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Summary

As a query type that is able to retrieve interesting points from a multi-dimensional

dataset according to multiple criteria, skyline queries have gained considerable at-

tention in database community in the past few years. However, so far most work on

skyline queries has been accomplished in the context of static computing environ-

ments. The emergence and development of dynamic computing environments, in-

cluding moving objects databases and mobile ad-hoc networks, present new stages

and also challenges to skyline queries. In this thesis, we address skyline queries

along three different but correlated aspects of dynamic computing environments.

First, we tackle continuous skyline queries for moving objects by taking into

account the ever changing distances between a query point and points of interest.

The continuously changing distances make it inefficient or even infeasible to han-

dle a skyline query by reprocessing repeatedly. We instead turn to an incremental

maintenance way that is focused on the changes of skyline. A permanent part of the

skyline is identified and utilized to derive a search bound for further processing and

maintenance. Then the preconditions for potential skyline changes are strictly dis-

covered. Based on the thorough and solid analysis, we propose a kinetic-based data



xiv

structure and relevant processing algorithms for continuous skyline queries. Our

proposal is targeted at the powerful server in a client/server architecture, within

which the server stores all information coming from moving objects as clients. Our

method does not re-compute the whole skyline query from scratch every time it

changes, and it is also tolerant to moving plan updates reported by clients.

Second, we consider skyline query processing on mobile lightweight devices. We

propose specific measures to efficiently process skyline queries on such resource-

constrained devices. By comparing existing methods, we employ a hybrid storage

scheme that deals differently with the distinct spatial coordinates and non-spatial

attributes sharing duplicates. Raw coordinates are directly stored, while other

attribute values are organized in linear domains and integer identifiers for domain

values are stored instead of raw values. To help skyline computation, all domains

and identifiers of one selected attribute are sorted. Based on the hybrid storage, we

propose a skyline algorithm that executes less and more efficient value comparisons.

Our hybrid storage saves storage space on device, and the skyline algorithm based

on it runs faster than that without any specific measures.

Third, we address distributed skyline queries in a MANET formed by multiple

mobile lightweight devices via peer-to-peer networking. To efficiently process such

distributed skyline queries, we focus on cutting the data transmission time among

mobile devices. We propose a filtering based query processing strategy, which

identifies some unqualified points early and prevent them from being transmitted.

Based on a probability model, the skyline point with the maximum capability

to dominate other points is selected when the query is locally processed on its

originating device. That point is called filtering point and attached to the query

request sent out to other peers, where it is used to filter out unqualified points

in local skylines otherwise to be sent back to the query originator. To maximize
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the dominating capability the filtering point holds, it is dynamically changed on

involved devices before the query is forwarded further in the MANET. This filtering

base strategy reduces the amount of data to transmit, and consequently shortens

the response time of distributed skyline queries.

In summary, this thesis studies three different but correlated problems of skyline

queries in dynamic environments. All proposal are verified to be efficient through

extensive experimental studies. At the end of this thesis, possible directions for

further research are also discussed.
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CHAPTER 1

Introduction

Due to the ability to model various data from structured, semi-structured to

even unstructured, flexibility to support disparate architectures from strictly cen-

tralized to widely distributed, and accessibility to satisfy diverse users from ama-

teurs to experts, databases have been applied in so many scenarios ranging from

lightweight hand-held devices to supercomputers. With the wide deployment and

accumulation of databases over all those years, people in modern days often need

to query against databases for useful information. Such queries are composed ac-

cording to the characteristics of information needed by users. Among variety of

user needs, some can be modelled as ranking with respect to a single criterion. As

a typical example of this category, a top-k query returns the k “best” records in

the database. In a top-k query, each record is evaluated based on either a single

attribute value or a scoring function output of several attribute values as inputs.

Nevertheless, more frequently user requirements on multiple dimensional data

are too complex to be captured by straightforward measures like top-k ranking.

Instead, users from time to time need to make decisions based on multiple criteria.

To cater for such requirements, skyline query [19] has been proposed as an operator

to be integrated into the existing database context.
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1.1 The Concept of Skyline Query

A skyline query [19] returns a subset of interesting points from a large set of data

points of multiple dimensionality. A point is said to be interesting if it is not dom-

inated by any other points. A point pt1 is said to dominate pt2, if pt1 is not worse

than pt2 in every single dimension but better than pt2 in at least one dimension.

The meaning of “better” varies in different situations, for example “smaller” or

“larger” in value comparison, and “earlier” or “later” in date comparison. If a pair

of points do not dominate each other, they are said to be incomparable.

Figure 1.1: A classical example of skyline of hotels

Because of their powerful capability of retrieving interesting points from a large

data set, skyline queries are well suitable for applications like decision making and

optimization according to multiple criteria. Refer to Figure 1.1 from [19] for a

classical example of skyline of hotels. Tourists prefer those hotels that are cheap

and near to the beach, and a skyline query against the hotel sets identifies these

ones on the poly-line. While a simple top-k query fails to find all these interesting

ones and gives a user much less choices, e.g., either the one cheapest or the one

nearest to the beach if k equals 1.

