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In the past decade, positioning system-enabled devices such as smartphones have become most prevalent. This func-
tionality brings the increasing popularity of location-based services in business as well as daily applications such as nav-
igation, targeted advertising, and location-based social networking. Continuous spatial queries serve as a building block
for location-based services. As an example, an Uber driver may want to be kept aware of the nearest customers or ser-
vice stations. Continuous spatial queries require updates to the query result as the query or data objects are moving.
This poses challenges to the query efficiency, which is crucial to the user experience of a service. A large number of ap-
proaches address this efficiency issue using the concept of safe region. A safe region is a region within which arbitrary
movement of an object leaves the query result unchanged. Such a region helps reduce the frequency of query result up-
date and hence improves query efficiency. As a result, safe region based approaches have been popular for processing
various types of continuous spatial queries. Safe regions have interesting theoretical properties and are worth in-depth
analysis. We provide a comparative study of safe region based approaches. We describe how safe regions are computed
for different types of continuous spatial queries, showing how they improve query efficiency. We compare the different
safe region based approaches and discuss possible further improvements.
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search; Location based services; Geographic information systems;
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1. INTRODUCTION
Location-based services (LBS) have become increasingly popular due to the proliferation of mo-
bile devices. Applications of LBS include navigation, augmented reality gaming, targeted adver-
tising, and location-based social networking, to name but a few. Different LBS require the sup-
port of different types of queries, among which continuous spatial queries (CSQ) [Hu et al. 2005;
Mouratidis et al. 2009; Chow et al. 2011] constitute an important type. Unlike traditional spatial
queries, where the objects are static and queries are computed only once, CSQs must maintain
up-to-date query results as the objects move. Processing CSQs is challenging, as query efficiency
is critical to the user experience. Many efforts have been devoted to CSQ processing. In what
follows, we give an overview of CSQs and the related query processing techniques.
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1.1. Continuous Spatial Queries
The idea of querying moving objects emerged in the early 1990s [Imielinski and Badrinath 1992],
when the deployment of large mobile cellular networks started. Queries such as “find Alice’s near-
est petrol stations while she is driving” or “find all the taxi cabs within 1 Km distance from Alice”
were envisioned. Ten years later, advanced mobile devices such as personal digital assistants had
become popular, and CSQs started to attract more attention in the spatial database community.
A large number of studies are conducted on various aspects of CSQs, including access meth-
ods [Pfoser et al. 2000; Saltenis et al. 2000; Gedik et al. 2004], query algorithms [Kalashnikov et al.
2002; Iwerks et al. 2006; Mokbel and Aref 2008], and new query types [Lee et al. 2009; Ali et al.
2010; Huang et al. 2012], just to name a few examples. A CSQ has been referred to as a mov-
ing query [Gedik and Liu 2006; Yiu et al. 2011; Huang et al. 2012], an active query [Jensen et al.
2003], a (continuous) spatio-temporal query [Pfoser et al. 2000; Tao and Papadias 2002; Agar-
wal et al. 2003], and a continuous location-based (or location-dependent) query [Ilarri et al. 2006,
2010; Wang and Zimmermann 2011; Afyouni et al. 2012, 2014]. These names reflect small differ-
ences mainly in the targeted settings. The terms moving query, spatio-temporal query, and active
query were introduced in part to distinguish the new functionality from that of traditional spa-
tial queries where the objects are static and time-independent. The terms continuous location-
based or location-dependent query were introduced in part to emphasize the LBS application
context. However, these queries share the following core characteristics:
(1) The queries maintain up-to-date answers from the query issue time until deactivation.
(2) The queries involve a (query) location parameter that may change continuously.
(3) The queries concern the locations of objects capable of continuous movement.
(4) The query processing is typically shared between a client that receives updates to the query

location parameter and a server that maintains updates to the moving objects being queried.
In this survey, we focus on the query processing techniques rather than the subtle difference
among the query names. We simply refer to queries that satisfy the characteristics above as con-
tinuous spatial queries (or CSQs) as long as the context is clear.
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Fig. 1: A typical continuous spatial query

Figure 1 shows a CSQ example. Alice, represented by a car, is driving. She wants to know con-
tinuously her three nearest petrol stations. She issues a query containing her location 〈8.5,6.5〉
through her mobile phone. A service provider, represented by a server in the cloud, maintains a
database of petrol station locations o1,o2, ...,o11 (Characteristic 3). The service provider searches
the database to find Alice’s three nearest petrol stations (Characteristic 4). The result {o6,o11,o5}
is returned to Alice. As Alice drives to 〈7.4,1.6〉 (Characteristic 2), her new location is sent to the
service provider to request a query answer update (now {o10,o9,o5}). This process continues and
Alice is kept updated with the query answer until she deactivates her query (Characteristic 1).

1.2. Efficiency Issues in Continuous Spatial Query Processing
Processing CSQs involves a wide range of challenges, among which query efficiency is an impor-
tant aspect since it has significant impact on the user experience of LBS. Therefore, this survey
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focuses on the efficiency of CSQ processing, i.e., how to maintain up-to-date query results at low
costs, including server, client, and communication costs, and with low response time.

Consider again the example in Fig. 1. Assume that Alice requests her nearest petrol stations
over a time period that may be partitioned into T time points. A straightforward query system
computes and sends the updated nearest petrol stations to Alice at every time point. Let Cp and
Cm be the computation and communication costs at one time point, respectively. In the worst
case, computing k nearest petrol stations requires a scan over all petrol stations to compute and
compare their distances from Alice with the aid of a priority queue of size k. Assume that there
are n petrol stations. Then, Cp = O(n · logk), and the worst-case computation cost for T time
points is O(T ·n · logk). The cost of transmitting k nearest petrol stations (without compression)
is linear to k, i.e., Cm = O(k). The worst-case communication cost is O(T ·k). Popular LBS may
involve millions of data objects and query users, e.g., Foursquare has 100 million venues and 55
million active users [Smith 2016]. Straightforward algorithms are not attractive in such settings.

Many studies have been devoted to reduce the costs of CSQ processing. The safe region tech-
nique that is used commonly in many of these studies is the focus of this survey. A safe region is
a region that allows arbitrary movements of an object without causing any changes to the query
result. Safe regions allow the query processor to ignore some location updates of the query and
data objects. A popular implementation of this technique called geo-fencing [Andriod 2017; Ap-
ple 2017] is used by mobile applications to reduce location tracking costs, including battery con-
sumption, which is an important aspect in the user experience of mobile applications.

Note that most of the studies surveyed involve some index structure over the objects. For
static objects, hierarchical indexes such as R-trees [Guttman 1984] and Quadtrees [Finkel and
Bentley 1974], and grid-based indexes such as Grid files [Nievergelt et al. 1984] and space-filling
curves [Orenstein and Merrett 1984] are frequently used. For moving objects, TPR-trees [Saltenis
et al. 2000] and B-tree based indexes [Jensen et al. 2004] have been used. These index structures
are not the focus of this survey. Interested readers are referred to surveys on these index struc-
tures [Gaede and Günther 1998; Böhm et al. 2001; Mokbel et al. 2003; Nguyen-Dinh et al. 2010].

Several existing surveys [Krumm 2009; Ilarri et al. 2010; Hendawi and Mokbel 2012; Silva et al.
2014] cover other aspects of CSQ processing. Hendawi and Mokbel [2012] discuss predictive
CSQs and their challenges; Krumm [2009] discusses privacy issues in CSQs; Silva et al. [2014] dis-
cuss characteristics of CSQs in wireless sensor networks. For a comprehensive discussion of CSQ
processing, interested readers are referred to the survey by Ilarri et al. [2010], which covers top-
ics from hardware system architecture to different CSQ processing frameworks and algorithms.
Their survey focuses on classifying the existing literature. Thus, the studies covered there are
categorized based on criteria such as the problem setting, e.g., whether or not object trajectories
are known. Their survey helps choose query algorithms in different categories. The focus is not
to cover safe region techniques, which are the topic of the present survey.

Specifically, we cover the key idea underlying safe region techniques and how it is used in
different CSQ algorithms to support a variety of query types. We also cover developments in CSQ
processing (based on safe region techniques) that have appeared since the survey by Ilarri et al.
[2010]. We aim for a tutorial-type survey that communicates key ideas and concepts and enables
readers to apply safe region techniques to process new types of CSQs.

A related concept in CSQ processing is that of a safe period. While safe regions guarantee the
query result validity in the spatial dimension, safe periods guarantee this in the temporal dimen-
sion. A safe period is a time period during which the query result is guaranteed to stay valid, thus
not requiring reevaluation. Safe periods are often computed based on a given maximum moving
speed of the objects. Examples of this technique can be found in the literature [Tao and Papadias
2002; Gedik and Liu 2004; Hu et al. 2005; Gedik and Liu 2006; Do et al. 2009; Zhang et al. 2012].

1.3. Problem Formulation
We first present terms and definitions used in this survey. We use q to denote a query object
(query location parameter). We use O = {o1,o2, ...,on} to denote a database of n data objects
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which can be either points or objects with non-zero extent. The data objects are represented
by their coordinates in a data space DS. By default, a two-dimensional Euclidean space is used,
i.e., DS ∈ R2. A point object oi is represented as 〈oi .c1,oi .c2〉 where c j denotes the coordinate
in dimension j ( j = 1,2). If oi has non-zero extent, it is represented by its minimum bounding
rectangle (MBR) 〈oi .c1−,oi .c1+,oi .c2−,oi .c2+〉. Here, c j− and c j+ denote lower and upper bounds
of the MBR in dimension j , respectively. Either q or the data objects (or both) may update their
locations. We use dist(·) to denote the distance function. By default, it is the Euclidean distance:

dist(q,oi ) =
√√√√ 2∑

j=1
(q.c j −oi .c j )2

We focus on two types of queries due to their importance. These are also the building blocks
for many other types of CSQs.

Definition 1 (Continuous k Nearest Neighbor Query, CkNN). Given a query object q, a set of
data objects O, and a parameter k, the continuous k nearest neighbor query maintains (from
being issued until deactivated) a size-k subset S ⊆ O such that ∀oi ∈ S,o j ∈ O\S : dist(q,oi ) ≤
dist(q,o j ).

Figure 1 provides an example, where Alice is the query object and the petrol stations are the
data objects. To highlight the essential components of the query, we redraw the figure to be
Fig. 2(a), where q represents the query object and {o1,o2, ...,o11} represent the data objects. To
simplify the discussion, we omit the underlying road network for now. The current 3NNs are
{o6,o11,o5} (the dashed circles). As q moves to q ′, the 3NNs change to {o10,o9,o5} (the gray dots).
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(a) A CkNN query
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(b) A CR query

Fig. 2: Examples of continuous spatial queries

The CkNN query [Song and Roussopoulos 2001; Tao et al. 2002; Iwerks et al. 2003; Kolah-
douzan and Shahabi 2005; Mouratidis et al. 2005a,b; Yu et al. 2005; Benetis et al. 2006; Nutanong
et al. 2010; Zhang et al. 2010; Li et al. 2014, 2016] is one of the most popular types of CSQs. Many
studies are devoted to the CkNN query and its variants, such as the continuous reverse kNN
queries [Benetis et al. 2006; Cheema et al. 2012; Zeberga et al. 2017].

Definition 2 (Continuous Range Query, CR). Given a query object q and a region r , a set of data
objectsO, and a query predicate pred(·), the continuous range query maintains (from being issued
until deactivated) the subset S⊆O that contains every object oi ∈O where pred(q,r,oi ) = true.

The CR query [Kalashnikov et al. 2002; Zhang et al. 2003; Cai et al. 2004; Wang and Zimmer-
mann 2007; Hsueh et al. 2009; Cheema et al. 2010, 2011; Wang and Zimmermann 2011; AL-
Khalidi et al. 2013; Huang and Huang 2013; Cho et al. 2014] is also an important type of CSQs.
The query object q here is usually a point, and the query predicate pred(q,r,oi ) tests whether
oi is within (or intersects) distance r (or region r ) of q . A query example is to “find the points-
of-interest (POI) within 1 Km of Alice as she is sightseeing in a city.” Here, the query region is the
region within 1 Km of Alice. Figure 2(b) illustrates a CR query with a circular query region, i.e., the
dashed circle centered at q with radius r . The data objects within the query region are {o6,o11}.
When the query object moves to q ′, the data objects in the query region become {o5,o9,o10}.
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Circular and rectangular query regions have been mostly used. When a rectangular query re-
gion is used, the query is also referred to as a continuous window query [Huang and Huang 2013].
Different query predicates pred(·) have been used in CR queries, with the most common one
being containment [Kalashnikov et al. 2002; Zhang et al. 2003, 2004; Hsueh et al. 2009; Cheema
et al. 2010, 2011; Huang and Huang 2013; Cho et al. 2014]. This predicate finds data objects that
are entirely contained in the query region. In the case of a circular query region (where q and r
represent the query center and radius, respectively):

pred(q,r,oi ) =
{
true, if dist(q,oi ) ≤ r
false, otherwise

In the case of a rectangular query region, where the query region r is a rectangle:

pred(q,r,oi ) =
{
true, if oi is contained in r
false, otherwise

Similar to the CkNN queries, a large number of studies consider variants of the CR query such
as the continuous spatial join query [Tao and Papadias 2002; Zhang et al. 2008, 2012; Ward et al.
2014], which can be seen as a group of CR queries.

Content organization. The rest of the survey is organized as follows. We first present common
principles of safe region based query processing in Section 2. Then, we describe how safe regions
have been used to process two basic types of CSQs in Sections 3 and Section 4. We conclude the
survey by discussing further developments of safe region based techniques in Section 5.

2. SAFE REGION BASED CONTINUOUS SPATIAL QUERY PROCESSING
Most CSQ systems assume a query object (user) and a set of data objects, both of which may
be moving. The client-server model, as illustrated in Fig. 3, is commonly used for these systems
(e.g., [Gedik and Liu 2006; Ilarri et al. 2006]). The query and/or the data objects are the clients,
which report their locations to a server. The server computes the query answer and sends it back
to the query object. This computation process repeats, and up-to-date answers are produced by
each recomputation. We focus on query processing techniques based on this centralized model.

Location

<2.6, 6.5>

<5.2, 6.7>

<0.5, 4.5>

<3.8, 4.1>

<6.2, 4.7>

<8.3, 5.0>

Object

<1.2, 2.2>

<3.3, 1.2>

<5.9, 0.9>

<8.2, 2.5>

<9.8, 4.0>

q= <8.5, 6.5>RS, srq

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

q'

q in srq?

q''

q <8.5, 6.5>
SR

sr1

sr2

sr3

sr4

sr5

sr6

sr7

sr8

sr9

sr10

sr11

srq

o1

o2

o3 o4 o5

o6

o7

o8 o9

o10

o11

qsrq

yes no
RS'', srq''

q''= <8.0, 4.8>

Fig. 3: An overview of the safe region technique

The frequency of location changes and query recomputation affects the query costs. Here, the
frequency of location changes is an inherent problem parameter. It is not controllable by the
query server. The frequency of query recomputation, on the other hand, is a solution parameter
and depends on the techniques used by the system.

