether 
�ξ can be reached from �ζ .

The decidability of the orbit problem has been shown 
by Hainry [7], when K is the rational field. In this note 
we improve this result by showing that it is in P. Our al-
gorithm follows Hainry [7] in general, i.e., by Jordan norm 
forms and results from transcendental number theory such 
as the Gelfond–Schneider theorem and the Lindemann–
Weierstrass theorem. However, our arguments are consid-
erably simpler. In particular, it turns out that the distinc-
tion of two Jordan norm forms based on eigenvalues of 
A in [7] is unnecessary, neither is the use trigonomet-
ric functions. These simplifications enable us to perform 
a complexity analysis which appeared to be hard and was 
lacking by Hainry’s arguments.

Related work. Ref. [8] studied the discrete-time orbit prob-
lem and showed that the problem is in P. The upper-bound 
was improved to the logspace counting hierarchy (together 
with a C=L lower-bound) [1]. The techniques employed 
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there are considerably different from the current paper. 
Ref. [5] considered a generalisation of the orbit problem, 
i.e. the orbit problem in higher dimensions, and related 
the problem to the celebrated Skolem problem. The au-
thors showed that this problem is in P when the dimen-
sion is one, and is in NPRP for dimension two or three. 
Ref. [3] studied the continuous-time Skolem problem. The 
authors identified decidability for this problem in some 
special cases, and showed that the related nonnegativity 
problem is NP-hard in general (whereas the decidability is 
left open).

2. Preliminaries

Throughout the paper, we write C, Q, A, and R for 
the set of complex, rational, algebraic, and real numbers, 
respectively. For any complex number z = a + bi where 
a, b ∈ R and i is the imaginary unit, we denote the real 
part and the imaginary part of z by �(z) = a and �(z) = b
respectively.

Definition 1. An algebraic number is a number that is a 
root of a non-zero polynomial in one variable with ratio-
nal coefficients. An algebraic number α is represented by 
(P , (a, b), ρ) where P is the minimal polynomial of α, a +bi
is an approximation of α such that |α − (a + bi)| < ρ and 
α is the only root of P in the open ball B(a + bi, ρ).

It is well known that a root of a non-zero polynomial 
in one variable with coefficients of algebraic numbers is 
also algebraic. Moreover, given the representations of two 
algebraic numbers α and β , the representations of α ± β , 
α · β , α

β
can be computed in polynomial time, so is the 

equality checking [6].
In the sequel, we list some basic facts from transcen-

dental number theory [2].

Theorem 1 (Gelfond–Schneider). Assume a, b ∈A with a �= 0, 1
and b /∈Q, then any value of ab is a transcendental number.

Corollary 1. Assume a, b ∈ A with ln(a), ln(b) being linearly 
independent over Q, then they are linearly independent over A.

Theorem 2 (Lindemann–Weierstrass). If α1, . . . , αn are alge-
braic numbers which are linearly independent over the ratio-
nal numbers Q, then eα1 , ..., eαn are algebraically independent 
over Q.

Corollary 2. For any α �= 0, one of α and eα must be transcen-
dental.

Definition 2. A Jordan block is a square matrix of the fol-
lowing form⎡
⎢⎢⎣

λ

1 λ
. . .

. . .

1 λ

⎤
⎥⎥⎦

A square matrix J is in Jordan norm form if
J =
⎡
⎣ J1

. . .

Jk

⎤
⎦

where each J i for 1 ≤ i ≤ k is a Jordan block.

The following proposition is a basic fact of linear alge-
bra.

Proposition 1. Any matrix A ∈ Qn×n is similar to a matrix in 
Jordan form. Namely, there exist some P ∈ An×n and J ∈ An×n

in Jordan form such that A = P−1 J P .

For any matrix A ∈ Cn×n , the exponential of A, denoted 
by e A , is the n × n matrix given by

e A =
∞∑

k=0

1

k! Ak.

For the differential equation (1), the solution can be writ-
ten as

�x(t) = et A �ζ ,

and evidently the orbit problem is to determine whether 
there exists t ∈ R≥0 such that et A �ζ = �ξ .

