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Weiru Liu, Shangfeng Mo, and Shanjiang Tang

Abstract—Drivers have always been confronted with real-time
parking difficulties when driving on urban roads, especially in
crowded downtown or beauty spots. On the other hand, privacy
leakage risks on users’ private parking preferences and the sensi-
tive data of parking lots have triggered increasing worries. Some
literatures endeavor to improve parking service qualities through
multi-consideration parking decision optimization on edge sides
or cloud computing based on outsourced data storage. And
some other literatures propose a number of privacy-preserving
methods, such as cryptography and authentication, but these
privacy strategies are at the expense of other qualities of parking
services, especially the real-time performance. In this paper, we
propose a fuzzy skyline parking recommendation scheme for real-
time parking recommendation based on roadside traffic facilities.
Linguistic parking information instead of raw parking-related
data is used in fuzzy skyline fusion. We evaluated our solution
with real-world data sets collected from parking facilities in
Wulin downtown, Hangzhou city, China. The evaluation results
show that our approaches achieve an average accuracy of parking
recommendation over 91%, low communication cost, and quick
response time with privacy protection.

Index Terms—Parking recommendation, Vehicular network,
Skyline fusion, Fuzzy sets, Privacy protection.
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I. INTRODUCTION

THE growing urban population and parking space shortage
have brought challenges to urban transportation, and the

convenience of parking has become an important factor of
smart cities. Drivers driving on urban roads are unable to find
parking spaces in a timely manner, which causes undesirable
problems such as traffic congestion, noise, air pollution [1],
and even psychological detriment to drivers or passengers.
Measures such as building new parking lots seem unfeasible
and impractical due to the limited urban space and budget.
How to utilize the existing parking facilities to help people
quickly find their desired parking lots is still an urgent task to
be addressed in crowded cities.

There are several challenges for recommending parking lots
to drivers on urban roads. Firstly, parking recommendations
should be done in a real-time manner due to the rapid changes
in traffic and parking situations. Secondly, different people
have different considerations or preferences when seeking
parking lots. For instance, some people only pay attention to
the availability of vacant parking spots for quick parking, while
others may take parking prices into consideration. Therefore,
parking recommendations shall reflect user’s preferences and
constraints. Furthermore, parking fees and users’ preferences
are sensitive information that might be leaked to adversaries
(such as competitors from other parking lots and eavesdroppers
for users’ personal parking preferences), which requires pri-
vacy protection. However, endeavors on privacy protection for
parking recommendations always increase communication cost
and response time. Therefore, lightweight privacy protection
techniques are desired for real-time parking.

Dedicated Short-Range Communications (DSRC) V2X (Ve-
hicle to Everything) or LTE-V2X (Long Term Evolution-
V2X) based on IEEE 802.11p [2], such as Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I), as well as the 5G
technology have made data transmission between V2V, V2I,
and I2I more direct and quick. With these technologies and on-
street roadside infrastructures, such as roadside units (RSUs)
[3], parking-related data collection and exchange are becoming
faster and more sophisticated with vehicular communications
and networking [4-5], which also makes real-time parking
management possible. Most existing parking recommendation
methods focus on minimizing parking assignment costs [6-
8]. However these joint processes of minimization affect the
real-time performance. Some other existing parking researches
use reservation-based parking techniques [9-10] or prediction
models [11-12], and endeavor to obtain a trade-off among real-
time, accuracy and communication overhead. However, their
real-time performances and tradeoffs still need to be improved.

Skyline queries are important point queries in multi-
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dimensional databases and it defines a way for points in space
that people are more interested in [16]. Therefore, skyline
query can be used in road network scenarios where multiple-
consideration (dimension) decisions are required. There are
many works on skyline queries for road network [16-20].
For instances, Fu et al. [17] proposed continuous range-based
skyline queries over moving objects in road networks, which
can be used for gas station recommendation. Skyline fusion
can help people find their desired parking places meet their
preferences, and Ma et al. [19] proposed a location-based
dynamic skyline query for parking search. Despite these ap-
proaches are more or less computationally expensive and time-
consuming to some extent, they still provide us an efficient
way to find the desired objects with multiple considerations
using skyline-related technologies.

With regard to privacy protection issue, lots of literatures
propose strategies on data privacy protection for load network
applications, such as symmetric-key cryptography authenti-
cation [20], data perturbation mechanism [21], encoding [3]
and anonymity [1]. However, these approaches are often
computationally intensive and time-consuming. For instance,
encryption-based techniques always providing privacy protec-
tion through changing the format of the original data, and the
processes of encryption, decryption and key management are
costly in terms of time and communication. However fuzzy
sets [23-24] provides a good idea for analyzing and processing
imprecise and uncertain data in a robust and understandable
way. More and more researches and applications use fuzzy
sets to deal with problems in vehicular Networks [25-26] and
have achieved good performances. Besides, fuzzy linguistic
variables [27] instead of raw traffic data could be used for
information exchange and computing, which can not only be
beneficial to the energy efficiency and real-time performance
but also can preserve privacy for parking services in a light-
weight manner.

To this end, we propose a privacy-aware skyline parking
recommendation scheme using fuzzy sets, which aims to pro-
vide a lightweight solution for real-time parking recommenda-
tions with users’ multi-dimensional preferences and privacy-
preserving requirements. Our contributions are summarized as
follows:

1) Aim to protect the sensitive information (such as parking
fees and user’s parking preferences) in parking ser-
vices, we propose a novel fuzzy transformation scheme,
including fuzzy partitions, linguistic variables and a
fuzzy transformation algorithm, for homomorphically
transforming raw and sensitive parking-related data into
fuzzy information in line with parking services. These
fuzzy information can be directly used for parking
filtering and fusion without extra overhead, which dis-
tinguishes other exiting methods.

2) Besides, in order to use aforementioned fuzzy infor-
mation in a direct way, we devise a novel fuzzy sets
based s-norm operator and a new fuzzy skyline fusion
algorithm respectively. Linguistic variables instead of
raw parking-related data are used for parking recom-
mendation, which benefits both real-time and privacy
protection.