Time point sampling is a simple way to control the frequency of query recomputation, i.e., the
query is recomputed only at sample time points. However, this approach only produces accurate
answers at the sample time points. Between two sample time points, the query is merely an ap-
proximation. When objects move with a high speed, this approximation may have low accuracy.

The safe region technique is another way to control the frequency of query recomputation and
the workload at each recomputation. The dashed closed curves in Fig. 3 exemplify safe regions.
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— A safe region for a query object q , denoted by srq , is a region inside which q can move arbi-
trarily without causing any change in the query answer, and hence no query recomputation
is required. Only when q leaves srq (e.g., at q ′′), recomputation is required. This way, the fre-
quency of query recomputation is reduced to the frequency of q leaving its safe regions.

— A safe region for a query answer and a data object oi , denoted by sri , is a region inside which
oi can move arbitrarily without causing any change in the query answer. Any query recom-
putation can safely discard oi as long as oi remains inside sri . This way, the workload of each
query recomputation can be reduced.

Figure 3 shows how the safe region (e.g., srq ) is sent together with the query answer RS to the
object of interest (e.g., q). Then the checking of whether the object remains inside its current
safe region is delegated to the client. This will further reduce the costs at the server side.

When the safe region technique is used, the key is to identify the spatial boundary where the
spatial relationships between the objects change. Consider the CkNN query as an example. A safe
region for the query object should identify the boundary where the nearness ranks of the data
objects change. When the query object moves within this boundary, the nearness ranks of the
data objects do not change. Thus, the query answer is unaffected.

When applying the safe region technique, three questions must be answered:

(1) How to define a tight (i.e., maximized) safe region to minimize recomputation frequency?
(2) How to compute and update the safe region efficiently?
(3) How to verify efficiently whether the object of interest is still in its safe region?

These questions usually need to be considered together for maximal efficiency. Ideally, we may
aim for a safe region that is tight and is efficient to compute, update, and verify. However, com-
puting a tight safe region may require examining a large number of objects to determine where
their spatial relationships change, which may have a high cost. Further, a tight safe region may
have an irregular shape, which can render verifying whether an object is still in it expensive. On
the other hand, a safe region that is efficient to compute and verify is less likely to be tight, which
increases the frequency of query recomputation. A common approach is to use a safe region that
is subset of a tight safe region (Any subset of a safe region is also a safe region), has a regular
shape, and can be computed efficiently, e.g., a circle or a rectangle. Approximation and aggrega-
tion techniques are used in computing such safe regions.

How to design a safe region that is well-balanced in tightness and computational efficiency is
query-dependent. In the next two sections, we detail how safe regions are designed for continu-
ous k nearest neighbor queries and continuous range queries. The underlying ideas have been
applied in the context of other types of CSQs, such as continuous reverse kNN queries [Attique
et al. 2016; Zeberga et al. 2017], continuous visible kNN queries [Wang et al. 2014a; Li et al. 2015],
and continuous k diversified NN queries [Gu et al. 2016a], to name but a few.

3. SAFE REGIONS IN CONTINUOUS K NEAREST NEIGHBOR QUERIES
For CkNN queries, the safe region of an object retains the nearness ranks among the data objects
when this object is moving. Safe regions may be built for either query objects or data objects.

When built for a query object q , a safe region ensures that q is nearer to the kNN objects than
to any non-kNN object. A simple safe region is defined by the lazy search technique [Song and
Roussopoulos 2001] based on the minimum distance that q needs to move such that the (k+1)st

NN would become nearer than the k th NN, assuming that q lies on the line segment connecting
the k th and the (k + 1)st NNs. Stricter safe regions bound the movement of q according to all
non-kNN objects rather than just the (k +1)st NN. Such safe regions are computed based on the
perpendicular bisectors between kNN objects and non-kNN objects. The perpendicular bisector
between two objects oi and o j (in Euclidean space) partitions the space into two half-planes.
When q is in the half-plane on oi ’s side, it is nearer to oi than to o j , and vice versa. The per-
pendicular bisectors for all pairs of data objects create a partition of the space, i.e., an (order-k)
Voronoi diagram [Okabe et al. 1992]. Every resulting region is an (order-k) Voronoi cell and is
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a safe region corresponding to a kNN answer. The query object can move arbitrarily in such a
region without invalidating the corresponding kNN answer.

Safe regions based on Voronoi diagrams are tight. However, they are expensive to compute due
to the O(n2) pairs of data objects to be considered. More advanced safe regions are essentially
all based on the idea of Voronoi diagrams, but aim to reduce the computational costs. Three al-
gorithms, FindkNN [Benetis et al. 2001, 2006], TPkNN [Tao and Papadias 2002], and kCNN [Tao
et al. 2002], compute safe regions along a fixed moving direction of the query object. Then, only
data objects that create perpendicular bisectors intersecting the query moving direction need to
be considered. The RIS-kNN algorithm [Zhang et al. 2003] shows that a finite subset of all pos-
sible moving directions is sufficient to compute a safe region equivalent to an order-k Voronoi
cell. Thus, only data objects related to this finite subset of moving directions need to be consid-
ered. The IRU algorithm [Kulik and Tanin 2006] sorts all data objects in ascending order of their
distances to q and only computes the perpendicular bisector between every pair of adjacent
data objects in the sorted order, i.e., computes O(n) perpendicular bisectors. The kNN answer
is valid as long as q does not cross any perpendicular bisector. The V*-digram [Nutanong et al.
2008] combines the ideas of lazy search and IRU such that when the (k + 1)st NN remains far
away from q , only the perpendicular bisectors between the first k+1 NNs need to be considered.
The INS-kNN algorithm [Li et al. 2014] replaces order-k Voronoi-diagrams with order-1 Voronoi-
diagrams, which are much more efficient to compute. It is shown that such a replacement does
not jeopardize the tightness of the safe regions.

When built for a data object, e.g., the i th NN object oi , a safe region keeps oi as the i th NN by
bounding its movement based on the locations of the (i −1)st and the (i +1)st NN objects, oi−1

and oi+1. The SRB algorithm [Hu et al. 2005] computes such a safe region assuming query objects
at fixed locations. It uses rectangular safe regions. The safe regions of oi−1 and oi+1 bound a ring
centered at a query object in which oi can move arbitrarily without invalidating its nearness
rank. The safe region of oi is a rectangle bounded by this ring.

For spatial networks, the safe regions are still based on the concept of perpendicular bisectors,
although a perpendicular bisector now becomes a set of “bisector points” on network edges,
where each point partitions the network into two halves. Safe regions for spatial networks are
extensions of those for Euclidean space as discussed above, where the network shortest path
distance is used as the distance metric instead of Euclidean distance. The VN3 algorithm [Kolah-
douzan and Shahabi 2004b] extends Voronoi diagrams to network Voronoi diagrams; the IE al-
gorithm [Kolahdouzan and Shahabi 2004a] extends kCNN, and the UB algorithm [Kolahdouzan
and Shahabi 2004a] further integrates the idea of lazy search; the UNICONS algorithm [Cho and
Chung 2005] extends IE to directed networks; and the network V*-diagram [Nutanong et al. 2010]
extends the V*-digram. In these extensions, graph traversals are used to find bisector points.

Figure 4 summarizes the safe region techniques mentioned above. We cover safe regions for
moving query objects and for moving data objects in Euclidean space in Sections 3.1 and 3.2,
respectively. We cover safe regions for moving query objects in spatial networks in Section 3.3.

Safe regions for query objects:

Safe regions for data objects:

Safe regions in spatial networks:

Lazy search (2001)

Voronoi diagram (1992)

SRB (2005)

Network V*-diagram (2010)

TPkNN (2002)

FindkNN (2001)

VN3 (2004) IE & UB (2004) UNICONS (2005)

kCNN (2002)

RIS-kNN (2003) V*-diagram (2008) INS-kNN (2014)

IRU (2006)

Fig. 4: Evolution of safe region techniques for CkNN queries
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3.1. Safe Regions for Query Objects
We first consider safe regions for query objects that are moving. A safe region bounds the query
object so that its movement in the region does not change the nearness ranks of the current kNN
objects and non-kNN objects. All studies discussed except for those by Benetis et al. [2001, 2002,
2006] assume that the data objects are stationary.

We start with a simple safe region [Song and Roussopoulos 2001] of CkNN queries (Sec-
tion 3.1.1). We then revisit a classic technique for nearest neighbor finding, the Voronoi dia-
gram [Okabe et al. 1992], and discuss how to use it to construct safe regions (Section 3.1.2). Mod-
ern CkNN algorithms build more advanced safe regions based on the Voronoi diagram. We cover
those algorithms in Sections 3.1.3, 3.1.4, and 3.1.5. In particular, Section 3.1.3 covers algorithms
that compute safe regions based on a given moving direction of the query object, including the
FindkNN [Benetis et al. 2006], TPkNN [Tao and Papadias 2002], and kCNN [Tao et al. 2002] algo-
rithms. Safe regions are computed for a linear path along which the query object moves, resulting
in linear safe regions. This subsection also covers the RIS-kNN algorithm [Zhang et al. 2003] that
considers several moving directions to compute a non-linear safe region that is sufficient to cover
arbitrary moving directions of the query object. Section 3.1.4 covers another algorithm, named
V*-diagram [Nutanong et al. 2008], that computes a safe region that allows arbitrary moving di-
rections of the query object. This algorithm computes an approximate safe region, the goal being
to achieve higher computational efficiency. Section 3.1.5 covers the INS-kNN algorithm [Li et al.
2014] that computes safe regions implicitly via computing a set of safeguarding objects. The safe-
guarding objects define a tight safe region and are efficient to compute. Thus, INS-kNN achieves
high computational efficiency without sacrificing the tightness of the safe regions.

3.1.1. The Lazy Search Technique. Song and Roussopoulos [2001] process a CkNN query by
sampling points from the trajectory of the query object. For every sampled point, a kNN algo-
rithm for stationary objects (e.g., [Roussopoulos et al. 1995]) is used to compute the query answer
at that point. Three incremental computation techniques are proposed to use the kNN answer of
the preceding sampled points to construct the next kNN answer. A fourth technique proposed,
lazy search, employs the safe regions implicitly. This technique uses the distance that the query
object needs to move before the current (k + 1)st NN can become a new kNN to possibly skip
the kNN computation for some sampled points. Assume that at a sampled point q , the k th and
(k+1)st NNs are ok and ok+1, respectively. Let q be on the line segment between ok and ok+1 (cf.
Fig. 5). The distances between q and the other two points are dist(q,ok ) and dist(q,ok+1). Let
q move towards ok+1 by a distance of δ. For q to become nearer to ok+1, δ needs to satisfy:

dist(q,ok )+δ> dist(q,ok+1)−δ ⇒ δ> (dist(q,ok+1)−dist(q,ok ))/2

qok+1 ok

Cq

Ck

Ck+1

Fig. 5: Safe region of the lazy search technique

Therefore, the minimum distance δ⊥ that q needs to move to become nearer to ok+1 is
(dist(q,ok+1)−dist(q,ok ))/2. Further, dist(q,ok ) is an upper bound on the distance between
q and any kNN object—it defines a circle Ck enclosing the kNN objects. Distance dist(q,ok+1)
is a lower bound on the distance between q and any non-kNN object. It also defines a circle Ck+1.
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All non-kNN objects are on or outside this circle. When moving no farther away than distance
δ⊥, q will not become nearer to any non-kNN object than to any current kNN object. This yields
a circular safe region centered at q with δ⊥ as the radius (cf. the solid circle Cq in Fig. 5). As long
as the query object remains inside this circle, no kNN computation is required.

Subsequent studies use safe regions more explicitly and try to provide accurate kNN answers
continuously instead of only at sampled points. However, the core idea in safe region computa-
tion is similar, i.e., to identify the boundary where a data object may become nearer to q than
any existing kNN object. Traditionally, the Voronoi diagram has been used for this purpose.

3.1.2. The Voronoi Diagram. Voronoi diagrams are widely used in computational geometry. We
focus only on how this technique is employed in CkNN algorithms. For a comprehensive discus-
sion, interested readers are referred to excellent textbooks on this topic [Preparata and Shamos
1985; Okabe et al. 1992; Berg et al. 2000].

A Voronoi diagram is a partition of a space where the resultant regions are called Voronoi cells.

Definition 3 (Voronoi Cell). Given a space DS and a set of objects O= {o1,o2, ...,on}, the Voronoi
cell of oi , denoted by vc(oi ), is the set of all points in DS for which oi is the nearest object among
all the objects in O. Formally, let p be a point in DS. Then:

vc(oi ) = {p ∈ DS|∀o j ∈O\ {oi } : dist(p,oi ) ≤ dist(p,o j )}
Figure 6(a) shows an example of the Voronoi cells for objects {o1,o2, ...,o5}, where each cell

encloses its corresponding object, e.g., the cell enclosing o4 is the Voronoi cell of o4. The Voronoi
cells of all the objects form the Voronoi diagram of O, denoted by VO:

VO = ⋃
oi∈O

vc(oi )

q

o1 o2

o3 o5o4

(a) A Voronoi diagram

o1

o4

b1,4

(b) Dominance region of oi over o j

o1 o2

o3 o5

b4,5

b2,4

b1,4

b3,4

(c) Dominance region intersection

Fig. 6: Voronoi diagram computation by intersection

Voronoi cells are natural safe regions for continuous NN queries. In Fig. 6(a), the query object
q is in vc(o4), and o4 is the NN. As long as q stays in the same cell, the NN remains the same.

In two-dimensional Euclidean space, a Voronoi diagram is formed by the perpendicular bi-
sectors1 between the objects. As Fig. 6(b) shows, a bisector b1,4 between two objects o1 and o4
divides the space into two half planes. Each of o1 and o4 is the nearest object in its own half
plane. The two half planes are called the dominance regions of o1 over o4 and o4 over o1 (the gray
region), respectively. In Fig. 6(c), the gray region is the intersection of the dominance regions of
o4 over all the other objects. This region is vc(o4). Computing a Voronoi diagram by computing
the bisectors between every pair of objects has an O(n2) time complexity. Many efforts have been
devoted to reduce this time complexity. The plan sweep algorithm [Fortune 1987; Seidel 1988],
for example, reduces the time complexity to O(n logn). For a detailed discussion on Voronoi di-
agram computation, interested readers are referred to [Berg et al. 2000].

