729 research outputs found

    A virtual element method for the vibration problem of Kirchhoff plates

    Get PDF
    The aim of this paper is to develop a virtual element method (VEM) for the vibration problem of thin plates on polygonal meshes. We consider a variational formulation relying only on the transverse displacement of the plate and propose an H2(Ω)H^2(\Omega) conforming discretization by means of the VEM which is simple in terms of degrees of freedom and coding aspects. Under standard assumptions on the computational domain, we establish that the resulting schemeprovides a correct approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. The analysis restricts to simply connected polygonal clamped plates, not necessarily convex. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme and confirming our theoretical results on different families of meshes. Additional examples of cases not covered by our theory are also presented

    The singular dynamic method for dynamic contact of thin elastic structures

    Get PDF
    This paper adresses the approximation of the dynamic impact of thin elastic structures. The principle of the presented method is the use of a singular mass matrix obtained by different discretizations of the deflection and velocity. The obtained semi-discretized problem is proved to be well-posed and energy conserving. The method is applied on some membrane, beam and plate models and associated numerical experiments are discussed

    Mixed finite elements for Kirchhoff-Love plate bending

    Full text link
    We present a mixed finite element method with parallelogram meshes for the Kirchhoff-Love plate bending model. Critical ingredient is the construction of appropriate basis functions that are conforming in terms of a sufficiently large tensor space and allow for any kind of physically relevant Dirichlet and Neumann boundary conditions. For Dirichlet boundary conditions, and polygonal convex or non-convex plates that can be discretized by parallelogram meshes, we prove quasi-optimal convergence of the mixed scheme. Numerical results for regular and singular examples with different boundary conditions illustrate our findings.Comment: corrected versio

    Blast analysis of enclosure masonry walls using homogenization approaches

    Get PDF
    A simple rigid-plastic homogenization model for the analysis of enclosure masonry walls sub- jected to blast loads is presented. The model is characterized by a few material parameters, is numerically inexpensive and very stable, and allows full parametric studies of entire walls subject to blast pressures. With the aim of considering the actual brickwork strength along vertical and horizontal axes, masonry out-of-plane anisotropic failure surfaces are obtained by means of a compatible homogenized limit analysis approach. In the model, a 3D system of rigid infinitely strong bricks connected by joints reduced to interfaces is identified with a 2D Kirchhoff-Love plate. For the joints, which obey an associated flow rule, aMohr-Coulomb fail- ure criterion with a tension cutoff and a linearized elliptic compressive cap is considered. In this way, the macroscopic masonry failure surface is obtained as a function of the macroscopic bending, torque, and in-plane forces by means of a linear programming problem in which the internal power dissipated is minimized. Triangular Kirchhoff-Love elements with linear in- terpolation of the displacements field and constant moment within each element are used at a structural level. In this framework, a simple quadratic programming problem is obtained to analyze entire walls subjected to blast loads. The multiscale strategy presented is adopted to predict the behavior of a rectangular wall supported on three sides (left, bottom, and right) representing an envelope wall in a building and subjected to a standardized blast load. The top edge of the wall is assumed unconstrained due to an imperfect connection (often an inter- layer material is used to prevent damage in the in-fill wall). A comparison with a standard elastic-plastic heterogeneous 3D analysis conducted with a commercial FE code is also pro- vided for a preliminary verification of the procedure at a structural level. The good agreement found and the very limited computational effort required for the simulations conducted with the presented model indicate that the proposed simple tool can be used by practitioners for the safety assessment of out-of-plane loaded masonry panels subjected to blast loading. An ex- haustive parametric analysis is finally conducted with different wall thicknesses, joint tensile strengths, and dynamic pressures, corresponding to blast loads (in kilograms of TNT) ranging from small to large

    Automated shape and thickness optimization for non-matching isogeometric shells using free-form deformation

    Full text link
    Isogeometric analysis (IGA) has emerged as a promising approach in the field of structural optimization, benefiting from the seamless integration between the computer-aided design (CAD) geometry and the analysis model by employing non-uniform rational B-splines (NURBS) as basis functions. However, structural optimization for real-world CAD geometries consisting of multiple non-matching NURBS patches remains a challenging task. In this work, we propose a unified formulation for shape and thickness optimization of separately-parametrized shell structures by adopting the free-form deformation (FFD) technique, so that continuity with respect to design variables is preserved at patch intersections during optimization. Shell patches are modeled with isogeometric Kirchhoff--Love theory and coupled using a penalty-based method in the analysis. We use Lagrange extraction to link the control points associated with the B-spline FFD block and shell patches, and we perform IGA using the same extraction matrices by taking advantage of existing finite element assembly procedures in the FEniCS partial differential equation (PDE) solution library. Moreover, we enable automated analytical derivative computation by leveraging advanced code generation in FEniCS, thereby facilitating efficient gradient-based optimization algorithms. The framework is validated using a collection of benchmark problems, demonstrating its applications to shape and thickness optimization of aircraft wings with complex shell layouts

    Powell-Sabin B-splines and unstructured standard T-splines for the solution of the Kirchhoff-Love plate theory exploiting BĂ©zier extraction

    Get PDF
    The equations that govern Kirchhoff–Love plate theory are solved using quadratic Powell–Sabin B-splines and unstructured standard T-splines. Bézier extraction is exploited to make the formulation computationally efficient. Because quadratic Powell–Sabin B-splines result in inline image-continuous shape functions, they are of sufficiently high continuity to capture Kirchhoff–Love plate theory when cast in a weak form. Unlike non-uniform rational B-splines (NURBS), which are commonly used in isogeometric analysis, Powell–Sabin B-splines do not necessarily capture the geometry exactly. However, the fact that they are defined on triangles instead of on quadrilaterals increases their flexibility in meshing and can make them competitive with respect to NURBS, as no bending strip method for joined NURBS patches is needed. This paper further illustrates how unstructured T-splines can be modified such that they are inline image-continuous around extraordinary points, and that the blending functions fulfil the partition of unity property. The performance of quadratic NURBS, unstructured T-splines, Powell–Sabin B-splines and NURBS-to-NURPS (non-uniform rational Powell–Sabin B-splines, which are obtained by a transformation from a NURBS patch) is compared in a study of a circular plat

    Lower bound static approach for the yield design of thick plates

    Get PDF
    International audienceThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear-bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five-dimensional space of bending moment and shear force, are considered, one of them taking into account the interaction between bending and shear resistances. The criteria are chosen to be sufficiently simple so that the resulting optimization problem can be formulated as a second-order cone programming problem, which is solved by the dedicated solver MOSEK. The efficiency of the proposed finite element is illustrated by means of numerical examples on different plate geometries, for which the thin plate solutions as well as the pure shear solutions are accurately obtained as two different limit cases of the plate slenderness ratio. In particular, the proposed element exhibits a good behavior in the thin plate limit
    • …
    corecore