From a historical aspect of view, skyline queries can be traced to earlier topics
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including contour problem [61], maximum vector [52] and convex hull [70] compu-

tations, and multi-objective optimization [81]. It also is interesting why the term

“skyline” is used to name this kind of query. According to Merriam-Webster On-

line Dictionary [2], a skyline is “an outline (as of buildings or a mountain range)

against the background of the sky”. Figure 1.2 shows an example of this definition:

skyline of Singapore city viewed from the sea. In this photo, only those buildings

that are close to the sea or tall are visible. Here depth of field and height are two

dimensions that need optimizing. Again, a top-k query is not be able to retrieve

objects favorable in terms of both dimensions.

Figure 1.2: Skyline of Singapore city

Because of their power to handle multiple criteria, skyline queries has gained

considerable attention in database community since its debut in [19]. Most work on

skyline queries so far, however, has assumed a static centralized relational context.

Whereas in this thesis we put skyline queries in dynamic environments, which

are characterized by moving objects that can not be trivially accommodated by

traditional databases or mobile devices that construct eccentric and challenging

computing milieus. This is motivated by the emergence and popularity of such

dynamic environments and the lack of research work on skyline queries in such
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environments.

1.2 Motivation

We live in a dynamic world, which abounds with moves and changes. Modern com-

puter scientists are enthusiastic about modelling this dynamic world in computers

and providing efficient solutions for practical problems. Their efforts have brought

about dynamic computing environments, which noticeably result from mobility re-

lated technologies. Within the past few decades, mobility related technologies have

made marked progress in three dimensions.

First, positioning technology has been greatly improved in terms of both accu-

racy and availability based on the communication infrastructure or constellation of

orbiting satellites like the global positioning system (GPS) [65], or a combination.

And this trend of improvement will be pushed even further with the advent of the

new positioning system Galileo [89].

Second, technology of computer hardware miniaturization has succeeded in pro-

viding variety of mobile hand-held devices with relatively acceptable computing

capability. These mobile devices, including smart mobile phones and personal dig-

ital assistants (PDA), have freed users from the fixed environments of unmovable

computers, making it possible to do computation anytime and anywhere.

Third, wireless communication technology has been significantly developed, so

as to stimulate the worldwide upgrade of cellular networks and the prevalent de-

ployment of IEEE 802.11-based LANs [59]. These developments have given mobile

users opportunities to keep connected with the traditional fixed facilities like the

Internet, and even with other mobile peers en route.

As a consequence of the confluence of all these advances, an application category
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called geo-enabled mobile services [44] has surfaced with a promising prospect of

convenient availability and great usefulness. As data management is still a key

component of geo-enabled mobile services, database technologies undoubtedly can

play a unique role in such applications. Relevant examples have been seen including

moving objects databases [91], mobile databases [17], etc.

On the other hand, skyline queries have not gained enough attention in these

dynamic computing environments, in spite of their suitability to multiple criteria

based optimizations and decision makings which are also frequent issues in such

environments. This neglect is attributed to at least two factors. One is that similar

to the case in static environments, other problems like top-k or k nearest neighbors

are pronounced and have attracted most efforts. The other is that the possibility

of volatile values being involved in skyline queries in dynamic environments makes

query processing very complex to handle, which probably retards the enrollment

of active researchers. For instance, a tourist walking in a city may be interested

in those hotels that are cheap and near to him. Here the distance is a dimension

to be considered in the skyline query, but it is rather continuously changing than

fixedly available in the database. This certainly requires specific query processing

methods different from those in static settings.

The above motivation example will be more complicated if the points of interest

are moving ones, like taxis, instead of static hotels. There also exist alternatives

for data storage: either data are stored in a central server that is responsible for

answering queries from mobile users, or data are distributed among mobile devices

who collaborate on query processing or data sharing through wireless peer-to-peer

communication.

Motivated by those observations above, in this thesis we carry out research

on skyline queries in dynamic environments. Our research mainly covers two dy-
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namic environments: moving objects databases and wireless mobile ad hoc networks

(MANETs). We proceed to give an introductory presentation on the technical con-

tributions achieved in this thesis.

1.3 Contributions

In this thesis, three skyline query problems are formalized within dynamic or mo-

bile environments. First, we address the problem of continuous skyline queries

for moving objects, where the continuously changing distances between a moving

query point and other static/moving points form a particular dimension in skyline

computation. Second, we address the problem of skyline queries against lightweight

devices in a MANET setting, for which inter-device communication cost and intra-

device computing cost are performance goals to minimize. Third, we modify the

MANET setting into a hybrid mobile environment where mobile devices can con-

tact both remote wireless server and mobile peers, and process skyline queries based

on a collaborative data sharing scheme which also supports other query types. For

each problem, we propose specific solution proposal and carry out extensive exper-

imental studies to evaluate the proposal performance.

1.3.1 Continuous Skyline Queries for Moving Objects

We first formalize a continuous skyline query problem for moving objects. In a

moving object context, any moving point may issue skyline queries that concern not

only static dimensions but also the continuously changing distances between it and

other points of interest either static or moving. As a result, the skyline result is also

continuously changing as time elapses. Such continuous skyline queries involving

volatile values pose a significant challenge, as most existing skyline algorithms
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assume all values are constant in database for direct access, which makes them

inapplicable in a moving context.

