477 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Spatial and functional control of extrusion head for additive manufacturing of continuous fibre reinforced polymer composites using 6-axis robotic arm

    Get PDF
    Abstract: This paper addresses the challenges of additive manufacturing (AM) of continuous fibres on non-planar surfaces using 6-axis robotic arms. Two ABB IRB 1200 robots (controlled by an IRC5 controller) are utilized with a customdesigned material extrusion head that is controlled by Duet 3 Main Board. For toolpath planning, a workflow is developed in Grasshopper. The developed toolpath planning interface generates G-code for fibre extrusion lengths and other processdriven functions. Simultaneously, RAPID code is generated for robot movements. Synchronization between the robot movements and the material extrusion head is achieved by integrating G-code lines in the RAPID code. A user-friendly application programming interface (API) was developed inhouse to manage communication signals between the robot and material extrusion head controller. The working system is demonstrated by depositing curves of continuous fibre on planar and non-planar (doubly curved) surfaces.Communication présentée lors du congrès international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), à l’Université de Sherbrooke (Québec), du 28 au 31 mai 2023

    Design and manufacturing of WAAM parts to consolidate new R+D metal AM capabilities at CIM UPC's pilot plant

    Get PDF
    La fabricació additiva i la robòtica són dues tecnologies que han experimentat una evolució impressionant en els darrers anys. Quan es combinen, permeten resoldre nombroses tasques industrials en diversos camps com l'aeroespacial, l'automòbil o qualsevol sector que requereixi una fabricació o modificació precisa d'una peça. Proporciona un procés d'implementació ràpid, una programació robòtica fàcil i un ús òptim de la cinemàtica del robot per a un control de moviment superior. La fabricació additiva amb arc de filferro (WAAM) és una de les tècniques d'impressió 3D que s'utilitza per fabricar peces metàl·liques utilitzant un arc elèctric, y està en constant evolució. El tema de la meva investigació és establir una manera d'imprimir una peça de plàstic d'una forma desitjada simulant la tecnologia WAAM i realitzar proves mecàniques en les mostres impreses per comparar-les amb productes fabricats de manera convencional del mateix tipus. Per fer-ho, vaig fer servir un cobot UR10e de Universal Robot, combinat amb una eina d'impressió de filament de plàstic d'una impressora 3D Epsilon W27 de BCN3D. L'ús del filament de plàstic és el punt de partida d'un projecte futur que es centra després en l'ús del filament metàl·lic per imprimir peces. Els experiments han portat a una sèrie d'intents d'impressió, estudiant un paràmetre d'impressió a la vegada. La primera sèrie no va portar a impressió reeixides a causa de la distància entre capes i entre passes eren massa grans, portant a discontinuïtats en la trajectòria d'eina i acabat de superfície pobre. Per a la següent sèrie, les opcions d'impressió van ser optimitzades, i les peces impreses van ser molt més precises.La fabricación aditiva y la robótica son dos tecnologías que han experimentado una evolución impresionante en los últimos años. Cuando se combinan, permiten resolver numerosas tareas industriales en varios campos como el aeroespacial, la automoción o cualquier sector que requiera una fabricación o modificación precisa de una pieza. Proporciona un proceso de implementación rápido, una programación robótica fácil y un uso óptimo de la cinemática del robot para un control de movimiento superior. La fabricación aditiva con arco eléctrico (WAAM) es una de las técnicas de impresión 3D que se utiliza para fabricar piezas metálicas, y está en constante evolución. El tema de mi investigación es establecer una manera de imprimir una pieza de plástico de una forma deseada simulando la tecnología WAAM usando un robot colaborativo y realizar pruebas mecánicas en las muestras impresas para compararlas con productos fabricados de manera convencional del mismo tipo. Para ello, utilicé un cobot UR10e de Universal Robot, combinado con una herramienta de impresión de filamento de plástico de una impresora 3D Epsilon W27 de BCN3D. El uso del filamento de plástico es el punto de partida de un proyecto futuro que se centra luego en el uso del filamento metálico para imprimir piezas. Los experimentos han llevado a una serie de intentos de impresiones, estudiando un parámetro de impresión a la vez. La primera serie no dio lugar a impresiones exitosas debido a que la distancia entre capas y entre pasadas era demasiado grande, lo que causaba discontinuidades en la trayectoria de la herramienta y un acabado superficial pobre. Para la serie siguiente, las configuraciones de impresión se optimizaron y las piezas impresas fueron mucho más precisas.Additive manufacturing and robotics are two technologies which have undergone a dazzling evolution over the last few years. When combined, they allow the resolution of numerous industrial tasks in various fields such as aerospace, automobile, or any sector that requires a precise manufacturing or modification of a workpiece. It provides a fast process implementation, an easy robotic programming, and an optimal use of the robot’s kinematics for superior motion control. Wire arc additive manufacturing (WAAM) is one of the 3D printing techniques that is used to manufacture metallic parts using an electric arc, and it is in constant evolution. The subject of my research is about setting up a way to print a plastic part of a desired shape simulating the WAAM technology with a collaborative robot and perform mechanical tests on the printed samples to compare them with conventional manufactured products of the same kind. To do so, I used a UR10e cobot from Universal Robot, combined with a plastic filament printing toolhead of an Epsilon W27 3D printer from BCN3D. The use of plastic filament is the starting point of a future project focusing then on the use of metallic filament to print parts. The experiments have led to a series of attempts of prints, studying a parameter of impression at a time. The first series did not lead to successful prints because of the distance between layers and between passes were too big, leading to discontinuities in the toolpath and poor surface finish. For the following series, the printing settings were optimized, and the printed pieces were much more accurate.Incomin

    Repair of metallic components using hybrid manufacturing

    Get PDF
    Many high-performance metal parts users extend the service of these damaged parts by employing repair technology. Hybrid manufacturing, which includes additive manufacturing (AM) and subtractive manufacturing, provides greater build capability, better accuracy, and surface finish for component repair. However, most repair processes still rely on manual operations, which are not satisfactory in terms of time, cost, reliability, and accuracy. This dissertation aims to improve the application of hybrid manufacturing for repairing metallic components by addressing the following three research topics. The first research topic is to investigate and develop an efficient best-fit and shape adaption algorithm for automating 3D models\u27 the alignment and defect reconstruction. A multi-feature fitting algorithm and cross-section comparison method are developed. The second research topic is to develop a smooth toolpath generation method for laser metal deposition to improve the deposition quality for metallic component fabrication and repair. Smooth connections or transitions in toolpath planning are achieved to provide a constant feedrate and controllable deposition idle time for each single deposition pass. The third research topic is to develop an automated repair process could efficiently obtain the spatial information of a worn component for defect detection, alignment, and 3D scanning with the integration of stereo vision and laser displacement sensor. This dissertation investigated and developed key technologies to improve the efficiency, repair quality, precision, and automation for the repair of metallic components using hybrid manufacturing. Moreover, the research results of this dissertation can benefit a wide range of industries, such as additive manufacturing, manufacturing and measurement automation, and part inspection --Abstract, page iv
    • …
    corecore