3. Main results

In this section we fix an instance of the orbit problem, 
i.e., A ∈ Qn×n and �ζ , �ξ ∈ Qn . We consider the Jordan norm 
form of A such that A = P−1 J P , where P ∈ An×n and J ∈
An×n , i.e.,

J =

⎡
⎢⎢⎢⎣

J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jk

⎤
⎥⎥⎥⎦

Moreover, we denote the eigenvalues for the Jordan blocks 
by λ1, · · · , λk , and we write

�x = P �ζ =
⎡
⎣ �x1

...

�xk

⎤
⎦ and �y = P �ξ =

⎡
⎣ �y1

...

�yk

⎤
⎦

such that for each 1 ≤ i ≤ k, �xi or �yi is of the size of J i . 
For simplicity, we group the eigenvalue λi and the corre-
sponding vectors �xi and �yi together and refer to block Bi . 
We say Bi = (λi, �xi, �yi) is oblivious if �xi = 0; otherwise, it 
is non-oblivious.

Theorem 3. To determine whether there exists t ∈ R≥0 such 
that et A �ζ = �ξ for A ∈Qn×n and �ζ , �ξ ∈ Qn is in P.

Proof. Observe that

et A = et P−1 J P = P−1et J P ,

and thus

et A �ζ = �ξ iff et J (P �ζ ) = P �ξ .
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Namely, et J �x = �y, and thus for each 1 ≤ i ≤ k we have

et J i �xi = �yi .

In the case that Bi is oblivious (i.e., �xi = 0), it must be 
the case that �yi = 0. In the sequel, we shall focus on the 
non-oblivious blocks.

Observe that

et J i = etλi

⎡
⎢⎢⎢⎢⎣

1
t 1
t2

2 t 1
...

. . .
. . .

. . .
ts

s! · · · t2

2 t 1

⎤
⎥⎥⎥⎥⎦ ,

where s is the size of J i . We consider the following two 
cases.

(i) λi = 0. Then it must be the case that⎡
⎢⎢⎢⎢⎣

1
t 1
t2

2 t 1
...

. . .
. . .

. . .
ts

s! · · · t2

2 t 1

⎤
⎥⎥⎥⎥⎦ �xi = �yi .

Recall that entries of �xi and �yi are all algebraic num-
bers. Hence, as we assume that �xi �= 0, we have that 
t ∈A.

(ii) λi �= 0. Then

etλi

⎡
⎢⎢⎢⎢⎣

1
t 1
t2

2 t 1
...

. . .
. . .

. . .
ts

s! · · · t2

2 t 1

⎤
⎥⎥⎥⎥⎦ �xi = �yi .

Recall that �xi �= 0. Clearly eλi t ∈ A. Note that Corol-
lary 2 asserts that either eλi t /∈ A or λit /∈ A. Hence 
λit /∈A and thus t /∈A. Furthermore, we claim that the 
size of the Jordan block (i.e., s) must be 1, because oth-
erwise clearly t ∈ A which is a contradiction.

We distinguish the following two cases:

(a) All non-oblivious blocks are of eigenvalue 0. By case (i), 
t ∈A. Choose one of such blocks, we have an equation 
of the form⎡
⎢⎢⎢⎢⎣

1
t 1
t2

2 t 1
...

. . .
. . .

. . .
ts

s! · · · t2

2 t 1

⎤
⎥⎥⎥⎥⎦ �u = �v

and �u �= 0. Let i∗ = min{i | �ui �= 0} (such i∗ must exist). 
Hence it must be the case that t = �vi∗�ui∗

.