To avoid re-processing a query from scratch every time a point moves, we ex-

amine the spatiotemporal coherence existing in the problem, and propose an incre-

mental query processing strategy accordingly. Our solution captures those spatial

properties that do not change abruptly between continuous temporal scenes, and

stores them in a specifically designed kinetic-based data structure [12]. Despite the

changing skyline those data points that are permanently in the skyline are iden-

tified, and used to derive a search bound for further query processing. Then the

connection between point locations and inter-point dominance relationship are un-

covered, which implies where to find changes in the skyline and how to continuously

maintain the skyline. Based on the analysis, a kinetic-based data structure is pro-

posed, together with an efficient skyline query processing algorithm. We concisely

analyze the space and time costs of the proposed method. Update issue on moving

objects and its impact on our proposal is also addressed. Extensive experimental

studies are conducted to evaluate the proposal performance.

1.3.2 Skyline Queries on Mobile Lightweight Devices

In step with the continued advances of electronics miniaturization, mobile lightweight

devices like personal digital assistants (PDAs) and smart mobile phones are being

increasingly popular. Equipped with such devices storing relevant data, mobile

users may issue local queries to learn about their geographic surroundings. Sky-

line queries, for their ability in retrieving interesting points according to multiple

criteria, are unsurprisingly of interest on such devices.

Transplanting the existing skyline algorithms directly into a lightweight mobile

device is unlikely efficient, as computing resources including storage space and
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processor power is considerably constrained on such devices. To speed up the on-

device skyline query processing, we propose a hybrid storage of spatial data points.

This storage handles spatial coordinates and other attributes in different specific

ways. Coordinates are stored in raw format, while others are stored in a way that

sorts value domains and keeps corresponding integer indexes in the storage instead

of the raw values. We also pick one attribute to sort all integer indexes stored.

This hybrid storage helps save space, and speed up the local skyline computation

because of the sorting order and the representative integers.

Based on the hybrid storage scheme, we also propose corresponding skyline

algorithm suitable for lightweight devices. We implement our hybrid storage scheme

and on-device skyline computation on a real HP iPAQ pocket PC. We compare our

proposal with other alternatives, and the results show that ours is more efficient.

1.3.3 Skyline Queries Against Mobile Lightweight Devices

in MANETs

We next formalize another skyline query problem by going into a wireless mobile

environment and allowing mobile devices to issue skyline queries against peers. In

other words, we use wireless mobile ad hoc networks (MANETs) as the physical

environment for this problem. Every mobile device is resource-constrained, i.e.,

equipped with limited storage space and computing capacity. Each device holds

only a portion of the whole dataset, which consists of both geographic coordinates

and other attributes. But devices can communicate with other peers through the

MANET in which the connections are not so reliable and fast as those in wired

situation. A query issued by a mobile device is attached with spatial constraints

indicating the distance of interest, within which points in the skyline are expected.

Because the whole dataset is distributed among all mobile devices, such a query
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involves data from different peer devices.

The main challenges of the MANET environment is its relatively slow and un-

steady wireless communication channels between mobile devices. This requires less

amount of data to be transferred among mobile devices through a MANET, as

well as efficient processing on any single device, the problem we have posed in Sec-

tion 1.3.2. Therefore, our research goal on this problem is to find in a MANET

some efficient distributed skyline query processing strategy that saves data com-

munication.

To cut the inter-device communication costs, we propose a filtering based dis-

tributed query processing method. On the device issuing a skyline query, we choose

from the initial local skyline a filtering point with the maximum estimated ability

to dominate other points, and attach it to the query request sent out. On other

devices, this filtering point is used to eliminate unqualified candidates that are

transmitted otherwise.

We carry out extensive experiments to evaluate the performance of our pro-

posal. We simulate the whole system proposal using a MANET simulator, JiST-

SWANS [1]. The simulation results have confirmed the efficiency of our proposal, as

our filtering based strategy incurs less data transmission and shorter query response

time.

1.4 Organization

The thesis is organized as follows:

• In Chapter 2, we describe the background of the research work presented in

this thesis, which covers three relevant research areas. The first area unsur-

prisingly is skyline queries, for which we mainly cover previous query process-
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ing algorithms. The second area is moving objects databases, for which we

mainly cover indexing and query processing techniques pertinent to our first

problem. The third area is mobile peer-to-peer (P2P) and wireless mobile

ad hoc networks (MANETs) which constitute the setting of our second and

third problems.

• In Chapter 3, we formalize the continuous skyline query problem for moving

objects, which involves both static dimensions and the continuously changing

distance. We propose an incremental query processing strategy that does

not re-process the query from scratch every time a point moves. Extensive

experimental studies are also conducted.

• In Chapter 4, we shrink the environment into resource-constrained mobile

lightweight devices and consider skyline queries on a single device of that

kind. To speed up the on-device query processing, we propose a specific

hybrid storage and a relevant algorithm. We experimentally compare our

methods with others on a real pocket PC.

• In Chapter 5, we alter the previous problem by allowing mobile devices to

communicate via a MANET and issue distribute skyline queries against peers

in the MANET. To cut the communication costs via the relatively slow and

unsteady MANET, we propose a filtering based distributed query processing

method. We also carry out extensive experiments using a MANET simulator.

• We conclude this thesis in Chapter 6, which summarizes the contributions

and limitations of our proposals in this work, and discusses some possible

directions for future research.

Two research papers have been accepted for publication or published from the

work presented in this thesis. The work on continuous skyline queries for moving
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objects, presented in Chapter 3, has been accepted by TKDE for publication [42].

The work on skyline queries against mobile lightweight devices in MANETs, pre-

sented in Chapter 5 and part of Chapter 4, has been published in the proceedings

of ICDE [41].