3) Theoretic analysis and extensive experimental evalu-
ations based on real-life data sets are conducted to
validate our motivation in terms of real-time, privacy
protection and energy efficiency.

The rest of the paper is structured as follows: Section II
reviews related work. Problem definitions are presented in Sec-
tion III. In Section IV, we propose the detailed methodology.
Section V is devoted to analyzing the experimental evaluation.
We conclude and discuss some perspectives in Section VI.

II. RELATED WORK

Parking has gained widespread attention in recent literature.
Oanh et al. in [7] proposed a parking assignment method,
called ADMM, through calculating the lowest parking cost and
demands. By forwarding the parking status to the fog sever,
RSUs receive and exchange information through the roadside
cloud and finally broadcast the optimal parking lot with the
lowest cost to drivers. Due to the desire of achieving an
optimal solution, there is a data redundancy issue in ADMM,
which results in relatively large communication costs and time
consumption. Horng [28] used cellular automata models and
small world mechanisms to search for and recommend on-
street parking. However, it is computationally intensive and
data redundant, which enlarges the network latency. Friedrich
et al. [29] studied heuristics and used algorithmic optimization
to find parking spaces. However, its randomness might affect
the accuracy of the results. Chai et al. [30] proposed a dynamic
parking and route guidance system with joint dynamic traffic
routing (DTR) and parking options. By using both online
information and updated estimation of travel and parking costs,
travelers can switch their parking destinations at the lowest
expected cost before arriving at their destination. However,
massive data transmission may cause delays and big trans-
mission costs. Liu et al. [11] designed an online parking
guidance system to recommend on-street parking spaces based
on parking availability forecasts. The authors considered the
competitive relationship between multiple drivers and resolved
potential conflicts. It also used a cloud center for centralized
data management, which lacks privacy protection. Levin and
Boyles [9] also provided drivers with guidance on the best
navigation routes and parking reservation systems. However,
the algorithm using the Markov Decision Process (MDP)
requires relatively complex computation and leads to a certain
delay. Chen et al. [31] used a two-sided matching algorithm
to achieve drivers’ best match downtown parking position so
that the drivers will be assigned to the most suitable parking
space. The distributed solution process proposed by the authors
can reduce centralized coordination and thus protect private
information. Based on the historical parking record, Lin et al.
Authors in both [13] and [14] leveraged blockchain technology
for privacy protection in parking services. However their tech-
niques, such as key management and signature mechanism,
are relatively communication-costly and time-consuming. Ni
et al in [15] focused on the risk of vehicle theft and location
privacy leakage, and proposed a secure and privacy-preserving
automated valet parking protocol for self-driving vehicles.
The methods used in [15], such as two-factor authentication,
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BBS+ signature traceable tags, often cause relatively large data
transmission and network latency.

Skyline is of great significance in multi-targets query tech-
nique. Huang et al. [16] studied how to effectively process
continuous skyline queries in a road network. Two distance-
based continuous skyline queries, called Cde-SQ and Cknn-
SQ, were proposed, which aim to find the closest and desired
results within a distance range. In order to process CKNN-SQ
proposed in [16] in a dynamic road network, Huang et al. [18]
improved the CKNN-SQ algorithm in [16], which combined
three data structures to quickly update the results of K-nearest
skyline objects (KNSOs). Fu et al. [17] proposed continuous
range-based skyline queries (CRSQs) in road networks and
extended to process range-based skyline queries over moving
objects (MRSQ). They introduced a baseline algorithm to
process CRSQ, and also proposed a landmark-based algorithm
(LBA) as well as an index-based algorithm (IBA) to tackle
CRSQ efficiently. However, continuous dynamic range skyline
queries usually produce a large amount of duplicate data
and massive data transmission. And when objects move, real-
time object tracking may be difficult to guarantee. Pande et
al. [32] solved the query regions of interest by using the
keyword embedded road network skyline sub-graph queries,
and they developed a technique called SkyGraph to achieve
fast query response times. Ma and Zhu [19] proposed a skyline
parking query method to process spatial and dynamic location
information, and other parking-related information, such as
price and the number of parking spaces, was also considered.

III. PRELIMINARIES

In this section, we introduce the definitions of fuzzy sets and
fuzzy skyline parking recommendation. The network model
and privacy risks are also discussed as well.

A. Problem Definition

Drivers have their own considerations when they seek
parking lots. For instance, lots of drivers try to find a parking
place immediately near their destinations when driving on
urban roads, while others may take the parking price into
consideration. Skyline queries are very important point queries
in multi-dimensional databases and they define a way of
describing points in space that people are more interested
in [16]. Therefore, skyline queries can be used in parking
situations where multiple consideration (dimension) decisions
are required. One point, which is the same or better than
any other points in any dimension, and is not subject to any
other points, is called a skyline point [16]. Then we give the
definition of skyline parking recommendation as follows.

Definition 1. (Skyline parking recommendation) Let U be a
set of n-dimensional parking lots and ui and uj be two lots of
U . ui is said to dominate uj , iff ui is better than or equal to uj

in all dimensions (user’s parking considerations) and strictly
better than uj in at least one dimension. then ui is a better
skyline parking recommendation compared with uj over the
user’s considerations.

In other words, if one parking lot is the same or better than
any other parking lots in any parking consideration, namely

this parking lot is not subject to any other parking lots, then
it is called the skyline parking recommendation.

The concept of fuzzy sets has been developed by Prof.
Zadeh [23] in 1965 to represent classes or sets whose limits are
imprecise. They can describe gradual transitions between total
belonging and rejection. Typical examples of these fuzzy class-
es are described with adjectives or adverbs natural language,
such as “not expensive”, “fairly cheap” and “very expensive”.
These fuzzy information are fairly suitable to describe users’
unclear or uncertain parking needs when they are not sure
about the precise parking prices.