Order-k Voronoi diagrams. The Voronoi diagrams shown above are order-1 Voronoi diagrams,
i.e., every cell corresponds to one object only. In general, for an order-k Voronoi diagram (k ∈N+),
every cell corresponds to k objects, and the cell is called an order-k Voronoi cell .

Definition 4 (Order-k Voronoi Cell). Given a space DS and a set of objects O = {o1,o2, ...,on}, let
S= {o1,o2, ...,ok } be a size-k subset of O. The order-k Voronoi cell of S, denoted by vck (S), is the set

1We use bisector in the following discussion when the context is clear.
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of all points in DS that have S as their set of k nearest objects among all the objects in O. Formally,
let p be a point in DS. Then:

vck (S) = {p ∈ DS|max
oi∈S

dist(p,oi ) ≤ min
o j ∈O\S

dist(p,o j )}

Figure 7(a) shows an order-2 Voronoi diagram, where each cell is labeled with a pair (i , j ) that
indicates the corresponding pair of objects oi and o j . For example, the cell in the middle labeled
with (2,4) is the order-2 Voronoi cell vc2({o2,o4}). When q is in this cell, o2 and o4 are the 2NN. As
the figure shows, higher order Voronoi cells do not always enclose their corresponding objects.

(1,3)

(1,4)

(3,4) (4,5)

(2,5)

(1,2)

(2,4)

o1 o2

o3 o5o4

(a) Order-2 Voronoi diagram

o1

o3 o5o4

(b) Diagram without o2

o1 o2

o3 o5

(c) Diagram without o4 (d) Order-2 Voronoi cell

Fig. 7: Order-2 Voronoi diagram

A straightforward way to compute an order-k Voronoi cell is to compute the intersection of k
order-(k −1) Voronoi cells. Each order-(k −1) Voronoi cell guarantees a size-(k −1) subset to be
the (k −1)NN set. The intersection then guarantees the k objects to be the kNN set. Figures 7(b)
to 7(d) illustrate the computation of an order-2 Voronoi cell. Two order-1 Voronoi diagrams are
computed, one excluding o2 (Fig. 7(b)) and the other excluding o4 (Fig. 7(c)), respectively. The
intersection of vc(o4) and vc(o2) is vc2({o2,o4}), i.e., the cross-lined region in Fig. 7(d). Chazelle
and Edelsbrunner [1987] propose an algorithm to compute an order-k Voronoi diagram without
the lower order Voronoi diagrams. It has a time complexity of O(n2 logn+k(n−k) log2 n) or O(n2+
k(n − k) log2 n), depending on the data structures used. This algorithm is not the focus of this
survey and is not discussed further. Nevertheless, such an algorithm is still too expensive to be
used in applications that require frequent updates and recomputations of Voronoi diagrams.

Continuous query processing. The order-k Voronoi cells can be precomputed and stored in a
spatial index, e.g., the VoR-tree [Sharifzadeh and Shahabi 2010], which is an R-tree augmented to
store data objects together with their Voronoi cells. When a CkNN query is issued, we locate the
order-k Voronoi cell that the query object q is in and return the corresponding data objects as the
kNN answer. As long as q remains in the same cell, no further processing is required. Otherwise,
we identify the new cell that q has entered and update the kNN answer accordingly.

Updates such as a change in the value of k or data objects being inserted or removed require a
recomputation of the Voronoi diagram. The high cost of computing the order-k Voronoi diagram
renders it impractical in a dynamic environment with frequent updates. This has led to studies
that compute local safe regions on-the-fly rather than precomputing the full safe regions.

3.1.3. Query Object Moving Direction Dependent Safe Regions. A series of studies [Benetis et al.
2001, 2002, 2006; Tao and Papadias 2002; Tao et al. 2002; Zhang et al. 2003] have been conducted
on computing safe regions locally based on the concept of influence points.

Tao and Papadias [2002] assume a query object with a fixed velocity and static data objects.
They compute a kNN answer and a safe time span during which the answer remains valid. Given
a fixed velocity, the safe time span defines a line segment as a safe region for the query object.
Benetis et al. [2001, 2002, 2006] assume fixed velocities for both the query and data objects and
compute the kNN result for a given query time interval. The result contains a set of pairs. Each
pair contains a set of objects and a time interval such that (i) the time intervals partition the
query interval and (ii) the objects in a set is the kNN answer during the corresponding interval.
This functionality generalizes that of Tao and Papadias [2002] in that the time interval of the
first pair is the safe time span, if the safe time span is contained in the query interval. Tao et al.
[2002] assume a query object moving along a line segment and break it into sub-segments each of
which is a safe region for a different kNN answer. Zhang et al. [2003] explore all possible moving
directions of the query object and obtain a safe region equivalent to an order-k Voronoi cell.
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The FindkNN algorithm. Benetis et al. [2001, 2002, 2006] model the movement of a moving
object by its position 〈x, y〉 at time t0 and a velocity vector −→v = 〈vx , vy 〉, where vx and vy denote
the speed in the x- and y-dimension, respectively. Given a set O of such objects, Benetis et al.
propose the FindkNN algorithm to compute the kNN objects for a moving query object q for a
query time interval [t−, t+], where t− ≥ tissue and ti ssue denotes the query issue time.

The FindkNN algorithm partitions [t−, t+] into multiple intervals, where the kNN result during
the i th interval Ti is denoted by Si = 〈oi 1,oi 2, . . . ,oi k〉. The objects in Si are ordered by their
Euclidean distances to q , i.e., object oi k is the k th nearest object to q throughout Ti :

∀i : dist(q,oi 1) ≤ dist(q,oi 2) ≤ ... ≤ dist(q,oi k )∧ (∀o ∈O\Si : dist(q,oi k ) ≤ dist(q,o)
)

Each interval Ti corresponds to a line segment that is a safe region for the query object, i.e., the
segment that the linearly moving query object will traverse from the start to the end of Ti .

We proceed to describe how FindkNN partitions the query interval using k = 1. The algorithm
assumes that the set O is indexed by a TPR-tree [Saltenis et al. 2000], which is an R-tree extended
to index moving objects; in the TPR-tree, the sides of bounding rectangles expand linearly with
time to bound the rectangles and objects they contain. To compute the result, the algorithm tra-
verses the TPR-tree on O using a temporal generalization of the branch-and-bound procedures
described by Roussopoulos et al. [1995] and Hjaltason and Samet [1999].

The algorithm uses the squared Euclidean distance, which is simpler than Euclidean distance
and yields the same result because it preserves relative distances. Function d(q,o, t) denotes the
distance between the query object q and a data object o at time t . As q and o move linearly,
d(q,o, t) = at 2+bt +c, where t ∈ [t−, t+], and a, b, and c are constant parameters. To facilitate the
index traversal, an additional function d(q,R, t) is used that denotes the distance between q and
its nearest point on a rectangle R at time t . A time interval [t−, t+] can be partitioned into at most
five intervals so that each interval Ti corresponds to a distance function di(q,R, t) = ai t 2+bi t+ci ,
where t ∈ Ti and ai , bi , and ci are constant parameters. When q enters R, di(q,R, t) becomes zero.

The algorithm uses a min-heap Q to control the order of tree traversal. Two functions push and
pop are used to insert an entry (a TPR-tree node) into and remove an entry from Q, respectively.
When pop is called, the entry with the smallest key value from Q is returned. To compute the key
value of an entry e, two factors are considered: (i) the level of e in the tree, and (ii) a representative
distance between e and q during [t−, t+], denoted by rd(q,e). If only the representative distance
is used to define the key, the traversal is best-first, where the next entry to be visited has the
smallest representative distance in Q. If both the representative distance and the level of the
entry are used, the traversal is depth-first, assuming that the root has the largest level number.

The representative distance rd(q,e) is a temporal version of mindist [Roussopoulos et al.
1995; Hjaltason and Samet 1999]. Given a query time interval [t−, t+] and the MBR R of e, distance
rd(q,e) is defined as follows, where the integral computes the average of the squared Euclidean
distance between the MBR of e and q , multiplied by the query time interval length.

rd(q,e) =
∫ t+

t−
d(q,R, t)d t

When the algorithm starts, the result interval has one partition which is the query interval.
As the TPR-tree is traversed, distances are repeatedly compared to find nearest objects. As the
distance functions are quadratic, the comparison of distances corresponds to solving quadratic
inequalities. Such inequalities can have at most two roots, and these roots are then used for
further partitioning of the result intervals. When the algorithm terminates, the result contains a
partition for each different nearest neighbor during the query interval.

Continuous query processing. A FindkNN result is temporal—the query time interval [t−, t+]
is partitioned into disjoint intervals each of which corresponds to a different kNN result set.
The kNN result sets may become invalid if the data set is updated. Algorithms are provided that
enable incremental result updates when objects are inserted into or removed from the data set.

The TPkNN algorithm. Tao and Papadias [2002] also model the movement of the query object
q by a velocity vector. Based on the current location and velocity of q , they compute a triple
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〈S, t⊥,S∆〉, where S denotes the kNN answer, t⊥ denotes the time when this answer will change,
and S∆ denotes the set of data objects that will trigger this change, i.e., data objects that will enter
or leave the kNN answer. The time t⊥ is called the minimum influence time. It is the safe time
span that the current kNN answer stays valid. At time t⊥, or if the velocity of q changes before
that, the current kNN answer expires and the triple 〈S, t⊥,S∆〉 is recomputed. This procedure
repeats and up-to-date kNN answers are generated continuously. This query algorithm is named
the time-parameterized kNN (TPkNN) algorithm since the kNN answers are time dependent.

The key of TPkNN is the computation of the minimum influence time t⊥. For each object oi
in the kNN set S, the algorithm computes the influence time tinf (oi ), which is the earliest time
when oi becomes farther away from q than some non-kNN object o j ∈O \S. The minimum of
the influence time of all the objects in S is t⊥:

t⊥ = min
oi∈S

tinf (oi )

The time when oi becomes farther away from q than o j is computed by the following inequality:

dist(oi , q.c +q.−→v · t ) > dist(o j , q.c +q.−→v · t )

Here, q.c and q.−→v denote the current location and velocity of q . This inequality is easily solvable
since every parameter is a known constant. Solving the inequality yields a point b∗

i , j on the pro-

jected trajectory of q (denoted by l ) where dist(oi ,b∗
i , j ) ≥ dist(o j ,b∗

i , j ). This is the point where

the bisector bi , j intersects l . In Fig. 8, object o3 is the current nearest neighbor of q . Point b∗
3,1 is

the point where o1 becomes closer to q .

l

b3,1

b3,2b3,4

b3,5o1 o2

o3 o5o4

q b*3,1
tinf(o3)

Fig. 8: A TPkNN query

By computing the above inequality between oi and every non-kNN object, tinf (oi ) is obtained
as the minimum value of t from all the inequalities:

tinf (oi ) = min{t |dist(oi , q.c +q.−→v · t ) > dist(o j , q.c +q.−→v · t ),o j ∈O\S}

The influence time tinf (oi ) corresponds to the first point where l intersects some bisector of
oi , i.e., min{b∗

i , j |o j ∈O\S}. This point is named the influence point of oi . Object oi is “safe” until

q reaches this point. Figure 8 shows the bisectors between o3 and every other data object, and
their intersection points with l . Point b∗

3,1 is the first intersection point and is the influence point
of oi . When considering kNNs, the current query answer is “safe” until q reaches the influence
point of any kNN object, i.e., min{b∗

i , j |oi ∈ S,o j ∈O\S}, which corresponds to the time t⊥.

TPkNN traverses an R-tree on O in a branch-and-bound fashion. During the traversal, t⊥ is
progressively updated as more data objects are accessed. It helps prune the branches that cannot
produce smaller influence time estimated based on the mindist metric [Roussopoulos et al.
1995]. When all data objects have been either accessed or pruned, the value of t⊥ is returned.

Continuous query processing. Initially a static kNN query is computed to find the kNN set S.
Then TPkNN computes the minimum influence time t⊥ and the corresponding pair of objects
oi ∈ S and o j ∈O\S which forms the set S∆. At t⊥, S is updated by replacing oi with o j . TPkNN is
run again to update t⊥ and S∆. This procedure repeats, and updated kNN answers are produced
continuously. In the event of an update in the value of k, the velocity of q , or the object data set,
TPkNN re-runs to update the triple 〈S, t⊥,S∆〉.

The kCNN algorithm. Tao et al. [2002] consider the case where the query object q moves on a
line segment se. This can be handled by running TPkNN repeatedly to find the influence points

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2018.



Continuous Spatial Query Processing: A Survey of Safe Region Based Techniques 1:13

on se and break se into sub-segments, where each sub-segment is a safe region. However, since
the trajectory of the query object is known in this case, an algorithm named kCNN is proposed
to compute all the influence points on se in one traversal of the R-tree of O rather than by using
multiple runs of TPkNN. An influence point si computed by the kCNN algorithm is called a split
point and is associated with a kNN set corresponding to the sub-segment si si+1. At the start,
there are two split points, namely the two end points s and e of se, and their kNN sets are empty.
To compute the split points, kCNN traverses the R-tree in a branch-and-bound manner. During
the traversal, when a data object o is found to be closer to a split point si than some existing kNN
object of si , o is added to the kNN set of si . It is also possible that o is only a new kNN object for
a portion of the sub-segment si si+1. In this case, a new split point is added between si and si+1.
This new split point breaks the sub-segment into two, where one views o as a new kNN object
while the other does not. The mindist metric and the maximum distance between a split point
and its k th NN are used to prune tree branches from traversal.

The Retrieve-Influence-Set K NN algorithm. Zhang et al. [2003] propose another CkNN algo-
rithm, named Retrieve-Influence-Set kNN (RIS-kNN), based on TPkNN, which lifts the constraint
of a linear query trajectory. The algorithm runs TPkNN in different moving directions from q to
find the first data objects that will enter the kNN answer in those directions. The resulting set
of objects bounds a region that is equivalent to an order-k Voronoi cell and is used as the safe
region. This set is named the influence set, and the objects are named the influence objects.

o1

o3 o5

q

v1

v4

o4

o2

v6

v5

v2

v3

(a) Processing v1

o1

o3

q

o4

o2

o5

v8

v7

v9

v10

v1 v2

v4 v3

v6

v5

(b) Processing v5 and v6

o1

o3

q

o2

o5

v11

v12

o4

v8

v7

v9

v10

v1 v2

v4 v3

(c) Processing subsequent vertices

Fig. 9: Computing an order-2 Voronoi cell

We use Fig. 9 to illustrate RIS-kNN. Let k be 2. The current 2NN set of q is {o2,o4}. The entire
data space is a safe region at first. Let v1, v2, v3, and v4 be its vertices. The algorithm then uses
TPkNN to find the influence object in the direction of a randomly selected vertex, e.g., v1 in
Fig. 9(a). Object o1 is returned by TPkNN, since it is the first object to become nearer to q than
an existing 2NN object (i.e., o4) towards v1. The bisector between o1 and o4 is drawn, which
intersects the boundary of the current safe region (i.e., the entire data space). This creates the
new vertices v5 and v6. The safe region becomes the polygon v2v3v5v6. Next, another vertex is
randomly selected from this polygon, e.g., v5 in Fig. 9(b). TPkNN is run towards v5, where o1
is again found as the influence object. The bisector between o1 and o2 further shrinks the safe
region, generating the new vertices v7 and v8. This process continues. Note that a vertex does not
lead to a new influence object if it is too close to q , as exemplified by v8 and v9 in Fig. 9(c). These
vertices are called confirmed vertices. When every vertex is confirmed, the algorithm terminates.
The confirmed vertices form a polygon equivalent to vc2({o2,o4}) (cf. Fig. 9(c)).