1.5 An Overall Picture

Our three main contributions are achieved by solving three problems that are dif-

ferent but correlated in some way. In this section we relate them together into an

overall picture, which is believed to be helpful for readers to understand better the

work done in this thesis.

The correlations between contributions are illustrated in Figure 1.3. All three

problems/contributions are solved/accomplished within a big dynamic/mobile com-

puting environment. Client/server architecture is an important paradigm in mobile

computing environment [47]. It is also employed in moving objects databases, where

mobile entities like pedestrians, vehicles act as clients and update their positions

or/and movement information to a central server by sending appropriate messages.

The central server is responsible for storing moving objects information in databases

and processing queries in relation to those moving objects. Our first research prob-

lem, presented in Chapter 3, falls into this category. A powerful central server is

assumed to process continuous skyline queries in relation to the moving objects,

whose information is stored on the server together with static points of interest if

applicable. Our query processing solution is focused on the server and does not

involve any client side computing capability. Nevertheless, the query point can be

a mobile client and points of interest can be other mobile clients.

Different from relying on the central server in a client/server system, mobile
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Figure 1.3: An overall picture of this thesis

devices themselves are also able to provide computing services to some extent. Our

second research problem, presented in Chapter 4, falls into this category. By a

specific storage scheme, we carefully store static points of interest on a resource-

limited mobile device. Then we accordingly propose algorithms to process snapshot

skyline queries locally on a device. Using only a mobile lightweight device without

contacting the central server, a mobile user is enabled to issue skyline queries in

relation to her/his surroundings.

Equipped with wireless peer-to-peer networking interfaces like infrared, Blue-

toothe or even Wi-Fi, mobile devices can constitute ad-hoc networks. Within a

MANET of this kind, any device can query against not only itself but also other

peers reachable. Our third research problem, presented in Chapter 5, falls into this

category. With points of interest properly stored on different mobile lightweight
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devices in a MANET, we propose a distributed skyline query strategy that is ef-

ficient in terms of data transmission. This fashion, still without a central server,

extends the capability of any single device in a mobile environment.

The three problems addressed in this thesis represent three different paradigms

in dynamic or mobile computing environments. For each paradigm, we accord-

ingly propose our solution for the specific research problem. Our proposals provide

indications and choices for users who face their own practical situations.
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CHAPTER 2

Background

In this chapter, we describe the background of this thesis. We present a com-

prehensive review on previous work that is relevant to ours presented in this thesis.

As this thesis is targeted at skyline queries in dynamic environments, our related

work comes from three significant aspects: skyline queries, continuous queries in

moving objects databases, and wireless mobile ad-hoc networks (MANETs).

2.1 Skyline Queries

Skyline, as a new query type, was first introduced into database community by

Börzönyi et al. [19], whereas its origin and similar precedents can be found in other

areas different from database. Such examples includes some earlier topics: the

contour problem [61], maximum vector [52] and convex hull [70] computations, and

multi-objective optimization [81]. A skyline query is closest to maximum vector and

multi-objective optimization, because all of them aim to find the “best” ones from

a set of multiple-dimensional points according to some criteria directly involving

more than a single dimension. Here we use “directly” to indicate that comparisons

are carried out between values on a given dimension, instead of between values

obtained using a function of several dimensions. On the other hand, a skyline
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query differs from a convex hull as its result is not necessarily convex, which is

illustrated in Figure 1.1. A skyline is not closed, which also distinguishes it from

contour and convex hull.

In the remainder of this section, we mainly review relevant work on skyline

query processing algorithms, which regard disk I/O or/and CPU time as the most

important performance factors. The computing environments include centralized

relational storage, data streams, and distributed settings, with the emphasis on

centralized environments. We also cover work on estimation of skyline cardinality.

2.1.1 Skyline Queries in Centralized Environments

Börzönyi et al. [19] for the first time introduced the skyline as an operator into

database systems. They gave the definition of a skyline query within the relational

setting, and extended the SQL SELECT statement with an optional SKYLINE OF

clause in the following way:

SELECT . . . FROM . . . WHERE . . .

GROUP BY . . . HAVING . . .

SKYLINE OF [DISTINCT] d1 [MIN | MAX | DIFF], . . . , dm [MIN | MAX | DIFF]

ORDER BY . . .

In the statement, annotation MIN (MAX) on dimension di means smaller

(larger) values on di are preferred in a skyline query, e.g., cheap hotel prices (num-

ber of stars a hotel has). Annotation DIFF on dimension di means no identical

values on di are needed in a skyline query. Besides, the option DISTINCT is used

to eliminate possible duplicates in the skyline. Throughout this thesis, we use the

MIN annotation, i.e., smaller values are preferred in skyline computation.

The authors also proposed in that work two skyline query processing algorithms:

Block Nested Loop (BNL) and Divide-and-Conquer (D&C). BNL is a straightfor-
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ward approach that compares each pair of points in an iterative way. It sequentially

scans the data relation on the disk and keeps a window of skyline candidates in

memory. Initially the first point is put into the window. Then each subsequent

point p is compared to every candidate in the window to check the dominance

relationship. If p is dominated by a candidate, it is eliminated and will not be

visited again. If p dominates one or more candidates, it is inserted into the window

and all those candidates it dominates are deleted. Otherwise, p is inserted into the

window. If the memory can not hold all the candidates, any new p to be inserted

into window is written into a temporary disk file, which will be loaded into memory

for processing in next iterations. Two variants of BNL are proposed. One keeps

the window as a self-organizing list that automatically moves each point found

dominating other points to the beginning of the window. The other is used for

constrained memory situation, where BNL has to be executed for more than one

pass and the most dominant candidates are kept in the memory according to some

metric-based replacement policy. The D&C approach divides the whole dataset

into several partitions each of which fits in memory. Then for each partition a local

skyline is computed. The final skyline is obtained by correctly merging the local

skylines.

