36,727 research outputs found

    Continuous spaces in statistical machine Translation

    Full text link
    [EN] Classically, statistical machine translation relied on representations of words in a discrete space. Words and phrases were atomically represented as indices in a vector. In the last years, techniques for representing words and phrases in a continuous space have arisen. In this scenario, a word is represented in the continuous space as a real-valued, dense and low-dimensional vector. Statistical models can profit from this richer representation, since it is able to naturally take into account concepts such as semantic or syntactic relationships between words and phrases. This approach is encouraging, but it also entails new challenges. In this work, a language model which relies on continuous representations of words is developed. Such model makes use of a bidirectional recurrent neural network, which is able to take into account both the past and the future context of words. Since the model is costly to train, the training dataset is reduced by using bilingual sentence selection techniques. Two selection methods are used and compared. The language model is then used to rerank translation hypotheses. Results show improvements on the translation quality. Moreover, a new approach for machine translation has been recently proposed: The so-called neural machine translation. It consists in the sole use of a large neural network for carrying out the translation process. In this work, such novel model is compared to the existing phrase-based approaches of statistical machine translation. Finally, the neural translation models are combined with diverse machine translation systems, in order to provide a consensus translation, which aim to improve the translation given by each single system.[ES] Los sistemas clásicos de traducción automática estadística están basados en representaciones de palabras en un espacio discreto. Palabras y segmentos se representan como índices en un vector. Durante los últimos años han surgido técnicas para realizar la representación de palabras y segmentos en un espacio continuo. En este escenario, una palabra se representa en el espacio continuo como un vector de valores reales, denso y de baja dimensión. Los modelos estadísticos pueden aprovecharse de esta representación más rica, puesto que incluye de forma natural conceptos semánticos o relaciones sintácticas entre palabras y segmentos. Esta aproximación es prometedora, pero también conlleva nuevos retos. En este trabajo se desarrolla un modelo de lenguaje basado en representaciones continuas de palabras. Dicho modelo emplea una red neuronal recurrente bidireccional, la cual es capaz de considerar tanto el contexto pasado como el contexto futuro de las palabras. Debido a que este modelo es costoso de entrenar, se emplea un conjunto de entrenamiento reducido mediante técnicas de selección de frases bilingües. Se emplean y comparan dos métodos de selección. Una vez entrenado, el modelo se emplea para reordenar hipótesis de traducción. Los resultados muestran mejoras en la calidad de la traducción. Por otro lado, recientemente se propuso una nueva aproximación a la traducción automática: la llamada traducción automática neuronal. Consiste en el uso exclusivo de una gran red neuronal para llevar a cabo el proceso de traducción. En este trabajo, este nuevo modelo se compara al paradigma actual de traducción basada en segmentos. Finalmente, los modelos de traducción neuronales son combinados con otros sistemas de traducción automática, para ofrecer una traducción consensuada, que busca mejorar las traducciones individuales que cada sistema ofrecePeris Abril, Á. (2015). Continuous spaces in statistical machine Translation. http://hdl.handle.net/10251/68448Archivo delegad

    Learning Semantic Representations for the Phrase Translation Model

    Get PDF
    This paper presents a novel semantic-based phrase translation model. A pair of source and target phrases are projected into continuous-valued vector representations in a low-dimensional latent semantic space, where their translation score is computed by the distance between the pair in this new space. The projection is performed by a multi-layer neural network whose weights are learned on parallel training data. The learning is aimed to directly optimize the quality of end-to-end machine translation results. Experimental evaluation has been performed on two Europarl translation tasks, English-French and German-English. The results show that the new semantic-based phrase translation model significantly improves the performance of a state-of-the-art phrase-based statistical machine translation sys-tem, leading to a gain of 0.7-1.0 BLEU points

    Domain adaptation strategies in statistical machine translation: a brief overview

    Get PDF
    © Cambridge University Press, 2015.Statistical machine translation (SMT) is gaining interest given that it can easily be adapted to any pair of languages. One of the main challenges in SMT is domain adaptation because the performance in translation drops when testing conditions deviate from training conditions. Many research works are arising to face this challenge. Research is focused on trying to exploit all kinds of material, if available. This paper provides an overview of research, which copes with the domain adaptation challenge in SMT.Peer ReviewedPostprint (author's final draft

    Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

    Full text link
    In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.Comment: EMNLP 201

    BattRAE: Bidimensional Attention-Based Recursive Autoencoders for Learning Bilingual Phrase Embeddings

    Full text link
    In this paper, we propose a bidimensional attention based recursive autoencoder (BattRAE) to integrate clues and sourcetarget interactions at multiple levels of granularity into bilingual phrase representations. We employ recursive autoencoders to generate tree structures of phrases with embeddings at different levels of granularity (e.g., words, sub-phrases and phrases). Over these embeddings on the source and target side, we introduce a bidimensional attention network to learn their interactions encoded in a bidimensional attention matrix, from which we extract two soft attention weight distributions simultaneously. These weight distributions enable BattRAE to generate compositive phrase representations via convolution. Based on the learned phrase representations, we further use a bilinear neural model, trained via a max-margin method, to measure bilingual semantic similarity. To evaluate the effectiveness of BattRAE, we incorporate this semantic similarity as an additional feature into a state-of-the-art SMT system. Extensive experiments on NIST Chinese-English test sets show that our model achieves a substantial improvement of up to 1.63 BLEU points on average over the baseline.Comment: 7 pages, accepted by AAAI 201

    Does Multimodality Help Human and Machine for Translation and Image Captioning?

    Full text link
    This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate the usefulness of multimodal data for human machine translation and image description generation. Our systems obtained the best results for both tasks according to the automatic evaluation metrics BLEU and METEOR.Comment: 7 pages, 2 figures, v4: Small clarification in section 4 title and conten
    corecore