23 research outputs found

    I/O-Efficient Dynamic Planar Range Skyline Queries

    Get PDF
    We present the first fully dynamic worst case I/O-efficient data structures that support planar orthogonal \textit{3-sided range skyline reporting queries} in \bigO (\log_{2B^\epsilon} n + \frac{t}{B^{1-\epsilon}}) I/Os and updates in \bigO (\log_{2B^\epsilon} n) I/Os, using \bigO (\frac{n}{B^{1-\epsilon}}) blocks of space, for nn input planar points, tt reported points, and parameter 0ϵ10 \leq \epsilon \leq 1. We obtain the result by extending Sundar's priority queues with attrition to support the operations \textsc{DeleteMin} and \textsc{CatenateAndAttrite} in \bigO (1) worst case I/Os, and in \bigO(1/B) amortized I/Os given that a constant number of blocks is already loaded in main memory. Finally, we show that any pointer-based static data structure that supports \textit{dominated maxima reporting queries}, namely the difficult special case of 4-sided skyline queries, in \bigO(\log^{\bigO(1)}n +t) worst case time must occupy Ω(nlognloglogn)\Omega(n \frac{\log n}{\log \log n}) space, by adapting a similar lower bounding argument for planar 4-sided range reporting queries.Comment: Submitted to SODA 201

    CONTINUOUS MULTIQUERIES K-DOMINANT SKYLINE ON ROAD NETWORK

    Get PDF
    The increasing use of mobile devices makes spatial data worthy of consideration. To get maximum results, users often look for the best from a collection of objects. Among the algorithms that can be used is the skyline query. The algorithm looks for all objects that are not dominated by other objects in all of its attributes. However, data that has many attributes makes the query output a lot of objects so it is less useful for the user. k-dominant skyline queries can be a solution to reduce the output. Among the challenges is the use of skyline queries with spatial data and the many user preferences in finding the best object. This study proposes IKSR: the k-dominant skyline query algorithm that works in a road network environment and can process many queries that have the same subspace in one processing. This algorithm combines queries that operate on the same subspace and set of objects with different k values by computing from the smallest to the largest k. Optimization occurs when some data for larger k are precomputed when calculating the result for the smallest k so the Voronoi cell computing is not repeated. Testing is done by comparing with the naïve algorithm without precomputation. IKSR algorithm can speed up computing time two to three times compared to naïve algorithm

    Probabilistic Skyline Queries over Uncertain Moving Objects

    Get PDF
    Data uncertainty inherently exists in a large number of applications due to factors such as limitations of measuring equipments, update delay, and network bandwidth. Recently, modeling and querying uncertain data have attracted considerable attention from the database community. However, how to perform advanced analysis on uncertain data remains an interesting question. In this paper, we focus on the execution of skyline computation over uncertain moving objects. We propose a novel probabilistic skyline model where an uncertain object may take a probability to be in the skyline at a certain time point, therefore a p-t-skyline contains those moving objects whose skyline probabilities are at least p at time point t. Computing probabilistic skyline over a large number of uncertain moving objects is a daunting task in practice. In order to efficiently compute the probabilistic skyline query, we propose a discrete-and-conquer strategy, which follows the sampling-bounding-pruning-refining procedure. To further reduce the skyline computation cost, we propose an enhanced framework that is based on a multi-dimensional indexing structure combined with the discrete-and-conquer strategy. Through extensive experiments with synthetic datasets, we show that the framework can efficiently support skyline queries over uncertain moving object and is scalable on large data sets

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234

    Skyline queries in dynamic environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Querying Spatial Data by Dominators in Neighborhood

    Get PDF
    corecore