Continuous query processing. When a CkNN query is issued, RIS-kNN computes the current
kNN set S and the Voronoi cell vck (S). Then only when q leaves vck (S), recomputation of S and
vck (S) is required. When an update changes the kNN set S, such as a change of the value of k or
a data object being added to (or removed from) the data set, S and vck (S) are also recomputed.

3.1.4. Query Object Moving Direction Independent Safe Regions. RIS-kNN avoids the compu-
tation of a full Voronoi diagram, but it remains relatively expensive to compute an exact Voronoi
cell locally, as multiple runs of TPkNN are needed. We proceed to consider the V*-diagram algo-
rithm [Nutanong et al. 2008] that achieves higher efficiency by computing less strict safe regions.

The V*-diagram algorithm computes an integrated safe region (ISR). The ISR is a combination
of two safe regions, one to guarantee the validity of the kNN objects, and the other to guarantee
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the nearness ranks within the kNN objects. The latter safe region has an idea similar to that of the
incremental rank update (IRU) technique [Kulik and Tanin 2006]. We describe IRU briefly first.

The Incremental Rank Update algorithm. IRU maintains the complete nearness rank of all
data objects, o1,o2, ...,on , to the query object q . This is done based on the bisectors between the
data objects. However, IRU does not compute all the bisectors to form a full Voronoi diagram.
Rather, it is sufficient to compute a bisector between every pair of adjacent data objects oi and
oi+1 in the nearness rank, meaning that n −1 bisectors are required for maintaining a complete
ranking of n data objects. The intuition is straightforward: a bisector bi ,i+1 guarantees that q is
nearer to oi than to oi+1; the n −1 bisectors b1,2, b2,3, ..., bn−1,n guarantee that q is nearer to o1

than to o2, and nearer to o2 than to o3, ..., and nearer to on−1 than to on .
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Fig. 10: The V*-diagram

Figure 10(a) shows an example, where the data objects are ranked as o4,o1,o5,o2,o3. The gray
region enclosed by the bisectors b1,4,b1,5,b2,5, and b2,3 is a safe region. As long as q stays in this
region, the nearness rank of the data objects stays unchanged. When q crosses a bisector (e.g.,
b2,5), as exemplified in Fig. 10(b), IRU updates the nearness rank by swapping the corresponding
data objects o2 and o5. This creates two (or one if swapping the first/last pair) new adjacent pairs
of data objects, (o1,o2) and (o5,o3). Their bisectors are then computed (i.e., b1,2 and b3,5).

The V*-diagram algorithm. The V*-diagram algorithm uses IRU for rank maintenance within
the kNN answer and uses an additional safe region for validity checking of the current kNN
answer. Figure 10(c) illustrates how the safe region is computed. The algorithm performs a best-
first search on an R-tree of the data objects to retrieve the nearest neighbors. It retrieves (k + x)
NNs instead of k, where x is a system parameter. Let these NNs be o1,o2, ...,ok ,ok+1, ...,ok+x .
The x extra NNs are called auxiliary neighbors. They will serve as a cache for reducing the kNN
recomputation frequency. In the figure, we use k = 2 and x = 2. The (k + x)th NN, o4, defines
a circle centered at q with dist(q,o4) as radius. The region enclosed by the circle, denoted by
w(q,o4), is called the known region, since the (k + x) NNs are “known” to be in this region. No
other data object is in this region. Next, a safe region w.r.t. a data object, denoted by sr (q,oi ), is
computed for every kNN object oi (i ≤ k). When the query object is in this region, oi is closer to
the query object than any object o outside the known region. A point q ′ in this region satisfies:

∀o ∈O\ {o1,o2, ...,ok+x } : dist(q ′,oi ) ≤ dist(q ′,o) (1)

Based on triangle inequality, dist(q,o)−dist(q, q ′) ≤ dist(q ′,o). Equation 1 is tightened to be:
∀o ∈O\ {o1,o2, ...,ok+x } : dist(q ′,oi ) ≤ dist(q,o)−dist(q, q ′) (2)

Since o is outside the known region, we know dist(q,ok+x ) < dist(q,o). Equation 1 is further
tightened to be:

dist(q ′,oi ) ≤ dist(q,ok+x )−dist(q, q ′) (3)
Therefore, the safe region w.r.t. a data object oi is defined as follows:

sr (q,oi ) = {q ′ ∈ DS|dist(q ′,oi )+dist(q, q ′) ≤ dist(q,ok+x )}

This region is an ellipse where q and oi are the two focal points and dist(q,ok+x ) is the major
axis length. In Fig. 10(c), the two ellipses are the safe regions w.r.t. o1 and o2. Their intersection
guarantees that the query object is closer to them than to any object outside the known region.

Rank maintenance is done using a concept called the fixed-rank region. This region is formed
by the bisector between each pair of adjacent objects in the k +x NNs. It is computed by the IRU
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algorithm. If the query object is in this region, the nearness ranks of the k+x NNs do not change.
In Fig. 10(c), three bisectors are computed for the 4 NNs to bound the fixed-rank region.

The final safe region, the integrated safe region (ISR), is the intersection of the safe regions
w.r.t. the kNN objects and the fixed-rank region, as exemplified by the gray region in Fig. 10(c).
To compute this region, only the safe region w.r.t. ok needs to be considered. If the query object
is in sr (q,ok ), ok is closer to it than any object outside the known region. The fixed rank region
further guarantees o1,o2, ...,ok−1 to be closer to the query object than ok , and ok+1,ok+2, ...,ok+x

to be farther away from the query object than ok . Thus, the kNN set is correct.
Continuous query processing. Once the k+x NNs and the ISR are computed, the V*-diagram al-

gorithm monitors two types of events continuously as the query object moves. These events may
change the kNN set or the ISR: (i) When the query object leaves sr (q,ok ), the kNN set becomes
invalid. A reliability update is performed to recompute both the kNN set and the ISR. (ii) When
the query object crosses a bisector, e.g., between oi and oi+1, a rank update is performed to swap
the two objects in the ranking. If ok is affected, the safe region sr (q,ok ) is recomputed as well.

The V*-diagram also handles query and data updates. If the k value changes, there are two
cases: (i) The new k value exceeds k +x. Then the kNN set and the ISR are recomputed. (ii) Oth-
erwise, the k th NN, ok , and its safe region, sr (q,ok ), are computed. If the query object is outside
the new sr (q,ok ), the kNN set and the ISR are recomputed. For data object updates (insertion or
deletion), a query recomputation is required if the updates relate to the known region.

3.1.5. Implicit Safe Regions. The V*-diagram computes safe regions efficiently which are not
tight. In comparison, RIS-kNN computes tight safe regions (i.e., order-k Voronoi cells) but is less
efficient. To overcome the limitations of both algorithms, Li et al. [2014] compute safe regions
based on the influential neighbor set (INS), which is a set of data objects surrounding the current
kNNs that define an order-k Voronoi cell implicitly. They name their algorithm INS-kNN.

INS-kNN computes safeguarding objects and checks whether the kNNs are closer to the query
object q than the safeguarding objects. If yes, the kNNs are valid. A natural choice of safeguarding
objects is the objects contributing edges to the order-k Voronoi cell of the kNNs. In Fig. 11(a), q is
in v3({o2,o4,o5}), which is the gray cell labeled by the subscripts (2,4,5) of the corresponding data
objects {o2,o4,o5}. The kNNs are {o2,o4,o5}. There are 8 neighboring order-3 Voronoi cells, which
are also labeled by the subscripts of their corresponding data objects. These corresponding data
objects form a set {o1,o2,o4,o5,o6,o8,o9,o10}. Subtracting the kNN set {o2,o4,o5} from this set
leaves {o1,o6,o8,o9,o10}. These objects (the gray points) are the safeguarding objects. The edges
of v3({o2,o4,o5}) are formed by the bisectors between the kNN objects and these objects, e.g.,
the bottom edge is formed by the bisector between o2 and o8. As long as q is closer to the kNN
objects than to these objects, q is in v3({o2,o4,o5}). This set of safeguarding objects, identified
from the neighboring order-k Voronoi cells, is named the minimal influential set (MIS).
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Fig. 11: MIS and INS of an order-3 Voronoi cell

The MIS defines a tight safe region. However, to compute the MIS is too expensive as it requires
computing an order-k Voronoi cell. Li et al. [2014] propose to use a superset of the MIS called the
influential neighbor set (INS), which defines a tight safe region with little computation overhead.
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The influential neighbor set. The INS is formed by (order-1) Voronoi neighbors. In an order-1
Voronoi diagram, two data objects are Voronoi neighbors if their Voronoi cells share an edge.
For example, in Fig. 11(b), o1 and o2 are Voronoi neighbors. The set of Voronoi neighbors of an
object oi in the Voronoi diagram of O is denoted by NO(oi ). Let S be a kNN set. Then the INS of
S, denoted by IO(S), is the union of the Voronoi neighbor sets of the objects in S minus S:

IO(S) = (
⋃

oi∈S
NO(oi )) \S

As shown in Fig. 11(b), the INS of S= {o2,o4,o5} is NO(o2)∪NO(o4)∪NO(o5) \S, which is:

{o1,o4,o5,o6}∪ {o1,o2,o3,o5,o7,o8,o9}∪ {o2,o4,o6,o9,o10} \ {o2,o4,o5} = {o1,o3,o6,o7,o8,o9,o10}

The INS is always a super set of the MIS [Li et al. 2014]. Essentially, INS-kNN uses the neighbors
of the kNNs in an order-1 Voronoi diagram to approximate those in an order-k Voronoi diagram.
INS-kNN precomputes the order-1 Voronoi diagram and indexes the data objects together with
the Voronoi cells in a VoR-tree [Sharifzadeh and Shahabi 2010], which enables fast retrieval of
the Voronoi neighbors. Meanwhile, the average number of Voronoi neighbors per data objects is
a small constant, as constrained by Euler’s formula. Thus, the INS can be computed online with
high efficiency. As a result, INS-kNN outperforms V*-diagram consistently in practical settings.

Continuous query processing. INS-kNN computes a few extra NNs to reduce the recomputa-
tion frequency. It computes a ρkNN set Sρ together with the INS IO(Sρ). Here, ρ is a system pa-
rameter (ρ > 1). Its value is obtained empirically. The top kNNs in Sρ are returned as the query
answer, while the rest of the objects are used as safeguarding objects. When the kNN objects are
closer to the query object than the safeguarding objects, the query answer is valid. If a kNN ob-
ject becomes invalid, there are two cases: (i) If the kNN object is invalidated by a new NN object
in Sρ , we simply replace the invalidated kNN object with the new NN object, and the invalidated
object becomes a safeguarding object. This ensures that the kNN set and the safeguarding ob-
jects are up-to-date because the Voronoi neighbors of the new NN object is already computed
and in IO(Sρ) at the very beginning. (ii) If the kNN object is invalidated by an object outside Sρ ,
a full recomputation of the sets Sρ and IO(Sρ) is required.

INS-kNN also allows setting the value of k at query time, since there is no precomputation
based on the value of k. When handling data updates, INS-kNN first updates the VoR-tree using
the built-in update functions. Then the kNN set and INS are recomputed accordingly.

3.2. Safe Regions for Data Objects
Section 3.1 covers studies on safe regions for the query object. Those studies, with the exception
of that by Benetis et al. [2001, 2002, 2006], assume stationary data objects. Other studies assume
moving (or streaming) data objects [Prabhakar et al. 2002; Jensen et al. 2004; Mokbel et al. 2004;
Koudas et al. 2004; Hu et al. 2005; Xiong et al. 2005]. Moving data objects make building (tight)
safe regions more challenging as their nearness rank is more difficult to maintain. Periodic query
reevaluation is needed, where incremental computation is applied to reduce the query costs.
Only the objects updated since last query evaluation are considered in the next round of query
reevaluation. SINA [Mokbel et al. 2004] and SEA-CNN [Xiong et al. 2005] are typical algorithms
in this category. Incremental computation algorithms, however, are not the focus of the survey.
One study [Hu et al. 2005] builds safe regions on moving data objects. We discuss it next.

The SRB Algorithm. Hu et al. [2005] assume a set of CkNN queries registered at the server,
where the query points are fixed. A combined safe region is computed for each data object so
that an object’s movement inside this region does not affect the answer validity of any registered
query. The combined safe region is the intersection of a set of individual safe regions, each of
which guarantees that the movement of the object does not affect one query. We only discuss
how an individual safe region is computed and refer to it simply as a safe region. The query
algorithm using this safe region is the safe region based (SRB) algorithm.

SRB uses rectangular safe regions, which are computed incrementally for multiple queries. As-
sume that the data objects are already enclosed by their respective safe regions for some queries.
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When a new query located at q is issued, the safe regions need to be updated. To update the safe
region of the i th NN, oi , we need to examine the safe regions of the preceding and the following
NNs, oi−1 and oi+1. The updated safe region ensures that oi is bounded between oi−1 and oi+1.
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(a) SRB safe regions
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(b) SRB safe region computation

Fig. 12: Safe region for a data object

Figure 12(a) gives an example, where the safe regions of oi−1 and oi+1 are denoted by
the two dashed rectangles. The minimum distance between q and the safe region of oi+1,
mindist(q,oi+1), defines a circle C i+1 centered at q and with a radius r i+1 = mindist(q,oi+1);
the maximum distance between q and the safe region of oi−1, maxdist(q,oi−1), defines a circle
C i−1 centered at q and with a radius r i−1 = maxdist(q,oi−1). These two circles form a ring. Any
rectangle inside this ring enclosing oi forms a safe region. SRB uses the inscribed rectangle of the
ring with the longest perimeter as the safe region for safe region maximization. This safe region
has an edge tangent to C i−1 and two vertices on C i+1, denoted by v1 and v2. The edge of the
safe region may be tangent to C i−1 either horizontally or vertically, as illustrated by the two solid
rectangles R1 and R2, respectively. We discuss only the horizontal case R1. The vertical case has
the same computation procedure. As illustrated in Fig. 12(b), assume a rectangular coordinate
system where q is the origin and oi is in the fourth (southeast) quadrant. Let v1 be the vertex of
R1 in the fourth quadrant and let θ be the angle from qv1 to the y-axis. Then, the perimeter of R1
can be computed as a function of θ:

perimeter(R1,θ) = 4r i+1 sinθ+2(r i+1 cosθ− r i−1)

The first order derivative shows that this function is monotonic and has a maximum value at
θ = arctan2. If the rectangle defined by θ = arctan2 encloses oi , it is used as the safe region.
However, oi may be outside this rectangle. In this case, the rectangle with the smallest θ that
encloses oi is used. This is identified by comparing arctan2 with the two angles θx and θy that
represent the angles between qx and q y and the y-axis, respectively. Here, x and y are the two
points where a vertical line and a horizontal line through oi intersect C i+1. If θy < arctan2, oi is
close to C i+1 and the y-axis; thus, θy should be used as θ to define the safe region. Similarly, if
θx > arctan2, oi is close to C i+1 and the x-axis, meaning that θx should be used as θ.