Definition 2. (Fuzzy sets) A fuzzy set F is a pair (X, µ̃),
where X is a set and µ̃: X 7→ [0, 1] is a membership function.
The reference set X is called a universe of discourse, and
for each x ∈ X , the value µ̃(x) is called the Membership
Degree (MD) of x in (X, µ̃). Function µ̃F (x) is called the
Membership Function of the fuzzy set F = (X, µ̃) [24]. The
set of all fuzzy sets on a universe X is denoted as F (X).

The MD in Definition 2 is between the extremes 0 and 1
of the domination of the real numbers: µ̃(x) = 0 indicates
that x does not belong to F , and µ̃(x) = 1 indicates that x
fully belongs to F . For instance, we define a fuzzy set “price
is high” over parking price (universe X). When the parking
price in a downtown area of Hangzhou city, China, is 1.5 CNY
(approximate 0.21 USD) per hour, then it can be described as
µ̃(1.5CNY) = 0.1 , which means the MD of the fuzzy set
“price is high” is 0.1, that is, such price is not high at all.

Based on the idea of fuzzy sets, we define the fuzzy skyline
parking recommendation as follows.

Definition 3. (Fuzzy skyline parking recommendation)
Based on Definition 1 and Definition 2, if one parking lot is
the same or better than (in a fuzzy comparison way) any other
parking lots in any fuzzy consideration (dimension), namely it
is not subject to any other parking lots using fuzzy sets, then
it is called the fuzzy skyline parking recommendation.

In fuzzy skyline parking recommendation, linguistic con-
siderations instead of raw user’s preferences would be used in
the in-network skyline fusion, and a fuzzy comparison operator
will also be defined to achieve the fuzzy comparison way in
Definition 3 later on.

B. Network Model

Our network model only relies on ordinary traffic facilities
in cities, which is defined as follows.

Network Structure of Fuzzy Skyline Parking recommen-
dation. Edge facilities, such as RSUs (roadside units), are
deployed on the roadside in a distributed and cost-effective
way, but covering all the concerned parking lots. Besides,
parking lots (shown in Fig. 1), which report their real-time
fuzzy parking-related information, such as the fuzzy number
of vacant parking spots and parking price, to the nearest RSU.
There are also users who are driving on the road, which send
parking requests, including their considerations, to the nearby
RSUs. During the parking request propagation, user-centered
return paths (RSU-Tree network structure) are established
simultaneously, which are shown as the arrows in Fig. 1.
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Fig. 1. Edge network structure of fuzzy parking queries and RSU-Tree based
return paths

C. Privacy Threat Model

Two important and common privacy threats in parking
services are considered, which are defined as follows.

Privacy Threats. In parking system, sensitive parking-
related data, such as users’ parking preferences, parking fees
and parking peak time, are fragile to be exposed to malicious
eavesdroppers. Adversaries can obtain these private informa-
tion through sniffing or eavesdropping the data transmission
among vehicles, RSUs and sensors in parking lots. Therefore,
eavesdropping threat is the main privacy risk that this paper
focuses on, which requires that raw parking-related data cannot
be transmitted directly during data transmission. Besides, we
partially consider the compromise threat of RSUs, since RSUs
usually undertake the key tasks of storage and information
fusion. Once compromised, it is convenient for eavesdroppers
to gain or infer some important private information. To tackle
this threat, the original data and related inference information
cannot be stored directly in RSUs. Therefore, the compromise
threat is another privacy issue concerned in this paper.

IV. METHODOLOGY

A. Fuzzy Sets and Fuzzy Partition

Definition 4. (Trapezoidal fuzzy set) A fuzzy set F on
universe X is a normal trapezoidal fuzzy set, donated as
F = (v1F , v

2
F , v

3
F , v

4
F ), if its fuzzy MF (Membership Function)

µ̃F (x) is given by (see Fig. 2 (a))

µ̃F (x) =


(x− v1F )/(v

2
F − v1F ) v1F 6 x < v2F

1 v2F 6 x < v3F
(v4F − x)/(v4F − v3F ) v3F 6 x < v4F
0 x > v4F , x < v1F

(1)

If v2F = v3F , F is a normal triangular fuzzy set, as is shown
in Fig. 2 (b). Therefore, trapezoidal fuzzy sets are special
triangular fuzzy sets to some extent.

Based on Definition 2 and Definition 4, we define three
types of fuzzy sets to describe users’ three default consider-
ations when they search for parking lots, namely availability
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Fig. 2. (a) MF of a trapezoidal fuzzy set. (b) MF of a triangular fuzzy set.

of vacant parking spots, time to parking lots, and prices of
parking lots. We use the linear trapezoidal MF because of its
simpler calculation and faster process compared with a non-
linear function (such as the Sigmoid function), which benefits
the real-time requirements of parking recommendation.

Definition 5. Let universe X be the ratio of Nvacant to
Ntotal, namely, X is Nvacant/Ntotal, where the Nvacant is the
number of vacant parking spots in a parking lot, and Ntotal

is the number of total parking spots in the parking lot. Then
we define five fuzzy sets describing “Availability of parking
spots” over X (Note that more fuzzy sets can be defined if
needed), and they are FA1 “Very difficult”, FA2 “Relatively
difficult”, FA3 “Average”, FA4 “Relatively easy” and FA5

“Very easy”. Their trapezoidal MFs µ̃i
FA(x)(i = 1,2...5) are

defines as (2), (3) and (4) respectively.