Chomicki et al. [29] proposed an algorithm named Sort-Filter-Skyline (SFS)

as a variant of BNL. SFS requires the dataset to be pre-sorted according to some

monotone scoring function before the skyline computation. And then during the

SFS algorithm, any point inserted into the window is ensured to be a skyline point

and no removal operations are invoked on the window.

Tan et al. [82] proposed two progressive processing algorithms: Bitmap and

Index. In Bitmap approach, for each point x = (x1, ..., xd) in the range of [0,1], any

of its xi is represented by ki bits where ki is the number of distinct values on the ith
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dimension in the whole dataset. If xi is the qth distinct value on dimension i, bits

1 to q-1 are set to 0 and the remaining bits 1. In this way, point x is represented by

a m-bit vector where m =
∑d

i=1 ki. To check if a point x is in the skyline, a specific

column is retrieved from each dimension’s bit matrix. After that, each of those d

bit columns is treated as a bit string and the and operation is applied to them all.

Point x is in the skyline if and only if the resultant bit string contains only one

1. In Index approach, each point x is mapped into a single dimensional space by

formula y = dmax + xmax where xmax is the largest value among all dimensions of

x, and dmax is the corresponding dimension. After the transformation a B+-tree is

used to index all the transformed values. Thus, all points in the dataset are also

partitioned into d parts in such a way that point x is put into partition dmax. To

compute the skyline progressively, the algorithm processes all points in different

batches. Suppose that m1 > m2 > ... > mk are all distinct values on all dimension

of the whole dataset. Then all these points are processed in k batches. Initially

the algorithm gets from each dimension partition all those points with a maximum

dimension value being m1. Next a skyline algorithm is executed on this batch of

points to get the local skyline. All points in the local skyline are inserted into the

final skyline. Then the algorithm repeats the same steps for batches from m2 to mk,

and each local skyline is merged to the final skyline with ineligible points correctly

excluded. Within each dimension partition, locating points for the current batch

is facilitated by the B+-tree.

Kossmann et al. [51] proposed a Nearest Neighbor (NN) method to process

skyline queries progressively. It first carries out a depth-first NN search [73] on

the dataset indexed by an R∗-tree [13], and then inserts the NN point into the

skyline. The NN point also determines a region within which all those points are

dominated by it. That region is pruned from subsequent processing. The rest
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part of the dataset is partitioned into two parts based on the NN point, and both

are inserted into a to-do list for further processing. Then the algorithm repeats

removing a part from the to-do list and processing it recursively, until the list is

empty. However, in each partitioning step different parts may overlap and the

overlapping region might cause duplicates in the skyline result. This is a crucial

factor that must be correctly considered in the NN method. To deal with this

problem, several alternatives are proposed for the NN method to incorporate. Any

of those alternatives either eliminates the duplicates after they happen or prevents

them before they happen. Tradeoffs of these alternative ways are also discussed.

Lu et al. [58] proposed an IO optimal divide-and-conquer algorithm for 2D

skyline queries. Their algorithm improves the NN algorithm [51], mainly by refining

the search regions when recursive partitioning is carried out after a NN point is

found. However, this contribution is not significant as the new algorithm applies

to 2D skyline queries only.

Papadias et al. [66, 67] proposed another progressive algorithm named Branch-

and-Bound Skyline (BBS) which is based on the best-first nearest neighbor (BF-

NN) algorithm [38]. It initially enqueues all the entries of the R∗-tree root into a

priority heap that prioritizes entries based on their mindists in a non-descending

manner. mindist is computed according to L1 distance, i.e., the mindist of a point

is the sum of its coordinates and that of a MBR is the mindist of its minimum

corner (e.g., bottom-left point in the 2-dimensional cases). Then the entry e on

the heap top is dequeued for processing. It is discarded if it is dominated by some

existing skyline point. Otherwise, it is either expanded with its entries inserted

into the heap if it is an intermediate node, or inserted into the skyline if it is a

point. This procedure is repeated until the heap is empty which indicates the whole

dataset has been processed. A difference between BBS and BF-NN is that BBS
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only enqueues into the heap those entries that are not dominated by any point in

the current skyline list.

Godfrey et al. [34] provided a comparative analysis of previous maximal vector

computation algorithms. It mainly compares theoretical algorithms on maximal

vector problem, with those ones that compute skylines in a relational context with-

out indexing supports. Algorithms are regarded as either divide-and-conquer or

scan-based based on their computational nature. After a comprehensive analysis,

the authors claimed that scan-based skyline algorithms outperform divide-and-

conquer ones. Then they proposed a new hybrid algorithm that combines different

scan-based skyline algorithms.