Two questions remain: (i) What if oi is too close to C i−1 (e.g., at o′) and cannot be covered by
R1 or R2? (ii) What if it is the first query where there is no safe region and hence no mindist or
maxdist to define the circles? Hu et al. [2005] did not discuss these questions, but they can be
addressed easily. For Question (i), we can use a rectangle tangent to C i−1 at a vertex instead of an
edge (e.g., R ′). The point where qo′ intersects C i−1 can be used as this vertex. For Question (ii),

we can use dist(q,oi )+dist(q,oi+1)
2 as mindist(q,oi+1) and maxdist(q,oi ) to define the circles.

Continuous query processing. When a CkNN query is issued, a static kNN query is performed
to retrieve the kNN answer. Safe regions of the data objects are computed following the above
procedure. A quarantine region (QR) is computed, which is a circle centered at the query point
that encloses all and only the safe regions of the kNN objects. When an object moves out its safe
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region, if it enters or leaves the QR, a recomputation of the kNN answer and the safe regions is
required. Otherwise, only the safe region of the object itself is recomputed. Similarly, if an object
has been inserted into or deleted from the QR, a query recomputation is needed.

3.3. Safe Regions in Spatial Networks
Most types of spatial queries have a variant where the objects are constrained in a spatial net-
work. This is due to the proliferation of spatial networks, most notably road networks. The CkNN
query is no exception. In this section, we review safe region techniques to process CkNN queries
in spatial networks: the network Voronoi diagram technique [Kolahdouzan and Shahabi 2004b],
the split point technique [Kolahdouzan and Shahabi 2004a; Cho and Chung 2005], and the net-
work V*-diagram technique [Nutanong et al. 2010]. These techniques have similarities to the
Voronoi diagram technique (Section 3.1.2), the influence point based technique (Section 3.1.3),
and the V*-diagram technique (Section 3.1.4), respectively. The main difference is that network
distance is used instead of Euclidean distance. All three techniques assume static data objects
and a moving query object. The network Voronoi diagram technique precomputes safe regions
over the entire spatial network, while the split point technique computes safe regions locally,
edge-by-edge over a given trajectory of the query object. The network V*-diagram technique
also computes safe regions locally, but it does not require the trajectory of the query object to
be given. These three techniques are discussed in Sections 3.3.1, 3.3.2, and 3.3.3, respectively.
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Fig. 13: Construction of a network Voronoi diagram

We start with the data representation of CkNN queries in spatial networks. As Fig. 13(a) shows,
a spatial network is modeled as a graph G = 〈V ,E ,W〉. The set V = {v1, v2, ..., vh} is a set of h ver-
tices (e.g., road intersections), shown as gray dots. The set E = {e1,e2, ...,em} is a set of m edges
(e.g., road segments), shown as line segments between vertices. An edge ei , j connects two ver-
tices vi and v j . The weight function W : E → R+ maps an edge to a real number which is the
weight (e.g., length) of the edge. Both directed and undirected graphs have been considered in
the literature. We consider undirected graphs. The data objects {o1,o2, ...,on} are points in the
network, shown as hollow circles. They may be at the vertices (e.g., o2) or on the edges (e.g., o1).
A query object q is a point moving in the network, shown as the black dot. A CkNN query main-
tains the k objects with the smallest shortest path distances to q . Here, the shortest path distance
between two objects is defined as the “length” (sum of the edge weights) of the shortest path
between the two objects. We use distn(·) to represent the shortest path distance. In Fig. 13(a), a
C3NN query returns {o5,o9,o4} as they are the nearest at this particular moment.

3.3.1. The Network Voronoi Diagram Approach. A Voronoi diagram can also be obtained on a
spatial network, where nearness is defined by the shortest path distance. The resulting diagram
is a network Voronoi diagram [Okabe et al. 1992], where a network Voronoi cell consists of a set
of edge segments. Figure 13(b) represents the edge segments of the same network Voronoi cell
with same-style line segments, e.g., the dashed line segments connected to o5 form the cell of o5.
The query object q is on one of these line segments. Thus, its NN is o5. We denote the network
Voronoi cell of oi by vcn(oi ):

vcn(oi ) = {p ∈G|distn(p,oi ) ≤ distn(p,o j ),∀ o j 6= oi ,o j ∈O}
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Here, p represents a point in the spatial network. The boundary of a cell is formed by a set of
boundary points, as denoted by the bars in Fig. 13(b).

The network Voronoi diagram can be computed by the parallel Dijkstra algorithm [Erwig and
Hagen 2000]. This algorithm expands simultaneously a shortest path tree from every object until
the trees meet. The meeting points are the boundary points of the cells.

Continuous query processing. Network Voronoi cells can be used as safe regions to process
C1NN queries. Processing a CkNN query where k > 1 is more difficult because higher order net-
work Voronoi diagrams are expensive to compute.

Kolahdouzan and Shahabi [2004b] propose the Voronoi-based network nearest neighbor (VN3)
algorithm to compute static kNNs based on the network Voronoi diagram. However, applying
VN3 to process a CkNN query has very high cost. The algorithm starts by locating the first NN
by searching from the precomputed network Voronoi cells. It has been shown that the (k +1)st

NN must be a neighbor of a kNN object. Thus, the algorithm proceeds to iteratively put the
neighboring objects of the NNs found into an NN candidate set and then finds the next NN from
this set. To find the next NN, the shortest path distances between the query object and the NN
candidates are computed and compared. The first kNNs found are returned as the query answer.
When the query object moves continuously, the graph needs to be traversed constantly to update
the shortest path distances and the kNNs, which is expensive.

3.3.2. The Split Point Approach. The influence point based approach for Euclidean space (Sec-
tion 3.1.3) assumes that the query object has a linear trajectory and finds the influence points
to partition the trajectory into segments, each of which has a different kNN set. This approach
extends naturally to spatial networks where the query trajectory is constrained by linear network
edges. Kolahdouzan and Shahabi [2004a] propose the Intersection Examination (IE) algorithm
to split an edge into segments that each has a different kNN set. They further propose the Upper
Bound (UB) algorithm using the lazy search technique (Section 3.1.1) to reduce the number of
edges to split. Both IE and UB, however, cannot split edges with data objects on them. They have
to first break the edges by the data objects. Cho and Chung [2005] overcome this limitation with
the Unique Continuous Search (UNICONS) algorithm. We discuss these three algorithms next.

The Intersection Examination algorithm. Kolahdouzan and Shahabi [2004a] show that the
kNN answer at any point on an edge ei , j between vertices vi and v j must be a subset of the data
objects on ei , j and the kNNs of vi and v j . As shown in Fig. 14(a), which is a version of Fig. 13(a)
zoomed-in on edge e6,12, the 2NN set of q on e6,12, {o5,o9}, is a subset of U = {o9}∪ {o4,o5}∪
{o9,o10}, which is the union set of the data objects on e6,12, the 2NNs of v6, and the 2NNs of v12.
As q moves from v6 to v12, some objects in U will become closer to q (e.g., o10); some will become
farther away (e.g., o4 and o5); others will first become closer and then farther away (e.g., o9). The
objects with constantly increasing or constantly decreasing distance to q , i.e., {o4,o5,o10}, must
not be on e6,12. The constant distance changing patterns enables finding points on e6,12 where
the nearness ranks of the data objects change, which are the split points used to split the edge
into segments (safe regions). Object o9 does not have a constant distance changing pattern. Its
nearness rank is more difficult to compute. This is addressed by breaking an edge into multiple
edges using the data objects as vertices, e.g., e6,12 is broken into two edges e6,o9 and eo9,12. The
weights of these edges are labeled in parentheses in Fig. 14(a), e.g., e6,12 has a weight of 5.
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Fig. 14: The split point based algorithms
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Let e6,o9 be the edge for which the split points are to be computed. The IE algorithm first gen-
erates a list L storing the kNNs of v6 and vo9 sorted in ascending order of their distances to v6.
Each element in L is represented by a 3-tuple 〈oi ,distn(oi , v6),↑ or ↓〉 where “↑” or “↓” denote
whether the object gets closer or farther away as q moves from v6 to vo9. In the figure, the inte-
gers by the edge segments represent the weights of the segments, e.g., |e6,o5| = 1. Based on these
weights, the list L is computed as L = 〈〈o5,1,↑〉,〈o4,3,↑〉,〈o9,4,↓〉,〈o10,12,↓〉〉. In this list, an “↑” el-
ement 〈oi ,distn(oi , v6),↑〉 followed by a “↓” element 〈o j ,distn(o j , v6),↓〉 will yield a split point,
e.g., 〈o4,3,↑〉 and 〈o9,4,↓〉. This is because oi is currently closer but is getting farther away while
o j is currently farther away but is getting closer. At some point the two objects will swap ranks in
L. This point is a split point. The split point is a point on e6,o9 with the following distance to v6:

1

2
(distn(o j , v6)−distn(oi , v6)) (4)

For the pair 〈o4,3,↑〉 and 〈o9,4,↓〉, the split point has a distance of 1
2 (4 − 3) = 0.5 from v6, as

denoted by s1 (the horizontal bar) on e6,o9. Adjacent pairs with other patterns (e.g., both with
“↑”) do not have this property. They do not yield any split points and can be omitted.

The IE algorithm finds all adjacent pairs with the “↑”-“↓” pattern and compute the split
points. The split point closest to v6 is recorded as the first split point s1, yielding a new edge
es1,o9. Now the algorithm finds the split points for es1,o9. The distance values in L are updated
from distn(oi , v6) to distn(oi , s1). The ranking of the elements is updated accordingly. This
procedure repeats until no more split points can be found. The kNNs of the segments cre-
ated by the split points are the top-k elements in L when the split points are generated. In
Fig. 14(a), after split point s1 is created at a distance of 0.5 from v6, list L is updated to 〈〈o5,1.5,↑
〉,〈o9,3.5,↓〉,〈o4,3.5,↑〉,〈o10,11.5,↓〉〉. Two “↑”-“↓” patterns are found: (〈o5,1.5,↑〉,〈o9,3.5,↓〉) and
(〈o4,3.5,↑〉,〈o10,11.5,↓〉), which produce two split points at distances of 1 and 4 from s1, respec-
tively. The one closer to s1 is recorded as s2. The list L is then updated to 〈〈o9,2.5,↓〉,〈o5,2.5,↑
〉,〈o4,4.5,↑〉,〈o10,10.5,↓〉〉. Subsequently, split point s3, which has a distance of 3 from s2, is found.
This split point is outside edge e6,o9, and is omitted. Then the algorithm terminates.

The Upper Bound algorithm. The IE algorithm requires a kNN search for every vertex vi
(and object) on the query trajectory to find candidate kNN objects. The kNN search is expen-
sive since it requires a run of Dijkstra’s algorithm. Thus, reducing the number of vertices to be
considered is essential to reduce the query cost. The UB algorithm proposes an improvement
based on the lazy search technique (Section 3.1.1). Let the current k th and (k +1)st NNs be ok

and ok+1, respectively. The lazy search technique states that, before q moves for a distance of
δ = 1

2 (dist(q,ok+1)− dist(q,ok )), the kNN answer stays valid. In a spatial network, a similar
observation holds. Let the edge ei , j between vi and v j be the edge to be processed. We com-
pute the (k +1)NNs of vi and put them into list L. Before doing the same for v j , we compute the
first split point using L and the distance of this split point from vi . This distance is computed by
Equation 4, which has the same form as that of δ. If this distance exceeds the weight of ei , j , the
kNN set at vi is valid throughout ei , j . In this case, no kNN computation is needed for v j .

The Unique Continuous Search algorithm. Cho and Chung [2005] follow the same overall
algorithmic approach as IE, but use an alternative way to compute the split points. Assume that
the query object q moves from vi to v j on an edge ei , j and that its distance to vi isα. To compute
the split points on ei , j , first, the distance between q and a kNN candidate object o in the list L,
distn(q,o), is formulated as a function of α:

distn(q,o) = distn(o, v∗)+|α−distn(v∗, vi )| α ∈ [0, |ei , j |] (5)

This distance has two terms: (i) distn(o, v∗), which represents the distance between o and the
vertex v∗(v∗ = vi or v j ) of which o is a kNN object; (ii) |α−distn(v∗, vi )|, where distn(v∗, vi )
represents the distance between v∗ and vi . There are three different cases for the values of
distn(o, v∗) and distn(v∗, vi ). We again use a C2NN query in Fig. 14(a) to illustrate these cases.
Now edge e6,12 is considered as a whole instead of two edges, i.e., vi = v6 and v j = v12.
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(1) For a kNN object of vi : distn(o, v∗) = distn(o, vi ) and distn(v∗, vi ) = distn(vi , vi ) = 0.
Object o5 is an example, where distn(o5, v∗) = distn(o5, v6) = 1 and distn(v∗, vi ) =
distn(v6, v6) = 0. Thus, distn(q,o5) = 1+|α| = 1+α.

(2) For a kNN object of v j : distn(o, v∗) = distn(o, v j ) and distn(v∗, vi ) = distn(v j , vi ) = |ei , j |.
Object o10 is an example, where distn(o10, v∗) = distn(o10, v12) = 7 and distn(v∗, vi ) =
distn(v12, v6) = 5. Thus, distn(q,o10) = 7+|α−5|.

(3) For an object on ei , j : distn(o, v∗) = 0 and distn(v∗, vi ) = distn(o, vi ).
Object o9 is an example, where distn(o9, v∗) = 0 and distn(v∗, vi ) = distn(o9, v6) = 4. Thus,
distn(q,o9) = |α−4|.

Note that Equation 5 handles data objects on ei , j as well (Case 3). Thus, UNICONS does not need
to treat these data objects as vertices and hence requires fewer kNN searches.