µ̃1
F (x) =


1 x < v1FA

(v2FA − x)/(v2FA − v1FA) v1FA 6 x < v2FA

0 x > v2FA

(2)

µ̃i
F (x) =


0 x < vi−1

FA , x > vi+1
FA

(x− vi−1
FA )/(viFA − vi−1

FA ) vi−1
FA 6 x < viFA

(vi+1
FA − x)/(vi+1

FA − viFA) viFA 6 x < vi+1
FA

(i = 2, 3, 4)
(3)

µ̃5
F (x) =


0 x < v4FA

(x− v4FA)/(v
5
FA − v4FA) v4FA 6 x < v5FA

1 x > v5FA

(4)

Where x and x are the lower and upper bounds of
X . The above trapezoidal MFs intersect at 4 points,
namely:v1FAΛv

2
FA, v2FAΛv

3
FA, v3FAΛv

4
FA and v4FAΛv

5
FA, and

can be calculated as viFAΛv
j
FA = (viFA + vjFA)/2, j = i+ 1,

i = 1, ...4. These intersections will eventually form five non-
uniform fuzzy partitions, namely: [x, v1FAΛv

2
FA), [v1FAΛv

2
FA,

v2FAΛv
3
FA), [v2FAΛv

3
FA, v3FAΛv

4
FA), [v3FAΛv

4
FA, v4FAΛv

5
FA)

and [v4FAΛv
5
FA, x], all of which are shown in Fig. 3. Where

v1FA, v2FA, v3FA, v4FA and v5FA are specified coincide with
the characteristics of Nvacant/Ntotal distribution so that the
intervals of the above mentioned five fuzzy partitions propor-
tionally decrease as x rises. The design of non-uniform fuzzy
partition is to improve the accuracy of later fuzzy skyline
services.

Definition 6. Let universe X be the time to parking lots
(Tarrival) from users to parking lots, then fuzzy sets describing
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“Time to parking lots” over X , and they are FT 1 “Very short”,
FT 2 “Relatively short”, FT 3 “Average”, FT 4 “Relatively
long” and FT 5 “Very long”. Similarly, their trapezoidal MFs
µ̃i
FT (x) (i = 1, 2...5) can be defined as (2), (3) and (4)

respectively, as shown in Fig. 4. Where v1FT , v2FT , v3FT ,
v4FT and v5FT are specified coincide with the characteristic-
s of Tarrival distribution so that the intervals of the five
non-uniform fuzzy partitions ([x, v1FTΛv

2
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2
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3
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4
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FT , x]) in Fig. 4 proportionally increase as x rises.
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Fig. 4. Five non-uniform fuzzy partitions of Fuzzy sets “Time to parking
lots”

Definition 7. Let universe X be the parking price
(Pparking), then we define five fuzzy sets describing “Price
of parking lots” over X , and they are FP 1 “Very low”, FP 2

“Relatively low”, FP 3 “Average”, FP 4 “Relatively high” and
FP 5 “Very high”. Their trapezoidal MFs µ̃i

FP (x) (i = 1, 2...5)
can be similarly defined as (2), (3) and (4) respectively accord-
ing to the local price index and consumption power, as shown
in Fig. 5. Where v1FP , v2FP , v3FP , v4FP and v5FP are specified
coincide with the characteristics of Pparking distribution so
that the intervals of the five non-uniform fuzzy partitions ([x,
v1FPΛv

2
FP ), [v1FPΛv

2
FP , v2FPΛv

3
FP ), [v2FPΛv

3
FP , v3FPΛv

4
FP ),

[v3FPΛv
4
FP , v4FPΛv

5
FP ) and [v4FPΛv

5
FP , x]) in Fig. 5 propor-

tionally increase as x becomes larger.
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Fig. 5. Five non-uniform fuzzy partitions of Fuzzy sets “Price of parking
lots” over Pparking

B. Linguistic Variables and Their Operator

In our fuzzy parking recommendation, linguistic variables
instead of raw parking-related data are used for fuzzy skyline

fusion. We define five linguistic characters for each type of
fuzzy partitions respectively.

Definition 8. (Linguistic variables of fuzzy partitions) As is
shown in Fig. 3, the fuzzy partition [v4FAΛv

5
FA, x] is the users’

most desirable range in terms of consideration “Availability
of parking spots”. Therefore, we define linguistic variable
‘a’ to describe all the Nvacant/Ntotal values within partition
[v4FAΛv

5
FA, x] that makes their MDs of their correspond-

ing fuzzy set FA5 be larger than other fuzzy sets FAi (i
= 1, 2, 3, 4). Further, we define ‘b’, ‘c’, ‘d’ and ‘e’ to
describe fuzzy partition [v3FAΛv

4
FA, v4FAΛv

5
FA), [v2FAΛv

3
FA,

v3FAΛv
4
FA), [v1FAΛv

2
FA, v2FAΛv

3
FA ) and [x, v1FAΛv

2
FA) re-

spectively, shown as the first column in Table I. Similarly, we
also define five linguistic variables (‘a’, ‘b’, ‘c’, ‘d’ and ‘e’)
to describe the fuzzy partitions of Fuzzy sets “Time to parking
lots” and fuzzy partitions of Fuzzy sets “Price of parking lots”
respectively in a reverse direction of their universes due to their
own parking considerations, shown as in Table I.

Lemma 1. Let u and v be two linguistic variables, and
their partitions are Par(u) and Par(v), for ∀x ∈ Par(u) and
∀y ∈ Par(v), if x < y, then Par(u) < Par(v) .

proof. We divide the universe of discourse X of each
parking consideration into five sub-partition Par(xi) (where
vi is the ith linguistic variable, i = 1...5 ) non-uniformly
without overlapping when we define linguistic variables, as
is shown in Table I. Apparently, Par(u) < Par(v) when
x < y according to the fuzzy partitions in Fig. 3, Fig. 4
and Fig. 5 respectively. In addition, using contradiction, if
Par(u) >= Par(v) when x < y, it contradicts the character-
istics of our fuzzy partitions such as

∪5
i=1 Par(vi) = [x, x]

and Par(vi) ∩ Par(vj) = ∅, ∀i, j ∈ {1, ..., 5}, i ̸= j, which
further prove the correctness of Lemam 1.