The related work aforementioned all considers skyline queries concerning at-

tributes whose domains are totally ordered. As a matter of fact, attribute domains

can be partially ordered. Such domains may include intervals and incomparable

set elements. Motivated by this, Chan et al. [23] studied the problem of processing

skyline queries with partially-ordered domains. Due to the lack of a total order

on relevant attributes, previous index-based skyline algorithms such as Index [82],

NN [51], and BBS [66] is no longer able to prune search space effectively. The

authors proposed a solution that transforms every partially-ordered domain into

a closed integer range, which makes it possible to use index-based algorithms on

the transformed space. Then the authors proposed three algorithms: BBS+, SDC

and SDC+. BBS+ straightforwardly adapts BBS into the proposed transformation

framework. While SDC and SDC+ exploit the dominance relationship captured

from integer ranges to organize the data into strata, and are optimized to reduce

false positives and support progressive report. They differ in that SDC generates

its strata on the fly, whereas SDC+ does so offline.

Within the context of a spatial road network, Huang and Jensen [40] proposed a
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in-route skyline query to be incorporated in location-based services. When moving

along a pre-defined road route towards her/his destination, a user may visit points

of interest in the network. Selection of points to visit is made in terms of multiple

distance-related preferences like detour and total travelling distance. To optimize

such kind of selections by skyline querying, specific algorithms are proposed based

on disk-resident network data.

Sharifzadeh and Shahabi [77] defined a special skyline query in spatial databases.

Given a set of query points Q = {q1, . . . , qn} and two point p and p′, p is said to

spatially dominates p′ iff dist(p, qi) ≤ dist(p′, qi) for any qi ∈ Q and dist(p, qi) <

dist(p′, qi) for at least one qi ∈ Q. With this definition, spatial skyline of a set of

points P is defined as its subset containing all points that are not spatially dom-

inated by any other point of P . To efficiently process such spatial skyline queries

(SSQ), the authors proposed two algorithms, both of which employ the R-tree ori-

ented best-first search framework of BBS algorithm [66], but adopt computational

geometry knowledge to help processing. The first algorithm, called B2S2, takes ad-

vantage of convex hull to help skyline points determination. The second algorithm,

called VS2, also utilizes Voronoi diagram and Delaunay Graph [30] in addition to

convex hull.

Our first problem on continuous skyline query (CSQ), presented in Chapter 3,

differs from the spatial skyline problem in several ways. First, there is only one

query point in our problem while a SSQ problem has multiple query points which

are necessary for the skyline definition it uses. Note our problem is not a special

case of SSQ, as for SSQ a sole query point makes it degrade to a nearest neighbor

query instead of a real skyline query like ours. Second, spatial distance is the

only factor considered in SSQ for most of the time, though the authors also give

brief hints on how to include other attributes in SSQ. Whereas, CSQ takes into
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account not only changing distances but also non-spatial attributes. Third, our

CSQ solution is applicable to both static and moving set of data points, while both

B2S2 and VS2 algorithms apply to static data point set P .

2.1.2 Variants and Derivatives of Centralized Skyline Queries

In this section, we review a particular portion of existing work that is focused

on problems of variants or derivatives of skyline queries in a centralized manner.

Directly using previous skyline algorithms either cannot solve such problems or

cannot solve them with acceptable efficiency.

I. Dominance Variants

Usually, the dominance relationship used in skyline computation is defined for a

pair of data points. And this dominance relationship is transitive [19]. Rather than

evaluating every single data point, Jin et al. [46] extended the usual skyline, called

thin skyline by the authors, to a new concept named thick skyline. The thick skyline

includes not only those skyline points returned by the usual skyline definition,

but also their neighboring points within ε-distance. Three different approaches for

thick skyline computation were proposed, based on statistics, indexes and clustering

means respectively.

Koltun and Papadimitriou [49] introduced approximately dominating represen-

tatives to reduce skyline query result at the cost of slight accuracy loss. The

approximation lies in that before a point is considered in the dominance relation-

ship with others, it is first boosted by ε in all dimensions. They proposed for

2-dimensional datasets a linear algorithm using traditional skyline query result as

input. And for 3-dimensional datasets, they proved the problem is NP-complete.

This work is intended to theoretically generalize the skyline definition, based on an

algorithmic standpoint.
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II. Skyline Cube

Given a multi-dimensional dataset, a skyline query is usually processed by tak-

ing all dimensions into consideration. Actually, skyline query can be asked con-

cerning any possible combination of individual dimensions.

Yuan et al. [98] addressed the problem of computing all skylines of all possible

non-empty subsets of a given set of full dimensions. They called all these skylines

Skyline Cube or Skycube for short. When computing for skylines for different sub-

spaces, intermediate computation or partial results can be shared to reduce compu-

tation costs. Motivated by this observation, the authors proposed Bottom-Up and

Top-Down algorithms to efficiently compute the skycube. For either algorithm,

specific strategies are utilized to share different things like result and sorting or

partitioning operations.

Pei et al. [68] addressed the same problem with a different approach. They

analyzed the semantics of points’ common membership in the skylines of subspaces,

and further the structures of such subspace skylines. Based on the observations

gained in the semantic and structure analysis, the authors proposed a top-down

depth-first search framework to compute subspace skylines.

Tao et al. [87] proposed a technique that facilitates subspace skyline computa-

tion with B-tree. An anchor is defined as the maximal corner of the original space,

and each point is converted to a value, the maximal difference of the anchor coor-

dinate and the point coordinate on all dimensions in the full space. This converted

value is used to easily determine if that point is in the skyline of a given subspace,

with a B-tree indexing all points in terms of their converted values. Furthermore,

the authors also discussed how to pick different and more efficient anchors in dif-

ferent point clusters, together with pruning algorithms with multiple anchors.