(b) There exists at least one non-oblivious block whose 
eigenvalue is nonzero. Then by case (ii), t /∈ A. It fol-
lows that all non-oblivious blocks must have nonzero 
eigenvalues and all such Jordan blocks are of size 1. 
That is, without loss of generality we have an equa-
tion of the form⎡
⎢⎢⎣

etλ1

etλ2

. . .

etλ�

⎤
⎥⎥⎦

⎡
⎣ u1

...

u�

⎤
⎦ =

⎡
⎣ v1

...

v�

⎤
⎦ (2)

such that for each 1 ≤ i ≤ �, ui �= 0 and λi �= 0. Here �
is the number of non-oblivious blocks. Writing zi = vi

ui
, 

we have that, for 1 ≤ i ≤ �,

eλi t = zi .

We then claim that Eq. (2) has a solution t ∈ R≥0 iff

1. for any 1 ≤ i, j ≤ �, λi
λ j

∈ Q and zλi
i = z

λ j

j ; and

2. there exist λi and zi such that
(2a) Either �(zi) > 0, �(λi) = 0, and �(zi) = 0;
(2b) or �(λi) = 0 and |zi | = 1.

The “if” part is obvious. To see the “only if” part, 
firstly it is easy to see that for 1 ≤ i, j ≤ �, z

λ j

i = zλi
j . 

Namely, λ j ln(zi) − λi ln(z j) = 0. By Corollary 1, ln(zi)

and ln(z j) are linear independent over Q. Hence λi
λ j

=
ln(zi)
ln(z j)

∈ Q.

Now let’s focus on any eλi t = zi . Assume that λ = a +
bi and z = c + di, where a, b, c, d ∈ R ∩ A. Recall that 
λi �= 0. We consider the following cases:
– a �= 0 and b = 0. Then t exists iff c > 0 and d = 0. 

This is equivalent to the case (2a).
– a = 0 and b �= 0. Then t exists iff c2 + d2 = 1. This is 

equivalent to the case (2b).
– a �= 0 and b �= 0. It follows that{

eat = √
c2 + d2 ∈A

ebti = c+di√
c2+d2

∈A

It follows that (
√

c2 + d2)i b
a = c+di√

c2+d2
. By Theorem 1

we must have that i b
a ∈ Q which is a contradiction. 

Hence this case is actually vacuous.

Based on the above arguments, the algorithm is rather 
straightforward and we can analyse its complexity. By the 
result of [4], there is a polynomial-time algorithm to per-
form the Jordan decomposition for A, namely, one can 
compute the λi ’s, �x and �y in polynomial time. Hence 
we can check for each oblivious block (λi , xi, yi) whether 
yi = 0. If this is not the case, the algorithm is terminated 
and returns “No”. Otherwise, we can determine either case 
(a) or case (b).

• In case (a), we can check whether t = �vi∗�ui∗
is the so-

lution for all non-oblivious blocks. This can be done 
easily in polynomial time.

• In case (b), we can check whether conditions 1 and 
2 are satisfied. To check λi

λ j
∈ Q, it suffices to check 

whether the degree of the minimal polynomial of λi
λ j

is at most 1, which can be done in polynomial time. 
On top of this, checking zλi = z

λ j amounts to checking 
i j
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z
ri j

i = z j where ri j = λi
λ j

, which can done in polyno-

mial time as well. Furthermore it is trivial to check, 
for some λi and zi whether (2a) or (2b) holds.

This completes the proof. �
4. Conclusion

In this paper, we have shown that the continuous-
time orbit problem is decidable in polynomial-time. A very 
natural question is to consider the continuous-time or-
bit problem in higher dimensions. Combining the argu-
ments of [5] and this paper, one can settle the case of 
dimension two or three; one can also link this problem 
to the continuous-time Skolem problem. However, solving 
this problem thoroughly seems to be difficult without a 
breakthrough (cf. [3]), notwithstanding some recent devel-
opment for the discrete-time case [9]. It is also interesting 
to see whether the P upper-bound established here can be 
improved further, along the line of [1]. The main difficulty 
seems to lie in factoring polynomials which is needed for 
Jordan decomposition in [4]. To the best of our knowledge, 
the best upper-bound is P (by, e.g., the LLL algorithm) 
which obstructs further improvement inside P. We leave 
it an interesting open problem how to circumvent this dif-
ficulty.
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