Definition 9. (Fuzzy skyline operator of linguistic variables)
Based on the definition of s-norm operator in fuzzy sets [23],
we define a fuzzy skyline operator for each type of fuzzy sets
as follows. Let u and v be two linguistic variables, and their
partitions are Par(u) and Par(v), if Par(v) < Par(v), then
define function ⊙(u, v) = v, which means that operator ⊙
returns the linguistic variable with a larger partition. ⊙(u, v)
can also be written as u < v.
⊙ is the fuzzy skyline operator used for in-network fuzzy

skyline fusion later on in this paper.

C. Algorithms

In this section, we introduce the detailed process of our
fuzzy skyline parking recommendation. There are two main
parts: Fuzzy transformation of users’ parking-related data and
fuzzy skyline parking fusion.

The fuzzy transformations of user’s considerations are per-
formed in two places. Firstly, each parking lot periodically
gets its number of vacant parking spots (Nvacant) and parking
price (Pparking) through its local management system and
calculates its Nvacant/Ntotal (shown in Definition 5). Then
its real-time Nvacant/Ntotal and Pparking are transformed
into linguistic variables based on the definitions of fuzzy
partitions and linguistic variables (Definitions 5, 7 and 8, and
Table I). Secondly, each RSU estimates user’s arrival time
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TABLE I
LINGUISTIC VARIABLES OF FUZZY PARTITIONS.

Linguistic
variables

Fuzzy partitions of FAi (i = 1...5)
over Nvacant/Ntotal

Fuzzy partitions of FT i (i = 1...5)
over Tarrival

Fuzzy partitions of FP i (i = 1...5)
over Pparking

a [v4FAΛv5FA, x] //“Very easy” [x, v1FTΛv2FT ] //“Very fast” [x, v1FPΛv2FP ] //“Very low”

b [v3FAΛv4FA, v4FAΛv5FA) [v1FTΛv2FT , v2FTΛv3FT ) [v1FPΛv2FP , v2FPΛv3FP )

c [v2FAΛv3FA, v3FAΛv4FA) [v2FTΛv3FT , v3FTΛv4FT ) [v2FPΛv3FP , v3FPΛv4FP )

d [v1FAΛv2FA, v2FAΛv3FA) [v3FTΛv4FT , v3FTΛv5FT ) [v3FPΛv4FP , v4FPΛv5FP )

e [x, v1FAΛv2FA) [v4FTΛv5FT , x) [v4FPΛv5FP , x)

according to the received user’s parking requests (including
their locations), during which road and traffic conditions are
used for such an estimation. Road and traffic conditions can be
monitored by roadside traffic facilities or the arrival time can
be obtained directly through a third-party app (such as Google
map navigation) when both RSU and user’s locations are
fixed. Then the arrival time is transformed to its corresponding
linguistic variable based on Definitions 6 and 8. The fuzzy
transformation can be described by Algorithm 1.

Algorithm 1 Fuzzy transformation of parking data
Input: parking-related data(3 defaults: Nvacant/Ntotal,

Pparking and Tarrival)
Output: linguistic variables

1: for each parking lot i do
2: i gets its real-time Nvacant ,Ntotal and Pparking , and

calculates the Nvacant/Ntotal;
3: i transforms Nvacant/Ntotal and Pparking to their lin-

guistic variables based on Definitions 5, 7 and 8;
4: end for
5: for each RSU j after receiving a user’s parking request

do
6: j estimates Tarrival based on the user’s Location and

traffic conditions;
7: j transforms its Tarrival into linguistic variable based

on Definitions 6 and 8;
8: end for

The fuzzy skyline parking recommendation process can
be described as follows. Firstly, each parking lot reports its
real-time fuzzy parking information, such as the linguistic
number of vacant parking spots and parking prices, to its
nearest RSU. This process is performed periodically and
usually before users’ parking requests. The price doesn’t have
to be reported if it has not changed in order to reduce the
volume of transferred data. Secondly, users driving on the
urban road send parking requests, including their consideration
codes (Ci), location and search radius R, to their nearby RSUs
through onboard units (OBUs) in their cars. Note that users’
considerations are encoded to inform RSUs to understand
the users’ considerations through a corresponding mapping
in advance. A user’s location can be encrypted for privacy
protection purpose. During user’s parking request propagation,
user-centered return paths (RSU-Tree network structure) are
established simultaneously (shown in Fig. 1). Thirdly, each

RSU executes fuzzy skyline parking fusion based on users’
linguistic considerations and returns all the fuzzy parking
lots according to Definitions 1 and 3. During fuzzy skyline
parking recommendation, fuzzy comparison operator ⊙ in
Definition 9 is used for fuzzy parking fusion. Finally, the
user obtains all the fuzzy skyline parking results from RSUs
and performs a final skyline fusion, which produces the final
parking recommendation.

Algorithm 2 Fuzzy skyline parking recommendation
(fuzzySkyline)
Input: Users’ consideration codes Ci, encrypted Location

enL and search radius R
Output: Parking lots (Recommendations)

1: for each parking lot i do
2: i sends its linguistic Nvacant/Ntotal ,Pparking to its

nearest RSU;
3: end for
4: User sends his/her parking request (Ci, enL and R) to

nearby RSU hop-by-hop within a search radius R, and
RSU-Tree return paths are established simultaneously;

5: for each RSU j do
6: j performs fuzzy skyline fusion according to users’

considerations (Ci) using fuzzy comparison operator ⊙
in Definition 9;

7: end for
8: The last skyline fusion is performed on user’s side as the

final parking recommendation.

D. Analysis of Privacy Protection

Observation 1. There is no efficient way for adversaries
to infer the number of parking lots, parking price, and user-
s’ preferences from fuzzy linguistic information but random
guessing.