Xia and Zhang [93] discussed how to efficiently update the skycube in databases
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facing concurrent, frequent and unpredictable updates. The core of their solution

is a novel structure called compressed skycube, which represents the skycube in a

concise but complete manner. Besides, a buffer is used to store the most frequently

asked query results. Database updates are then modelled as incremental object-

aware updates to the compressed skycube, which allows scalable updates. And

query processing is facilitated by taking advantage of the query buffer. Thus, the

overall query cost and update cost is balanced.

Based on the dominance relationship in skyline computation, Li et al. [53] in-

troduced a new kind of analysis called Dominant Relationship Analysis (DRA).

DRA aims to disclose the dominant relationship between products and potential

consumers, and thus helping to make good business strategies. To efficiently answer

different analysis queries of DRA, the authors proposed a data cube based struc-

ture, named DADA, which stores the dominant relationships in the way supporting

ordered access and compressing.

III. Skyline Queries against High Dimensionality

Though skyline queries are powerful in retrieving interesting data according to

multiple criteria, they are also hurt by the “dimensionality curse”. For a dataset

in a considerably high dimensional space, the size of its skyline can be very huge

especially when the dataset itself is large. Research endeavors have been made to

alleviate this negative effect.

Zhang et al. [100] proposed the concept of strong skyline points that frequently

appear in small-sized subspace skylines in a high dimensional space. As such points

are much less than the skyline of the full space, retrieving these strong skyline points

does not cause the result explosion problem. Two search algorithms, depth-first

and breadth-first, were proposed to search all subspaces for such interesting points.

By counting the frequency of points’ membership in subspace skylines, Chan
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et al. [25] converted the skyline query into a top-k ranking problem which gives

priority to those points that appear in more subspace skylines than others. Such

points, with their high skyline frequency, are interesting for analysis purpose in

high dimensional spaces, as they are less than the full space skyline points but still

hold some preferable values. Approximate algorithms were proposed to efficiently

search the high dimensional subspaces for those points with reduced computational

complexity.

Furthermore, Chan et al. [24] proposed the concept of k-dominant skyline for

high dimensional spaces. The strict dominance regarding all dimensions is relaxed

to only k dimensions in any subspace. A point p is said to k-dominate another

point p′ if p is better than or equal to p′ and is better in at least one of these

k dimensions. This k-dominant relationship is not transitive and also can lead

to cycles, depending on the different k values. A new type of query called top-δ

dominant skyline query was proposed, to decide the smallest k that produces more

than δ k-dominant skyline points.

2.1.3 Skyline Queries on Data Streams

Compared to traditional databases, data streams [9] are very special because of

their high arrival speed, continuous updates and in-memory processing. These

characteristics make conventional skyline algorithms unsuitable for stream envi-

ronments.

Lin et al. [54] proposed an efficient skyline computation method over sliding

window data stream model, which keeps the most recent N elements only. Their

goal is to compute the skyline for the most recent n (∀n ≤ N) elements. Their

solution consists of three main parts. First, a pruning technique is used to iden-

tify and discard uninteresting elements from the memory. Second, a graph based
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encoding scheme is proposed for elements in the memory, which allows fast skyline

computation based on the encoding scheme. Third, a trigger based incremental

algorithm is proposed to efficiently process continuous skyline queries over sliding

windows.

Tao and Papadias [85] addressed the similar problem with different approaches.

In their proposals, both query processing time cost and memory space overhead are

targets to minimize. Two frameworks for tracking skylines over data streams were

proposed. The first one delays most computations until some existing skyline point

expires, which reduces the processing cost. The second one instead pre-computes

some results by predicting future skyline changes, which minimizes the memory

consumption.

2.1.4 Skyline Queries in Distributed Environments

In a distributed context, Balke et al. [10] addressed skyline operation over web

databases where different dimensions are stored in different data sites. Their algo-

rithm first retrieves values in every dimension from remote data sites using sorted

access in round-robin on all dimensions. This continues until all dimension values

of an object, called the terminating object, have been retrieved. Then all non-

skyline objects will be filtered from all those objects with at least one dimension

value retrieved.

For the same problem, Lo et al. [57] extended the previous solution with several

modifications. By assuming that for any pair of points, they do not share dupli-

cate value on any single dimension, the authors made the skyline point reporting

progressive. To speed up dominance check, a memory resident R∗-tree was used to

store objects retrieved from remote sites. A heuristic was proposed to predict the

terminating object that ends the data retrieval.
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Our third problem on distributed skyline queries in a MANET, presented in

Chapter 5, targets horizontal dataset partitions rather than vertical partitions in

the work aforementioned.

Recently, Wu et al. [92] proposed a parallel execution of constrained skyline

queries in a shared nothing distributed environment. By using the query range

to recursively partition the data region on every data site involved, and encoding

each involved (sub-)region dynamically, their method avoids accessing sites not

containing potential skyline points and progressively reports correct skyline points.

However, a overlay network is assumed to be available to ensure the correctness

and efficiency of their method.

2.1.5 Skyline Cardinality Estimation

The size of skyline result, or skyline cardinality, is of interest for query optimizations

in a relational database engine.

For the maximal vector problem [52], Bentley et al. [16] and Buchta [21] worked

out upper-bounds for the average number of maxima in a set of vectors. Their

results were gained with the assumption that all dimensions are totally ordered

independent.

