1,138 research outputs found

    FuzzySkyline: QoS-Aware Fuzzy Skyline Parking Recommendation Using Edge Traffic Facilities

    Get PDF

    CONTINUOUS MULTIQUERIES K-DOMINANT SKYLINE ON ROAD NETWORK

    Get PDF
    The increasing use of mobile devices makes spatial data worthy of consideration. To get maximum results, users often look for the best from a collection of objects. Among the algorithms that can be used is the skyline query. The algorithm looks for all objects that are not dominated by other objects in all of its attributes. However, data that has many attributes makes the query output a lot of objects so it is less useful for the user. k-dominant skyline queries can be a solution to reduce the output. Among the challenges is the use of skyline queries with spatial data and the many user preferences in finding the best object. This study proposes IKSR: the k-dominant skyline query algorithm that works in a road network environment and can process many queries that have the same subspace in one processing. This algorithm combines queries that operate on the same subspace and set of objects with different k values by computing from the smallest to the largest k. Optimization occurs when some data for larger k are precomputed when calculating the result for the smallest k so the Voronoi cell computing is not repeated. Testing is done by comparing with the naïve algorithm without precomputation. IKSR algorithm can speed up computing time two to three times compared to naïve algorithm

    Continuous Spatial Query Processing:A Survey of Safe Region Based Techniques

    Get PDF
    In the past decade, positioning system-enabled devices such as smartphones have become most prevalent. This functionality brings the increasing popularity of location-based services in business as well as daily applications such as navigation, targeted advertising, and location-based social networking. Continuous spatial queries serve as a building block for location-based services. As an example, an Uber driver may want to be kept aware of the nearest customers or service stations. Continuous spatial queries require updates to the query result as the query or data objects are moving. This poses challenges to the query efficiency, which is crucial to the user experience of a service. A large number of approaches address this efficiency issue using the concept of safe region . A safe region is a region within which arbitrary movement of an object leaves the query result unchanged. Such a region helps reduce the frequency of query result update and hence improves query efficiency. As a result, safe region-based approaches have been popular for processing various types of continuous spatial queries. Safe regions have interesting theoretical properties and are worth in-depth analysis. We provide a comparative study of safe region-based approaches. We describe how safe regions are computed for different types of continuous spatial queries, showing how they improve query efficiency. We compare the different safe region-based approaches and discuss possible further improvements

    Location- and keyword-based querying of geo-textual data: a survey

    Get PDF
    With the broad adoption of mobile devices, notably smartphones, keyword-based search for content has seen increasing use by mobile users, who are often interested in content related to their geographical location. We have also witnessed a proliferation of geo-textual content that encompasses both textual and geographical information. Examples include geo-tagged microblog posts, yellow pages, and web pages related to entities with physical locations. Over the past decade, substantial research has been conducted on integrating location into keyword-based querying of geo-textual content in settings where the underlying data is assumed to be either relatively static or is assumed to stream into a system that maintains a set of continuous queries. This paper offers a survey of both the research problems studied and the solutions proposed in these two settings. As such, it aims to offer the reader a first understanding of key concepts and techniques, and it serves as an “index” for researchers who are interested in exploring the concepts and techniques underlying proposed solutions to the querying of geo-textual data.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis research was supported in part by MOE Tier-2 Grant MOE2019-T2-2-181, MOE Tier-1 Grant RG114/19, an NTU ACE Grant, and the Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by the Singapore Government through the Industry Alignment Fund Industry Collaboration Projects Grant, and by the Innovation Fund Denmark centre, DIREC
    corecore