Without losing generality, we show that there is no efficient
way for adversaries to learn the true number of vacant parking
spots or park-ing prices from linguistic parking-related infor-
mation (such as ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’) when there are sniffing
attacks. Because our linguistic variable definition is based on
both the non-uniformly fuzzy partition and the characteristics
of parking data, both of which are impossible for adversaries
to know due to neither of them is involved in data packet
delivery. Even if some edge RSUs are compromised, it is
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difficult for adversaries to infer from linguistic variables due
to the distributed storage of these linguistic variables. Besides,
the codes of users’ considerations further prevent users’ pref-
erences from being eavesdropped. Therefore, it is extremely
hard for adversaries to infer the private information of both
parking lots and users but random guessing.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed scheme fuzzySky-
line and compare it with other state-of-the-art methods using
OMENT++ [35] and JAVA, which OMNET++ is a discrete
event and component-based C++ simulation library and frame-
work, primarily for building network simulators.

A. Setup

Data set. Our experimental evaluations are based on real-
life parking-related data sets, including real road network,
parking lots and their numbers of parking spots, parking prices,
and manually deployed RSUs, which had been collected from
Wulin downtown, Hangzhou, China, shown in Fig. 6 (a).
According to the V2X communication technology [2, 4], the
communication radius between RSUs was set to 350 meters,
and the radius of the parking area covered by an RSU was
set to 220 meters. The data set contained parking-related data
when driving in different places at different times with two
road directions. Considering one of the scenarios, when a user
driving on the road of this area sends his/her parking request
with multiple considerations to the nearby RSUs through
onboard units (OBU) in his/her car, user-centered return paths
(RSU-Tree network structure) are established simultaneously,
shown in Fig. 6 (b).

Baselines and Settings. We compare our approach with the
two following baselines:

- Using raw data: A method using raw parking-related
data based on the same network structure as ours.

- Outsourced method: Each parking lot sends its real-
time parking status information, such as the number of
vacant parking spots and its parking price, to the out-
sourced cloud. Drivers send parking requests via GPS-
equipped personal devices and users’ current location
and destination location are sent to the outsourced cloud
together. After receiving users’ parking requests, the
recommended parking lots will be returned to drivers
through cloud computing.

Evaluation Metrics. Three following metrics are used in
our experimental evaluation:

- Accuracy: We define the accuracy performance of our
approach compared with the results of using raw data.
False Positive (FP) rate, False Negative (FN) rate, and
accuracy are used to examine our scheme, where false
positives mean the recommended results (parking lots)
that are not the most desired by users, and false negatives
are the omitted parking lots that are users’ most wanted.
Then the accuracy is defined as: accuracy = 1 −
FPrate− FNrate.

- Data transmission: In wireless communication, data
transmission accounts for most of the total energy
consumption. For example, transmitting one bit can
consume as much energy as running several thousand
instructions on a sensor’s CPU [36]. Besides, the amount
of data transmission also has a great impact on the real-
time performance. Therefore, data transmission was used
as an important evaluation metric.

- Response Time: In wireless communication, one hop of
data packet transmission consumes much more time than
computing in a sensor [36]. Therefore, the number of
relay hops determines the response time of our approach.
Note that the transmission of each parking lot sending its
parking information to its nearest RSU is often finished
before users’ parking requests, so this time consumption
cannot be regarded as part of the response time of
parking recommendation. Note that the time overhead
of distributed transmission should only be counted once.

B. Accuracy

We evaluated our scheme (fuzzySkyline) over ten parking
scenarios of different times and places with search radius
of 500 meters(m) and 1000 m respectively. We conducted
extensive experiments over 1-dimensional, 2-dimensional and
3-dimensional parking considerations respectively in ten afore-
mentioned scenarios. Their average FP rate, FN rate, Accuracy
performances are shown in Table II and Table III.

TABLE II
AVERAGE FP RATE, FN RATE AND ACCURACY OF FUZZYSKYLINE WITH

SEARCH RADIUS 500 M.

FP rate FN rate Accuracy

1 dimension 0% 0% 100%

2 dimensions 17.3% 1.3% 81.4%

3 dimensions 0% 18.2% 81.8%

Overall Accuracy 4.7% 4.0% 91.3%

TABLE III
AVERAGE FP RATE, FN RATE AND ACCURACY OF FUZZYSKYLINE WITH

SEARCH RADIUS 1000 M.

FP rate FN rate Accuracy

1 dimension 0% 0% 100%

2 dimensions 14.7% 2.1% 83.2%

3 dimensions 0% 21.4% 78.6%

Overall Accuracy 3.6% 5.2% 91.2%

In the experiments of 1-dimensional fuzzySkyline with
search radius both 500 and 1000 meters, there were usually
multiple parking recommendations (results) due to the impact
of the fuzzy partition of fuzzySkyline, while there was usually
one parking recommendation using raw data. Taking the
dimension “Availability of vacant parking spots” for example,
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Fig. 6. Real parking lots and their network structure for fuzzySkyline in Wulin downtown of Hangzhou city, China.

the parking lot with the largest ratio of vacant parking spots
would be the only recommendation result. For the sake of
comparison fairness, the number of recommendation results
using raw data was set to be the same as the one of fuzzySky-
line, and then the accuracy of fuzzySkyline is almost the same
as the one of using raw data, namely 100%.

In the experiments of 2-dimensional fuzzySkyline with a
search radius of 500 meters, there were 30 result sets due to
three combinations of 2-dimensional considerations over ten
scenarios. The total number of true parking recommendations
was 75. There were 13 false positives and only 1 false negative,
which resulted in a FP rate of 17.3% and a FN rate of 1.3%,
as shown in Table II. Due to the usage of linguistic variables
in fuzzySkyline, there are usually more parking recommenda-
tions compared to the method using raw data, which leads to
more false positives. Note that we have made some corrections
when calculating the accuracy for a fair comparison. For
instance, when there are 4 recommendation results using raw
data and 3 results in fuzzySkyline respectively, if the 3 results
of fuzzySkyline are the top-3 of the ones using raw data, the
missing result (4 minus 3) of fuzzySkyline is not regarded as
false positive in this case, which means that fuzzySkyline has
produced top-3 parking recommendations according to users’
considerations.