In all three cases, distn(o, v∗) and distn(v∗, vi ) are constants once the edge ei , j and the ob-
ject o are given; the distance function in Equation 5 is a (piecewise) linear function ofα. This dis-
tance function can be plotted as a polyline in a two-dimensional coordinate system. If we draw
the polylines for the candidate kNN objects in list L, the points where these polylines intersect
are the points where the nearness ranks of the objects change, which are the split points.

Figure 14(b) shows an example, where UNICONS computes the split points for a C2NN
query from v6 to v12 in Fig. 14(a). The kNN candidates are {o5,o4,o9,o10}. Their correspond-
ing distance functions are: distn(q,o5) = 1+α, distn(q,o4) = 3+α, distn(q,o9) = |α−4|, and
distn(q,o10) = 7+ |α−5|, respectively. These distance functions are drawn in the figure. Three
intersection points, s1 = 0.5, s2 = 1.5, and s3 = 4.5, are found where α ≤ |e6,12| = 5. They are the
split points. The 2NN answers corresponding to each segment produced by the split points can
be identified easily by checking which lines are the lowest in the segment. For example, in the
segment [0,0.5), the 2NN set is {o5,o4} since these objects have the lowest lines in the range.

Continuous query processing. The three algorithms above split the query trajectory into seg-
ments and compute the kNN answer for each segment. As long as the query object stays on the
same segment, no answer update is required. Only when the query object crosses a split point,
the answer is updated and sent to the query user. If the value of k changes or a data object update
occurs, a recomputation of the split points is needed.

3.3.3. The Network V*-diagram Approach. The network V*-diagram approach [Nutanong et al.
2010] is a relatively straightforward extension of the V*-diagram (Section 3.1.4). This approach
follows the same overall algorithmic procedure as the V*-diagram. It also computes the known
region, the safe region w.r.t. a data object, the fixed ranked regions, and the integrated safe region,
but now network distance is used in the computation, not Euclidean distance.

To compute the known region, (k + x)NNs are computed. Let ok and ok+x be the k th and
(k + x)th NNs, respectively. The edge segments within the range of distn(q,ok+x ) from q are
identified with a Dijkstra’s algorithm like traversal starting from q . These edge segments form
the known region. Similarly, the edge segments where any point q ′ on the segments satisfies
dist(q ′,ok )+dist(q, q ′) ≤ dist(q,ok+x ) are identified. These edge segments form the safe re-
gion w.r.t. ok . Computing the fixed rank regions corresponds to finding the boundary points
where the nearness ranks of the (k +x)NNs change, which are essentially the split points used in
IE, UB, and UNICONS. They can be computed by any of these algorithms.

4. SAFE REGIONS IN CONTINUOUS RANGE QUERIES
We proceed to consider safe regions for continuous range (CR) queries. In a CR query with a static
query object, the query range is a straightforward safe region for the data objects: as long as a data
object does not enter or leave the query range, it does not cause the query result to change. Exist-
ing studies focus on computing safe regions for a moving query object where the data objects are
static. Two types of query range in Euclidean space have been considered, namely rectangular
ranges and circular ranges centered at a query location. In spatial networks, the query range is
formed by edge segments surrounding a query object.
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Regardless of the type of query range, a safe region for a CR query should ensure that the query
range (i) encloses the current result objects and (ii) does not enclose any non-result objects. In-
tuitively, Condition (i) can be achieved by ensuring that the query range encloses the minimum
bounding region of the current result objects. Condition (ii) can be achieved by ensuring that the
query range is enclosed by the maximum bounding region of the current result objects. The min-
imum and maximum bounding regions are the smallest and largest regions (with a regular shape
such as a rectangle) centered at the query location that enclose, and only enclose, the result ob-
jects. Movements of the query range between these two bounding regions does not invalidate
the query answer. The estimated window vector (EWV) [Huang and Huang 2013] and the range
safe region [AL-Khalidi et al. 2013] employ this idea and compute safe regions for rectangular and
circular range queries, respectively.

The minimum and maximum bounding regions are rough estimates of the locations of the
data objects. A safe region based on bounding regions will not be tight. One way to define a tight
safe region is to use the Minkowski region (MR). The MR is a region that is identical to the query
range, but centers at a data object rather than the query object. If a data object is enclosed by the
query range, its MR must enclose the query object, and vice versa. Thus, as long as the MRs of
the result objects all enclose the query object, and no MR of any non-result object encloses the
query object, the result stays valid. This means that the region obtained as the intersection of the
MRs of the result objects minus the MRs of the non-result objects defines a tight safe region. The
validity region [Zhang et al. 2003], the safe zone [Cheema et al. 2010], the safe exits [Yung et al.
2012], and the safe exits (directed) [Cho et al. 2014] employ this idea and compute safe regions for
rectangular, circular, undirected network, and directed network range queries, respectively.

Figure 15 summarizes the query range types and the corresponding safe region techniques.
Next, we cover safe region techniques for rectangular and network range queries in Sections 4.1
and 4.2, respectively. Safe region techniques for circular range queries are similar to those for
rectangular range queries and are discussed in Appendix A for completeness and conciseness.

Rectangular range query:

Circular range query:

Undirected network range query:

Directed network range query:

Validity region (2003) EWV (2013)

Safe exits (2012)

Safe exits, directed (2014)

Range safe region (2013)Safe zone (2010)

Fig. 15: Evolution of safe region techniques for CR queries

4.1. Safe Region for Rectangular Range Queries
CR queries with a rectangular query range are commonly referred to as continuous window
queries. We start with the bounding region based technique, estimated window vector, and then
discuss the Minkowski region based technique, validity region.

4.1.1. The Estimated Window Vector. Huang and Huang [2013] propose a proxy-based ap-
proach to process the continuous window query, assuming a moving query object and static
data points. This approach partitions the data space by a grid and assigns a proxy to handle the
queries in a few grid cells. Query results are cached at the proxies and are used to answer subse-
quent queries in the same cells. Only when no result can be found in a local proxy’s cache, a new
query is forwarded to a central server for processing. This way, the query workload is distributed,
and higher query efficiency is achieved. How the queries are delegated is beyond the scope of
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the survey. Huang and Huang [2013] propose to use the estimated window vector (EWV) as the
safe region to avoid query recomputation when the query object moves at a proxy.

The EWV, denoted by ew v , is a vector representing the safe distances that the query object
q (and the query window) can move in four different directions, namely, northeast (ne), north-
west (nw), southeast (se), and southwest (sw), such that the query window stays between the
minimum and maximum bounding rectangles of the result objects:

ew v = 〈〈d xne ,d yne〉,〈d xnw ,d ynw 〉,〈d xse ,d yse〉,〈d xsw ,d ysw 〉〉
Here, the distance that q can move in a direction, e.g., nw , is represented by a tuple, e.g.,
〈d xnw ,d ynw 〉. The two values d xnw and d ynw denote the distances that q can move along the
x-axis and y-axis in the nw direction, respectively.
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Fig. 16: The estimated window vector

Figure 16 illustrates the computation of the EWV, where the solid rectangle in each sub-figure
is the query window. The EWV takes two steps to compute. In Fig. 16(a), the four edges ew , ee ,
en , and es of the query window are extended to four lines lw , le , ln , and ls that partition the data
space into 9 regions labeled I to IX. The first step considers the west, east, north, and south re-
gions (i.e., the shaded Regions IV, VI, II, and VIII). A vector 〈dw ,de ,dn ,ds〉 is computed, where
dw ,de ,dn ,ds represent the safe distances that the query window can move in the four regions
without reaching a data object. Take dw as an example. Edge ew can move west for a distance of
dist(ew ,o7). Here, object o7 is the closest object in the west region (Region IV). Since the query
window has a fixed size, when ew moves to the west, ee moves to the west as well. The distance dw
needs to also guarantee that ee does not reach o5 which is a result object closest to ee . Formally:

dw = min{dist(ew ,o7),dist(ee ,o5)}, where
o7 = argmax

oi

oi .x,∀oi ∈O∩oi .x < ew .x ∩es .y ≤ oi .y ≤ en .y , and

o5 = argmax
oi

oi .x,∀oi ∈O∩ew .x ≤ oi .x ≤ ee .x ∩es .y ≤ oi .y ≤ en .y
(6)

Here, “.x” and “.y” denote the x- and y-coordinates of an object (a data object or an edge), re-
spectively. The two objects o7 and o5 defining dw can be identified with a simple scan on the
object data set O. The other three distances de ,dn , and ds are computed similarly.

The vector 〈dw ,de ,dn ,ds〉 defines a rectangular region, i.e., the large dashed rectangle in
Fig. 16(a). This rectangular region is safe in the region overlapping with Regions II, IV, V, VI, and
VIII. However, this region may also overlap with the northwest, northeast, southeast, and south-
west regions (Regions I, III, IX, and VII). The overlapping regions are not safe, since data objects in
the overlapping regions were not considered when computing 〈dw ,de ,dn ,ds〉. The second step
considers those data objects. Take the northwest region (Region I, the gray region in Fig. 16(b))
as an example. We find the skyline objects in this region. A skyline object forms a rectangle with
the northwest vertex of the query window vnw that does not enclose any data objects. Objects
o1 and o3 are skyline objects as there is no data object inside the two small dashed rectangles
formed by them and vnw . They allow the query window to move towards them without reaching
any non-result object. Object o1 is chosen to define d xnw and d ynw as it forms a larger rectangle.

d xnw = ew .x −o1.x,d ynw = o1.y −en .y
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The other components of EWV are computed with the same procedure. The skyline objects
themselves may be computed by any skyline algorithms (e.g., [Börzsönyi et al. 2001]), or sim-
ply by iterating through the objects and testing whether they satisfy the skyline object condition.

Continuous query processing. Once the EWV is computed, as long as the query window is
bounded by the EWV, the current query result stays valid, and no query recomputation is re-
quired. When the query window leaves the region bounded by the EWV or changes its size, or if
a data object update occurs, the query and the EWV are recomputed.

4.1.2. The Validity Region. The EWV is simple to compute. However, its safe region is not tight.
This is because the EWV derives safe distances from only a limited number of moving directions
to bound query window movement in all directions. As shown in Fig. 16(b), the direction towards
o1 is used to define d xnw and d ynw , while the query window can move towards o3 without inval-
idating the query result. To compute a tight safe region, Zhang et al. [2003] use Minkowski regions
(MR). Their safe region is named the validity region. They also assume a moving query object q , a
rectangular query window centered at q , and a set of static data objects O. As mentioned earlier,
the MR of a data object oi , denoted by mri , is a rectangle identical to the query window centered
at oi . In Fig. 17(a), the solid rectangle represents the query window and the dashed rectangles
represent MRs. The data objects o4 and o5 in the query window have MRs mr4 and mr5 that en-
close q . A data object not in the query window, e.g., o1, has an MR that does not enclose q either.
In general, as long as the MRs of the result objects all enclose q and no MR of any non-result ob-
ject encloses q , the result objects stay valid. The validity region is the intersection of the MRs of
the result objects minus the MRs of the non-result objects. This safe region is tight by definition.
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Fig. 17: Computation of the validity region
To compute the validity region, Zhang et al. [2003] first compute the inner validity region,

which is the intersection of the MRs of the result objects. Since each MR is a rectangle, the inter-
section of multiple MRs remains a rectangle, e.g., the gray region in Fig. 17(a). To compute the
intersection, only the MRs of the left-, right-, top-, and bottom-most result objects need to be
considered. These few objects that contribute to the inner validity region are named the inner
influence objects. In Fig. 17(a), o4 and o5 are influence objects. If there were another object o′
between o4 and o5 (the dashed circle), its MR would not contribute to the inner validity region.
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The MR of a non-result object only needs to be considered if it intersects the inner validity
region. Such a non-result object is called an outer influence object. Even for an outer influence
object, its MR may not have any impact on the final validity region, since the MR may be shad-
owed by the MRs of other outer influence objects. To identify the MRs that are not shadowed by
others and compute the final validity region, the following procedure is used. At first, both the
inner influence objects and the outer influence objects are added to a candidate influence object
set, denoted as Cinf . In Fig. 17(a), Cinf = {o1,o2,o4,o5,o6,o8,o9,o10}. A final influence object set,
denoted as Sinf , is initialized to be empty. Next, as illustrated in Fig. 17(b), a vertex is randomly
chosen from the four vertices of the inner validity region v1, v2, v3, and v4. Let the vertex chosen
be v1. A time-parameterized window query (TPWQ) [Tao and Papadias 2002] is computed from
q towards v1. Similar to TPkNN, a TPWQ returns the first data object that may enter or leave
the query window if q moves in a given direction. In Fig. 17(b), o1 is returned since it is the first
object to enter the query window when q moves towards v1. The validity region is subtracted by
mr1. Object o1 is then removed from Cinf and added to Sinf . Now the inner validity region has 6
vertices. Another vertex is randomly chosen, e.g., v4, as shown in Fig. 17(c). A TPWQ towards v4
discovers o8, which is removed from Cinf and added to Sinf . Then mr8 is subtracted from the va-
lidity region. Note that if there were another outer influence object o′ ∈Cinf near o8 (the dashed
circle), the intersection of the MR of o′ and the query window would be shadowed by mr8. Thus,
o′ should be removed from Cinf as well. This procedure continues. The vertices of the remain-
ing inner validity region are used to construct more TPWQs. Not every TPWQ returns an outer
influence object. It may return an inner influence object as well. In Fig. 17(c), if the query object
moves towards v5, o5 will be the first object to leave the query window. The inner validity region
needs not to be updated, and v5 is confirmed. Object o5 is simply removed from Cinf and added
to Sinf . Further, when few objects are left in Cinf , a TPWQ may not return any object at all. In
this case, the corresponding vertex is also confirmed. When all the vertices are confirmed, the
remaining inner validity region is returned as the final validity region, as illustrated in Fig. 17(d).

Continuous query processing. When a continuous window query is issued, the current query
result is first computed (this can be done by any static window query algorithm). The validity
region and the influence object set Sinf are then computed. Set Sinf is returned together with the
query result. As long as q stays in the validity region, no computation occurs. This is checked
by testing whether q remains in the MRs of the inner influence objects in Sinf and outside the
MRs of the outer influence objects in Sinf . This testing is simpler than testing whether q is in the
validity region, which may have an irregular shape. When the size of the query window changes
or if a data object update occurs, a recomputation is needed to update the query result and Sinf .

4.2. Safe Regions in Spatial Networks
Given a spatial network G = 〈V ,E ,W〉 as formulated in Section 3.3, a CR query on G with a moving
query object q and a query range r reports all the data objects within distance r of q continu-
ously. For a CR query on G , the idea of the validity region still applies. However, the Minkowski
region must be replaced by a set of edge segments within distance r of a data object oi . We call
such edge segments the Minkowski edge segments (MES). The intersection of the MES of the re-
sult objects minus those of the non-result objects defines a tight safe region. Yung et al. [2012]
call the boundary points of such a safe region safe exits and propose an algorithm to compute
them. Cho et al. [2014] extend the algorithm to directed graphs. We discuss these two studies in
Sections 4.2.1 and 4.2.2, respectively. Afyouni et al. [2012, 2014] partition an indoor space with a
grid and build a grid graph over the space. A CR query on this graph is processed by continuously
updating the boundary nodes, which are the graph vertices on the boundary of the query range.
Only data objects inside the region bounded by the boundary nodes need to be considered for
the query answer. Afyouni et al. organize the graph vertices in a multi-granule graph such that
boundary nodes can be computed efficiently with a hierarchical network expansion technique (a
procedure similar to a breadth-first traversal of the multi-granule graph). The boundary nodes
define a natural safe region, i.e., the query range. We do not discuss them further.
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4.2.1. Safe Exits. Safe exits are formulated based on the Minkowski edge segments. Let mes(oi )
be the set of MES of a data object oi :

mes(oi ) = {es|es is a segment of an edge ei , j ∈ E ,∀p on es : distn(oi , p) ≤ r }

In an undirected graph G , if a data object oi is in the query range then the query object q must
be on the MES of oi , and vice versa. The intersection of the MES of the result objects minus those
of the non-result objects defines a tight safe region, denoted by sr (q,r ). Let O and S denote the
object data set and the result set, respectively. Then:

sr (q,r ) = ⋂
oi∈S

mes(oi ) \
⋃

o j ∈O\S
mes(o j )
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Fig. 18: Safe exits in spatial networks

The safe exits, denoted by se(q,r ), are the boundary points of sr (q,r ). Figure 18(a) gives an
example. The query object q is represented by the black dot located at v6 and the query range
r is 2. The weights of the edge segments are: e6,o5 = 1,e2,o5 = 3,e6,o4 = 3,e5,o4 = 3,e6,7 = 4, and
e6,12 = 4. The dashed line segments around q denote the query range. One object, o5, is in the
query range. Thus, the current result set is S= {o5}, and the set of non-result objects, O\S, is the
rest of the objects. The MES of o5 consist of the edge segments around o5 bounded by the X’s:

mes(o5) = {〈v6, v5,0,1〉,〈v6, v7,0,1〉,〈v6, v12,0,1〉,〈v6, v2,0,3〉}
Here, each edge segment is represented by a 4-tuple. The first two elements are the vertices of the
edge that the segment lies on, e.g., the first segment lies on e6,5. The last two elements specify the
location of the segment on the edge, e.g., the first segment is at distance 0 to distance 1 from v6.
The MES of non-result object o2, as denoted by the edge segments bounded by bars in the figure,
overlap with mes(o5). A subtraction is then needed to get the safe region. Thus, the safe region is
sr (q,r ) = {〈v6, v5,0,1〉,〈v6, v7,0,1〉,〈v6, v12,0,1〉,〈v6, v2,0,2〉}, which consists of segments of e6,o4,
e6,7, e6,12 between v6 and the X’s, and the segment of e6,2 between v6 and the horizontal bar. The
safe exits are se(q,r ) = {〈v6, v5,1〉,〈v6, v7,1〉,〈v6, v12,1〉,〈v6, v2,2〉} (three X’s and the horizontal
bar) . Here, every safe exit is represented by a 3-tuple: two vertices of the edge that the safe exit
lies on, e.g., 〈v6, v5〉, and the distance from the first vertex to the safe exit, e.g., 1.

Yung et al. [2012] propose three rules to prune some data objects from consideration when
computing the safe regions. These rules are detailed in Appendix B.

Continuous query processing. As earlier, once the safe exits have been computed, a query re-
computation is only required if the query object moves across a safe exit, the query range r
changes, or a data object update occurs within distance 3r of the previous query location.

4.2.2. Safe Exits in Directed Spatial Networks. The algorithm above uses a search starting from
a data object oi to find the MES, which considers only the distance from oi to the edge segments.
When edges are directed, the distance from oi to q may not be the same as that from q to oi . To
extend safe exits to directed spatial networks, Cho et al. [2014] propose the CRUISE algorithm.

A spatial network with directed edges can be formulated as a directed graph
−→
G = 〈V ,

−→
E ,W〉,

where an edge −−→ei , j ∈−→
E only allows travel from vertex vi to vertex v j .
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The CRUISE algorithm starts from the query object and traverses
−→
G in a breadth-first manner

until the safe exits are found. For each directed edge −−→ei , j visited, if a safe exit is found on −−→ei , j then
the edges starting at v j do not need to be visited. Otherwise, the edges starting at v j are added to
a queue Q of edges to be visited. The algorithm terminates when Q is empty, at which point all
the safe exits have been found. When −−→ei , j is being processed, CRUISE computes the segment of
the edge where any point can reach every current result object within distance r . This segment,
denoted by −→es1, will be part of the intersection of the MES of the result objects. The algorithm
computes another segment of the edge where any point can reach a non-result object within
distance r . This segment, denoted by −→es2, is an MES of a non-result object. If −→es1 intersects −→es2
then the intersection point is a safe exit. The edges starting at v j do not need to be visited further.
It is also possible that −→es1 fully covers −−→ei , j and that −→es2 is empty. Then edge −−→ei , j is safe. It is added
to the safe region. There is no safe exit on this edge, and the edges starting at v j must be visited.

Figure 18(b) gives an example, where the black dot on edge −−→e12,6 denotes the query object
q and r = 5 (dashed edge segments are in the query range). The result objects are o5 and o2.
Query object q breaks edge −−→e12,6 into −−−→v12q and −−→qv6, both of which are treated as edges and are
inserted into queue Q. No points on −−−→v12q can be reached from q directly. A safe exit s1 (denoted
by X) is placed at q . No more edges starting at q need to be inserted into Q. The next edge to be
processed is −−→qv6. The maximum distance from any point on −−→qv6 to the result objects o5 and o2
is distn(q,o2) = 5, which does not exceed r = 5. The minimum distance from any point on −−→qv6
to any non-result object is distn(v6,o1) = 7, which exceeds r . The entire edge −−→qv6 is in the safe
region, and no safe exit is found on −−→qv6. Edges starting at v6, −−→e6,7 and −−→e6,2, are then added to Q.
No points on −−→e6,7 can reach o5 or o2 within a distance of 5. This edge and any edge starting at v7
are pruned. For −−→e6,2, there is a safe exit at o5 (denoted by X) because once passing o5, it cannot be
reached again within a distance of 5. The algorithm to find the safe exits then terminates.

To compute the segments −→es1 and −→es2, the key is to compute for a point p on −−→ei , j its distance to
any given object o. Recall that in Section 3.3.2, the UNICONS algorithm uses a piecewise linear
function to model the distance between q and a data object o when q moves along an edge. A
similar approach is used by CRUISE to model the distance between p and o, assuming that p
moves along −−→ei , j . We omit the detailed distance function computation for conciseness.

Continuous query processing. The query processing procedure is similar to that used by Yung
et al. [2012]. The difference lies in the way that the safe exits are computed as discussed above.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS
We conclude the article with a summary of the papers reviewed and a discussion on future re-
search directions of the safe region technique.

5.1. Conclusions
We have reviewed how safe regions are applied to process two fundamental continuous spa-
tial queries (CSQ): continuous k nearest neighbor (CkNN) queries and continuous range (CR)
queries. We gave an overview of the CSQs and the query processing challenges. We then pre-
sented the general notion of safe region and the key issues to consider when applying this tech-
nique. We detailed how different safe region based approaches enable CkNN and CR query pro-
cessing. We conclude with a comparative summary of the techniques presented and then discuss
future developments of safe region based query processing.

Table I summarizes the safe region based techniques for the CkNN queries. The key to safe re-
gion design is to maintain the nearness ranks of objects. Most techniques assume moving query
objects and static data objects, the exception being that FindkNN [Benetis et al. 2001, 2002, 2006]
assumes moving query and data objects, and builds safe regions that bound the query object
such that the nearness ranks of the data objects stay unchanged. In contrast, SRB [Hu et al. 2005]
assumes moving data objects and builds safe regions to bound the data objects.

Most approaches, except for SRB [Hu et al. 2005], lazy search [Song and Roussopoulos 2001],
and the V*-diagram [Nutanong et al. 2008], use tight safe regions. To obtain tight safe regions,
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Table I: Safe region based techniques for CkNN queries

Technique Object moving

Tight
Precomputation free

Unknown query trajectory

Computation at query tim
e

Incremental update

Data space

Time efficiency

SRB [Hu et al. 2005] data × X X X X E −
Voronoi diagram [Okabe et al. 1992] query X × X × × E/M ↑↑↑↑
Lazy search [Song and Roussopoulos 2001] query × X X X × E/M −
FindkNN [Benetis et al. 2001, 2002, 2006] both X X × X X E/M ↑↑
TPkNN [Tao and Papadias 2002] query X X × X X E/M ↑
kCNN [Tao et al. 2002] query X X × X × E/M ↑↑
RIS-kNN [Zhang et al. 2003] query X X X X × E ↑↑
IRU [Kulik and Tanin 2006] query X X X X X E/M −
V*-diagram [Nutanong et al. 2008] query × X X X X E/M ↑↑↑
INS-kNN [Li et al. 2014] query X × X X X E/M ↑↑↑↑
VN3 [Kolahdouzan and Shahabi 2004b] query X × X × × N/M −
IE [Kolahdouzan and Shahabi 2004a] query X X × X × N ↑
UB [Kolahdouzan and Shahabi 2004a] query X X × X × N ↑↑
UNICONS [Cho and Chung 2005] query X X × X × N ↑↑↑
Network V*-diagram [Nutanong et al. 2010] query × X X X X N/M ↑↑↑

those approaches require either precomputation of a (network) Voronoi diagram or a pre-known
query path. FindkNN [Benetis et al. 2001, 2002, 2006], TPkNN [Tao and Papadias 2002], RIS-
kNN [Zhang et al. 2003], and IRU [Kulik and Tanin 2006] are exceptions. However, without pre-
computation or a pre-known query path, these approaches incur higher safe region computation
costs at query time. FindkNN and TPkNN compute safe regions assuming given movement vec-
tors for the query (and data) objects. When these vectors are updated, the query results and safe
regions need to be updated. RIS-kNN does not have this restriction for the query object, but re-
quires multiple runs of TPkNN to cover all possible movement directions of the query object.
Nutanong et al. [2008] show that the V*-diagram outperforms RIS-kNN in query efficiency due
to cheaper online safe region computation, even though the safe regions computed are not tight.
IRU also suffers in safe region computation efficiency because it needs to examine all the data
objects. INS-kNN [Li et al. 2014] is the only approach that requires precomputation and com-
putation of the safe region at query time. Due to the relatively lightweight precomputation of an
order-1 Voronoi diagram, INS-kNN achieves a tight safe region that can be computed efficiently
and updated online. This approach is the state-of-the-art for CkNN queries in Euclidean space. It
is a good example of how to balance the tightness and computation costs of safe regions. The ap-
proaches for spatial networks all have a Euclidean counterpart. VN3 [Kolahdouzan and Shahabi
2004b] and the network V*-diagram [Nutanong et al. 2010] are extensions of the Voronoi diagram
and the V*-diagram where the graph shortest path distance replaces the Euclidean distance. IE,
UB [Kolahdouzan and Shahabi 2004a], and UNICONS [Cho and Chung 2005] are network ver-
sions of TPkNN and lazy search, where influence points are replaced by split points.

Most of the approaches also apply to metric spaces, as long as the safe region computation is
based on distance comparisons between the objects directly and the distance function is a met-
ric. These approaches are noted as “E/M” or “N/M” in Table I. Some of these approaches, such as
FindkNN, TPkNN, and kCNN, use distances between objects and R-tree nodes to accelerate the
computation, which may not satisfy the requirements of a metric. This can be addressed by re-
placing the R-tree with a metric index, e.g., the M-tree [Ciaccia et al. 1997]. SRB, RIS-kNN, IE, UB,
and UNICONS do not apply to metric space. SRB and RIS-kNN are for Euclidean space (noted
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as “E”). SRB is based on Euclidean distance and RIS-kNN is based on that the vertices of a safe
region may be enumerated. IE, UB, and UNICONS are for spatial networks (noted as “N”). They
are based on that the NNs of any point on an edge can be found from the NNs of the two vertices
of the edge. These conditions do not generally hold in metric space.

Usage guidelines. In spatial networks, all CkNN query approaches surveyed assume a mov-
ing query object and a set of static data objects. UNICONS is the most efficient approach when
the query trajectory is known, while the network V*-diagram is more efficient when the query
trajectory is unknown. We indicate the comparative efficiency of the different approaches by ↑’s
in Table I. Under the same settings, approaches with more ↑’s indicate a higher query time effi-
ciency. For example, UNICONS has three ↑’s while UB and IE have only two and one ↑, respec-
tively. VN3 is an earlier approach and has the lowest efficiency among the approaches surveyed
for CkNN queries in spatial networks. This is noted by “−” in the table. In Euclidean space, (i)
when both the query object and the data objects are moving, FindkNN is the only approach that
can compute safe regions for CkNN queries; (ii) when only the data objects are moving, SRB is a
simple and easy-to-use approach; and (iii) when only the query object is moving, INS-kNN is the
state-of-the-art. This is noted by four ↑’s for INS-kNN in the table as opposed to three ↑’s for the
V*-digram and two ↑’s for RIS-kNN. For Case (iii), if the query trajectory is known, kCNN can be
applied to break it into linear safe regions, which is more efficient than re-running TPkNN. We
note this by two ↑’s for kCNN and only one ↑ for TPkNN. FindkNN generalizes the functionalities
of kCNN and TPkNN to moving query and data objects. We annotate this approach with two ↑’s
as well. Note that FindkNN, kCNN, and RIS-kNN have different query efficiency even though
they all have two ↑’s, as they run for different settings. IRU does not have an experimental study
while SRB and lazy search do not compare with any surveyed approaches. We annotate these
approaches with “−”. The Voronoi digram has four ↑’s for its high query time efficiency (i.e., only
requiring simple lookups), although its practicability is low due to its high precomputation costs.

Table II summarizes the safe region based techniques for CR queries. In CR queries, the query
range is a natural safe region for the data objects. Existing studies thus focus on safe regions for
query objects. The key is to define a region that bounds and only bounds the current result ob-
jects. In Euclidean space, two types of query range have been studied, rectangular and circular.
In spatial networks, the query range is given as a distance of r from the query object. Regard-
less of the query range types, the safe regions proposed can be categorized into two classes.
In Class 1, safe regions are defined in terms of the minimum and maximum bounding rectan-
gles of the result objects [Huang and Huang 2013; AL-Khalidi et al. 2013]. These safe regions are
not tight, but they are efficient to compute. In Class 2, safe regions are defined in terms of the
Minkowski regions of the result objects [Zhang et al. 2003; Cheema et al. 2010; Yung et al. 2012;
Cho et al. 2014]. These safe regions are tight, but they are less efficient to compute. Efforts have
been devoted to improve the computation efficiency. Cheema et al. [2010] propose means to in-
crementally update query results and safe regions. The network version of Class 2 safe region
approaches [Yung et al. 2012; Cho et al. 2014] share very similar ideas to those of the Euclidean
space approaches, but further require a known query path. The range safe region, safe zone, and
safe exits approaches also apply to metric space, again because they are based on direct distance
comparison between the objects. The EWV and validity region approaches require bounding
rectangles, which may not be formulated in metric space. The safe exits approach by Cho et al.
[2014] assumes directed edges, which does not hold in metric space either.