In the experiments of 3-dimensional fuzzySkyline with a
search radius 500 meters, there were 10 result sets due to
having only one fixed combination of three considerations.
The total number of true parking recommendations was 55.
There were 10 false negatives without false positive, which
resulted in a FN rate of 18.2% and a FP rate of 0%, as shown
in Table II. This is because the fuzzy partition of fuzzySkyline
might filter more parking candidates than the method using
raw data. For example, there were two candidates “0.53, 4,
8.39” and “0.55, 6, 6.33” with regard to our concerned three
dimensions Nvacant/Ntotal, Pparking , Tarrival in one of our
experiments, and their linguistic variables were “b, b, d”, “b, d,
d” in fuzzySkyline. After skyline fusion, the candidate “0.55,
6, 6.33” was filtered in fuzzySkyline, while the filtered one
was also a good candidate, which leads to a false negative. The
overall average accuracy of fuzzySkyline was 91.3% shown in

Table II.

Table III shows the figures with similar characteristics to
Table II in terms of average FP rate, FN rate and accuracy of
1-dimensional, 2-dimensional and 3-dimensional fuzzySkyline
with a search radius 1000 m. There was also no false in 1-
dimensional fuzzySkyline when the search radius was 1000
m. The errors mainly came from false positives (FP rate
was around 14.7%) with few false negatives (about 2.1%)
in 2-dimensional fuzzySkyline. Conversely, the FN rate was
approximately 21.4% without false positives in 3-dimensional
fuzzySkyline. The reasons are similar to the ones in Table II
that have been explained above and are not stated here again.
The overall accuracy of fuzzySkyline was around 91.2% when
the search radius was 1000 m, as shown in Table III.

We also experimentally evaluated the average success rate
of the first parking try when there were different numbers of
parking competitors. We initiated parking requests simultane-
ously (20, 40, 60, 80 and 100 respectively) at a number of
locations and selected their surrounding 20 parking lots as the
candidates. We examined their average first parking success
probability of fuzzySkyline, as shown in Table IV. It is not
difficult to see from Table IV that as the number of com-
petitions increases, the parking success rate declined slightly,
from average 100% of 20 competitors to average 77.8% of 100
competitions, even in the most intense competition situation
(when 100 drivers sent parking requests at the same place at
the same time), fuzzySkline still guaranteed a relatively high
parking success rate (77.8 %), as shown in Table IV.

TABLE IV
AVERAGE SUCCESS RATE OF THE FIRST PARKING WITH DIFFERENT

NUMBERS OF PARKING COMPETITORS.

20 40 60 80 100

Average success 100% 97.5% 90% 81.3% 77.8%
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C. Data Transmission

We evaluated our fuzzySkyline and compared it with the
method of using raw data and the outsourced method in terms
of data transmission. In the outsourced method, the main
data structure of the parking request was “currentLocation,
targetLocation, searchRadius and preferenceCodes”, where
“Location” consists of 32-bit longitude and 32-bit latitude
due to our 32-bit platform, and “searchRadius” and “prefer-
enceCodes” were 32 bits and 3 bits respectively. The main
data structure of the return phase in the outsourced method
was “Locations of recommendation”, which was 32 bits as
well. The data structure of outsourced data transmission was
“Nvacant/Ntotal ,Pparking , Tarrival and ID of Parking lot”, of
which “Nvacant/Ntotal”, “Pparking” and “Tarrival” were all
32 bits, and “ID of Parking lot” was 8 bits. In fuzzySkyline, the
main data structure of parking request was “encryptedLocation
and preferenceCodes”, where “encryptedLocation” was 32
bits. The data structure of transmission from parking lots
to RSUs was linguistic“Nvacant/Ntotal and Pparking and ID
of parking lot”. In the method of using raw data, raw data
instead of linguistic variables were used, all of which were 32
bits. To evaluate our method and make comparison with other
two aforementioned methods in terms of data transmission,
we conducted extensive evaluations over 1-Dimensional (1D),
2-Dimensional (2D) and 3-Dimensional (3D) considerations,
namely, Availability of vacant parking spots (A), Time to
parking lots (T), Prices of parking lots (P) as well as their
combinations. The specified experimental results and compar-
ison of data transmission are shown in Table V and Fig. 7
respectively.

The average data transmission of fuzzySkyline was ap-
proximately one-third of two other methods, shown in both
Table V and Fig. 7. There is no proportional relationship
between the amount of data transmission and the number
of dimensions, as shown in Table V, because the amount of
data transmission usually is determined by both the number
of dimensions and how much data can be filtered by fuzzy
skyline fusion. The data transmission of the outsourced method
remained the same when users’ preferences varied, as shown
in Fig. 7. This is because that the outsourced method is
independent of users’ considerations, that is, all the parking-
related data is stored and processed in an outsourced way,
which does not depend on the users’ preferences. The data
transmission of using raw data method rose as the number of
users’ considerations increased. This is because the fewer the
number of considerations, the more parking lots are filtered by
the method using raw data. For instance, in the 1-dimensional
parking search using raw data, it degenerates into the top-
1 query, and then the number of filtered parking lots would
be the maximum. Similarly, the process of fuzzySkyline also
depends on users’ considerations. The less number of users’
considerations, the more parking candidates would be filtered
by fuzzySkyline. However, there is no absolute proportional
relationship between the number of filtered parking candidates
and the number of considerations, and sometimes the amount
of filtering is related to the parking data distribution. This also
explains that the data transmission of 2D fuzzySkyline was a

little bit less than that used in 1D fuzzySkyline parking. In
short, the amount of data transmission of our fuzzySkyline is
very small, which is extremely helpful for energy efficiency
and real-time performance.