Usage guidelines. All CR query approaches surveyed focus on computing safe regions to bound
the movement of the query object, while the data objects are assumed to be static. In spatial
networks, the two safe exit based approaches share similar ideas. The one by Yung et al. [2012]
is proposed for undirected networks, while the one by Cho et al. [2014] can handle both undi-
rected and directed networks. In Euclidean space, the validity region and safe zone approaches,
for rectangular and circular queries, respectively, are to be used if minimizing the query answer
recomputation and communication frequency has priority. The EWV and safe zone approaches
are to be used if the safe region computation cost has priority. These papers do not contain per-
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Table II: Safe region based techniques for CR queries

Technique Object moving

Range type

Tight
Unknown query trajectory

Incremental update

Data space

Time efficiency

EWV [Huang and Huang 2013] query rectangular × X × E −
Validity region [Zhang et al. 2003] query rectangular X X × E −
Range safe region [AL-Khalidi et al. 2013] query circular × X × E/M −
Safe zone [Cheema et al. 2010] query circular X X X E/M −
Safe exits [Yung et al. 2012] query network X × × N/M −
Safe exits (directed) [Cho et al. 2014] query network X × × N −

formance comparisons with each other. As discussed above, the algorithms have strengths in
relation to different aspects, and it is not straightforward to predict their overall comparative
performance. Thus, we indicate their query time efficiency by “−” in Table II.

5.2. Future Developments
The survey reveals three trends for future developments of the safe region technique.
— To pursue safe regions that are both tight and efficient to compute. The safe region based ap-

proaches for CkNN queries show a typical trend. They have gone through a history from “tight
but low computational efficiency (Voronoi diagram [Okabe et al. 1992])” to “far from tight but
high computational efficiency (lazy search [Song and Roussopoulos 2001])” then to “tight and
relatively low computational efficiency (RIS-kNN [Zhang et al. 2003])” and to “closer to tight
and high computational efficiency (V*-diagram [Nutanong et al. 2008])” and finally “tight and
high computational efficiency (INS-kNN [Li et al. 2014])”. The safe region based approaches
for CR queries have gone from “tight but relatively low computational efficiency (validity re-
gion [Zhang et al. 2003] and safe zone [Cheema et al. 2010])” to “high computational effi-
ciency but far from tight (EWV [Huang and Huang 2013] and range safe region [AL-Khalidi
et al. 2013]).” Safe regions that are tight and efficient to compute await exploration. Further,
when safe regions have irregular or complex shapes, it can be expensive to verify whether an
object is in its safe region. Safe region verification for CR queries in the context of irregularly
shaped safe regions is studied by Al-Khalidi et al. [2014]. This study assumes a known velocity
of the query object. Lifting this assumption to achieve a more general safe region verification
technique may be an interesting direction to explore.

— To handle more types of problem settings by the safe region technique. Examples include
studies of CkNN query processing in constrained Euclidean space where obstacles may block
the movements of objects [Wang et al. 2014a; Li et al. 2015], linearly shaped data objects [Gu
et al. 2016b], query preferences over kNN objects far away from each other for diversification
considerations [Gu et al. 2016a], or multiple CkNN and CR queries being monitored simulta-
neously [Choudhury et al. 2017]. Safe regions have been applied successfully in these settings.
Other common problem settings include objects with uncertain locations [Sistla et al. 2015],
queries with privacy considerations [Hashem et al. 2013], and queries in indoor settings [Yang
et al. 2010; Afyouni et al. 2012, 2014]. CR queries with both a moving query object and moving
data objects have not been considered in the context of safe region based query processing.
How safe regions can be exploited in these settings needs to be studied.

— To explore more types of queries that may be processed using safe regions. The CkNN and CR
queries are fundamental types of CSQs. A variety of other types of CSQs have been considered,
where safe region based query processing techniques have been proposed. For example, Oh-
sawa and Htoo [2016] propose a generalized safe region computation framework for CkNN
queries, CR queries, and CRkNN queries in road networks. In the past few years, spatial key-
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word queries [Cong et al. 2009; Cao et al. 2011; Li et al. 2011; Cao et al. 2012; Chen et al. 2013;
Cong and Jensen 2016] have attracted substantial interest. These queries extend traditional
spatial queries by adding a set of textual keywords to every object, including the query object,
which adds semantics to the objects. This kind of extension has been introduced to CSQs, re-
sulting in continuous top-k spatial keyword queries [Rocha-Junior et al. 2011; Wu et al. 2011;
Huang et al. 2012; Wu et al. 2013; Amagata et al. 2015; Chen et al. 2015; Guo et al. 2015; Zheng
et al. 2016] and continuous range keyword queries [Chen et al. 2013; Wang et al. 2014b, 2015;
Yu et al. 2015]. Typical definitions of these two types of queries are as follows.

Definition 5 (Continuous Top-k Spatial Keyword (CkSK) Query). Given a query object q, a set
of data objects O, a weighting parameter α ∈ [0,1], and a query parameter k, the continuous
top-k spatial keyword query maintains (from being issued until deactivated) a size-k subset
S ⊆ O, such that ∀oi ∈ S,o j ∈ O\S : αdist(q,oi )+ (1−α)distw(q,oi ) ≤ αdist(q,o j )+ (1−
α)distw(q,o j ).

The CkSK query extends the concept of nearness to include both spatial proximity and textual
relevance. An example is to “find the k restaurants that are the nearest to Alice and serve risotto
or steak as she is walking in a city.” Figure 19(a) illustrates the query, where every object now
is associated with a set of keywords. The top-k data objects may not be simply the spatial
kNN objects any more. The result depends on dist(·), distw(·), and α, which represent the
spatial proximity, the textual relevance, and the preference between spatial proximity and
textual relevance, respectively. The textual relevance here is usually measured by a document
similarity metric such as the TFIDF metric [Wu et al. 2011; Huang et al. 2012; Wu et al. 2013].

o1

o2

o3 o4 o5

o7

o8 o9

q

o6 o11

o10

q'

{cafe, bistro, drinks}

{risotto, steak}
{cafe, tea} {risotto, steak}

{cafe, bakes}

{bistro, drinks}
{cafe, ice cream}

{lunch, pizza}

{risotto, steak}{risotto, steak}

 {bistro} {cafe, steak}

(a) A CkSK query
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o7

o8 o9
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o6
o11

o10

q'

{cafe, bistro, drinks}

{risotto, steak}
{cafe, tea} {risotto, steak}

{cafe, bakes}
{bistro, drinks}

{cafe, ice cream}

{lunch, pizza}

{risotto, steak}{risotto, steak}

 {bistro} {cafe, steak}

r

(b) A CRK query

Fig. 19: Examples of continuous spatial keyword queries

Definition 6 (Continuous Range Keyword (CRK) Query). Given a query object q, a query range
r , a set of data objects O, and a query predicate pred(·), the continuous range keyword query
maintains (from being issued until deactivated) the subset S ⊆ O that contains every object
oi ∈O where pred(q,r,oi ) = true.

In the CRK query, the query predicate pred(·) considers both spatial range and keyword set
coverage. An example is to “find all the restaurants serving risotto and steak that are within 1
Km distance from Alice as she is walking in a city.” Figure 19(b) illustrates a CRK query. Now
only the data objects that are within the query range and contain all the query keywords are
in the query answer. At q there is no such data object, while at q ′, object o9 enters the query
answer. As location-based services are becoming increasingly popular, we envisage further
research and industry efforts being devoted to these types of queries.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. SAFE REGION FOR CIRCULAR RANGE QUERIES
Safe regions and query processing procedures for CR queries with a circular query range are
similar to those for window queries. The notions of range safe region [AL-Khalidi et al. 2013] and
safe zone [Cheema et al. 2010] are counterparts of the estimated window vector and the validity
region used for window queries. We discuss these two techniques in Sections A.1 and A.2 but
omit the corresponding query processing procedures for conciseness.

A.1. The Range Safe Region
Similar to the estimated window vector, the range safe region is defined using the minimum and
maximum bounding regions of the current result objects. Since the query range is now circular,
bounding circles are used to form the safe regions. Figure 20(a) exemplifies the range safe region.
The query object is at q , and the query range is enclosed by circle Cq with radius r (the solid cir-
cle). Two dashed circles, Cmi n and Cmax , centered at q are drawn. The radius of Cmi n , rmi n , is the
maximum distance between q and any result object; the radius of Cmax , rmax , is the minimum
distance between q and any non-result object:

rmi n = max{dist(q,oi )|oi ∈O,dist(q,oi ) ≤ r }; rmax = min{dist(q,oi )|oi ∈O,dist(q,oi ) > r }

The two circles are the minimum and maximum bounding circles of the query result. As long as
Cq is in the ring formed by these two circles, the query result does not change. This means that
the query object should not move away from q farther than distance min{r −rmi n ,rmax −r }. This
distance defines a circular region centered at q (the gray region), which is the range safe region.

A.2. The Safe Zone
Like the estimated window vector, the range safe region is not tight. Cheema et al. [2010] propose
the safe zone that is a tight safe region for circular CR queries. The safe zone is a variant of the
validity region where the rectangular Minkowski regions are replaced by circular regions. Such
circular regions center at the data objects, and their radii are all the same as the query range
r . We call them Minkowski circles (MC) for simplicity. We denote the MC of object oi by mci .
Then oi being inside the query range is equivalent to the query object being inside mci . The safe
zone is the intersection of the MCs of the result objects minus the MCs of all non-result objects.
Figure 20(b) shows an example, where the black dot is the query point q , the solid circle Cq with
radius r is the query range, and the dashed circles are MCs. Objects o5 and o10 are in Cq . The
query point q is inside the intersection of their MCs, mc5 and mc10. As long as q stays in this
intersection, o5 and o10 stay as the query answer. This intersection overlaps with the MCs of o6
and o9. The query point q needs to stay outside the overlapping regions to keep o6 and o9 outside
the query answer. Thus, the final safe zone is mc5 ∩mc10 \ (mc6 ∪mc9), which is the gray region.

The safe zone is computed progressively by adding (subtracting) one MC to (from) the current
safe zone at a time. The MCs are processed in ascending order of the distances between their
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Fig. 20: Safe regions for circular range queries

corresponding data objects and q . This guarantees that no MC that can affect the safe zone is
missed. As Fig. 20(c) shows, assume that MCs mc5 and mc10 have already been processed, yield-
ing the intermediate safe zone given by the gray region. The intersection points of the two cir-
cles, v1 and v2, are stored in a list V of safe zone vertices. The MC of object o6, mc6, is processed
next. The intersection points between mc6 and the two existing MCs are computed, which are
v3, v4, v5, and v6. The points v3 and v4 that are on the boundary of the current safe zone are
added to list V . Points v5 and v6 are discarded. Then the existing vertices v1 and v2 in V are
checked against mc6. Only vertices outside mc6 are kept (i.e., v1), since o6 is a non-result object
and anything inside mc6 should be excluded from the safe zone. Had o6 been a result object then
only vertices inside mc6 should be kept. Now the safe zone is updated to be the region v1v3v4.
This procedure continues until an MC with no intersection with the current safe zone is reached.
The safe zone at that moment is the final safe zone.

Cheema et al. [2010] use an R-tree to index the data objects (not their MCs) to speed up com-
putation of the safe zone. A best-first traversal is used to access the tree nodes and data objects.
Pruning rules are used to reduce the search space for finding the data objects with MCs that may
impact the safe zone. They use the relative position (e.g., the mindist and maxdist metrics) be-
tween a tree node and the safe zone computed so far to prune nodes from consideration. We
omit the details of these pruning rules for conciseness.

B. PRUNING RULES FOR FAST SAFE EXIT COMPUTATION
Computing the Minkowski edge segments (MES) of a data object requires a run of Dijkstra’s algo-
rithm on the spatial network, which is expensive. To reduce the cost, Yung et al. [2012] propose
to only consider the data objects within distance 3r of the query object q . All other data objects
can be discarded. The reason is as follows. The result objects are within distance r of q . Their
MES must be within distance 2r of q . For any other object, if its MES interest with the MES of the
result objects, it must be within distance 3r of q .

Dijkstra’s algorithm is first run to identify the objects within distances r and 3r of q . The ob-
jects within distance r are returned as the result. Then the MES of every object within distance
3r of q are computed using Dijkstra’s algorithm. The safe region and safe exits are computed in-
crementally as more MES are obtained. During this process, three pruning rules are applied to
reduce cost. Let z be the farthest point from q of the current safe region.

— Pruning rule 1 (Fig. 21(a)): If the distance between a result object oi and q satisfies
distn(oi , q)+distn(q, z) ≤ r then distn(oi , z) ≤ r , and mes(oi ) is guaranteed to fully cover
the intermediate safe region. Thus, the MES of oi have no impact on the safe region. Such
result objects can be pruned safely.

— Pruning rule 2 (Fig. 21(b)): If the distance between a non-result object o j and q satisfies
distn(o j , q)−distn(q, z) ≥ r then distn(o j , z) ≥ r , and mes(o j ) cannot intersect any edge
segments in the safe region. Thus, the MES of o j have no impact on the safe region. Such
non-result objects can be pruned safely.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2018.



Continuous Spatial Query Processing: A Survey of Safe Region Based Techniques App–3

z
q

oi

current safe region

distn(oi, q)

distn(q, z)

(a) Pruning a result object

zq

oj

current safe region

distn(oi, q)distn(q, z)

(b) Pruning a non-result object

z

q

vj oi

current safe region

distn(q, z) distn(vj, z)

(c) Pruning irrelevant edges

Fig. 21: Pruning rules for safe exit computation

— Pruning rule 3 (Fig. 21(c)): Let oi be the object that the MES are being computed for and
v j be the next vertex to be visited by Dijkstra’s algorithm. If distn(oi , v j )+distn(v j , z) > r
then any path from v j can be pruned safely as it cannot reach the safe region by distance r .
Here, computing distn(v j , z) needs another graph traversal. However, we can replace it by
an estimate of distn(v j , q)−distn(q, z), where distn(q, z) was computed when computing
z, and distn(v j , q) was computed when searching for the objects within distance 3r of q .
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