We also compared fuzzySkyline with existing work ADMM
[7] and SOI [28] in terms of data transmission, both of which
have been briefly described in the related work in Section
II. Firstly, we conducted experiments with 20, 50 and 100
parking lots involved respectively, and their performance of
data transmission is shown in Fig. 8(a). With the increase of
the number of parking lots involved, the data transmission of
fuzzySkyline, ADMM and SOI rose accordingly. However, the
data transmission growth of fuzzySkyline is much lower than
ADMM and SOI when more parking lots involved in parking
searching. That is, the data transmission of fuzzySkyline was
reduced from about half of ADMM and SOI to around one-
quarter of them when the number of involved parking lots
rose from 20 to 100. From Fig. 8(a), we know that the
SOI’s data transmission was the highest among the three
methods. The reason is that during the transmission process,
redundant information such as unavailable parking spaces is
transmitted, and the transmission position and direction are
also considered when transmitting parking results, which also
leads to the data redundancy. In addition, ADMM, like SOI,
in order to pursue an optimal solution, the insufficient filtering
of redundant data also causes its data transmission higher than
fuzzySkyline. It is worth mentioning that our data transmission
comparison did not consider privacy protection. If ADMM and
SOI adopt some privacy protection methods such as certificates
or encryption, their communication costs will be much higher
than that of fuzzySkyline.

We also experimentally evaluated the impact of ADMM’s
three costs (moving cost, parking cost and social cost) and
their combination in terms of data transmission, where it-
s three costs were corresponding to the three-dimensional
considerations of fuzzySkyline (arrival time, parking price,
vacant parking space). The data transmission comparison of
fuzzySkyline and ADMM over 1D, 2D and 3D considerations
is shown in Fig. 8(b). Due to the filtering of fuzzySkyline at
each level of the RSU-Tree topology, the data transmission
of fuzzySkyline approximately maintained stable. However,
as the number of cost considerations in ADMM increased, its
data transmission grew linearly.

In addition, we evaluated the total delivered packets from
the beginning of a user’s parking request to the moment
that the user receives the parking recommendation among
fuzzySkyline, ADMM and SOI when 100 and 200 parking
lots were involved respectively. Their data transmission in
packets are shown in Fig. 8 (c). Similar to FuzzySkyline,
ADMM uses RSUs for sending parking requests and receiving
parking information. Besides the fog server in ADMM helps
managing the parking-related information exchange among
parking lots and RSUs, which caused more packet delivery
than that of fuzzySkyline. SOI utilizes public transportation
to sense surrounding parking spaces, which results in more
data forwarding and unavailable parking data. Therefore, the
communication overhead of SOI was much larger than that of
the two others, as is shown in Fig.8 (c).
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TABLE V
AVERAGE DATA TRANSMISSION (BITS) OF THREE METHODS OVER 1D, 2D AND 3D CONSIDERATIONS

1D 2D 3D

A T P A+T A+P T+P A+T+P

FuzzySkyline 2851 4531 2883 2991 3187 3443 3415

Using raw data 7867 10051 8307 8523 9675 8547 11019

Outsourced method 10531
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Fig. 7. Comparison of average data transmission among fuzzySkyline and two other methods over 1D, 2D and 3D considerations and their combinations.
(a) Users driving in one place with two different directions at ten different time points. (b) Users driving in three different places and each place with two
directions at the same moments.
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Fig. 8. Comparison of average data transmission among fuzzySkyline, ADMM, and SOI. (a) 20, 50 and 100 parking lots involved respectively. (b) Parking
search with 1D, 2D and 3D considerations and their combinations over 100 parking lots. (c) Total delivered packets among three methods when 100 and 200
parking lots involved respectively

D. Response Time

We evaluated our scheme in terms of recommendation
response time when driving in three different locations with
search radius 500 and 1000 meters respectively. As discussed
in Subsection 5.1, the number of non-distributed relay hops
from the moment of parking request sent by a user to the
moment of parking recommendations returned determines the
response time. The transmission of each parking lot sending
its parking information to its nearest RSU was not regarded
as part of the response time due to that it is independent of
parking requests. The time overhead of distributed transmis-
sion was counted only once. The average total numbers of
non-distributed relay hops with search radius 500 meters and
1000 meters were 5.3 and 7.3 respectively, shown in Table VI.

From Table VI, if the V2X communication delay of every

TABLE VI
AVERAGE NUMBER OF TOTAL RELAY HOPS WITH DIFFERENT SEARCH

RADIUS.

Radius 500 m Radius 1000 m

Relay hops 5.3 7.3

hop transmission is set to 100 ms [2], the entire parking
recommendation process of fuzzySkyline will be completed
in 0.6 second and 0.8 second with search radius 500 metres
and 1000 metres respectively. Therefore, the response time of
our fuzzySkyline is quite short.

We also made some comparison among fuzzySkyline, AD-
MM and SOI in terms of average time overhead, as is
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shown in Fig. 9. As discussed in Subsection V.C, there is
a fog sever between parking lots and RSUs managing their
data exchange, which causes one hop delay. Whilst, due to
the participation of taxis, on-street parked vehicles, as well
as the parking system TPSS in collecting and processing
parking information, the transmission latency of SOI doubled
compared with fuzzySkyline, as is shown in Fig. 9.
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Fig. 9. Comparison of average time overhead among fuzzySkyline, ADMM
and SOI when parking search radius were 500 metres and 1000 metres.

VI. CONCLUSION

In this paper, We concerned over the quality (such as
privacy protection) of parking services, and proposed a novel
parking recommendation scheme using fuzzy sets. Fuzzy
transformation methods, such as fuzzy partitions, linguistic
variables and a fuzzy transformation algorithm, were proposed
for describing sensitive parking-related data in a privacy-
preserving way respectively. Besides, a novel fuzzy skyline
parking fusion algorithm with a newly designed fuzzy operator
were devised, during which linguistic variables instead of raw
parking-related data are used for parking recommendation,
which benefits both real-time and privacy protection. Exper-
imental evaluations based on real-life data sets demonstrated
our motivation in terms of privacy protection and efficiency.

As a direction for future work, we could look into how to
further improve the recommendation accuracy when there are
multiple parking considerations (definitely more than one), es-
pecially focusing on improving fuzzy skyline filtering. Another
topic to study is to efficiently handling continuous parking
recommendations to multiple users in the future.
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