Godfrey [33] addressed the problem in the context of relational databases. His

basic model requires two assumptions: no duplicate values exist on any dimension,

and all dimensions are independent. Then, the basic model was generalized to deal

with dense domains, domains following Zipfian distribution [101], and correlated

and anti-correlated dimensions.

Chaudhuri et al. [27] proposed a uniform random sampling based probability

model to estimate the skyline cardinality. Their model does not require dimen-

sion value independence assumption, and works for both totally ordered attribute
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domains and categorical attribute domains.

2.2 Continuous Queries in Relation to Moving

Objects

In this section, we briefly review existing work on continuous queries in relation to

moving objects. For a comprehensive view of moving objects databases or spatial-

temporal databases, readers would be directed to an early paper [91] and a panel

report [72].

In the context of moving objects, both objects of interest and queries can

be moving. The continuity movement makes it interesting to issue continuous

queries [78] on moving objects. Such a continuous query either requires results for

a period of time specified or keeps active until it is deactivated explicitly. Various

techniques for efficient continuous query processing have been proposed.

Song and Roussopoulos [80] first studied k nearest neighbor search for a moving

query point. The query moves on a predefined line, while all points of interest are

static and indexed by a R-tree [36]. The continuous query is processed in a periodic

sampling fashion: at each sampled position of the query point, the current correct

k nearest points are returned by searching the R-tree. To reduce processing costs,

different methods were used including limiting search distance, reusing previous

results, and pre-computing results for future query positions. However, their ap-

proaches are very sensitive to the sampling rate. A low sampling rate can cause

incorrect results while a high sampling rate can incur considerable processing costs.

To remedy this drawback, Tao et al. [86] proposed an approach that processes a

continuous NN query in a single-pass and returns a set of <point, interval> tuples

as the result. When the query point is moving in the line segment determined
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by interval, its NN is point. Their approach is based on a careful analysis on the

geometry characteristics of the problem, which indicates the query positions where

the NN changes.

Prabhakar et al. [69] proposed two techniques for efficient processing multiple

continuous queries on moving objects. The first one, Query Indexing (QI), regards

queries as data and indexes them using R-tree. Each object’s safe region, a region

within which an object moves without affecting any query, is computed by searching

the query index. The second one, Velocity Constrained Indexing (VCI), assumes a

maximum speed exists for each moving object, and stores those maximum speeds

in the traditional index for moving objects. VCI itself does not facilitate query

processing, but it can be combined with QI to accommodate query insertions and

deletions in addition to active queries.

The idea of indexing queries was also employed by Mokbel et al. [62] to support

scalable incremental processing of continuous queries in spatial-temporal databases.

With grid based hashing for both moving objects and moving queries, concurrent

queries in their work are executed in an incremental and shared manner: query

results are gained by hash joining of queries and objects. Similar approaches were

used by Xiong et al. [94] focusing on continuous kNN queries.

Gedik and Liu [32] proposed a mobile system architecture to process continuous

moving monitoring queries on moving objects in a distributed way. In their pro-

posal, queries with information of regions and additional predicates are installed

on moving clients, where such information is used to delay updates to server and

process queries locally. In this way, the server load is considerably reduced. Several

optimizations like lazy query propagation, query grouping and safe periods were

also introduced to reduce the computational costs on mobile clients.

The ideas of safe region and shifting load from server to clients were also applied
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by Hu et al. [39] to monitor continuous spatial queries over moving objects. By

sending safe regions to mobile clients in their proposal, location updates to the

server via wireless communication are saved until they affect relevant queries.

Besides those proposals aforementioned, kinetic data structure [12] and its un-

derlying ideas also have inspired some continuous query processing techniques that

utilize events to maintain query results in moving objects database.

Mokhtar et al. [63] proposed an event-driven approach to maintain the results

of k-NN queries on moving objects while time elapses. Their approach starts with a

list of all moving objects sorted by their current distance to the query point. Then

the events indicating when a moving object will change position in the list with its

neighbor are computed based on the motion plans. The problem of maintaining k-

NN query results is transformed into the problem of maintaining the list of moving

objects. As time progresses, events are processed in time order and the order of the

moving objects is maintained; this allows k-NN query results to be always available

in the object list.

Instead of keeping all moving objects in ascending order of distance to query

point, Iwerks et al. [43] presented another event-driven method to maintain contin-

uous k-NN queries on moving objects. Based on the fact that window queries are

cheaper to maintain on moving objects than k-NN queries, the authors proposed

the Continuous Windowing (CW) k-NN algorithm. The CW k-NN algorithm first

gets all those objects within a specific distance d around the query point. If at least

k objects are found, all the final k nearest neighbors must be among these objects,

and only they need to be checked. Otherwise, the search is extended outwards

with the distance d adjusted. Here, events indicating when and which objects will

move into the distance d around the query point are computed first and processed

gradually to maintain the query result during the life time of the query.
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2.3 Data Management in MANETs

In this section, we first give a brief introduction to the mobile ad-hoc networks

(MANETs), and then review some work relevant to data management in such

mobile environments.

2.3.1 Mobile Ad-Hoc Networks

Recent years have witnessed increasing variety of mobile handsets being equipped

with wireless peer-to-peer (P2P) networking capabilities. This enables mobile

handsets to become parts of self-organizing, wireless mobile ad hoc networks, or

MANETs for short. Such MANETs allow seamless, inexpensive, and easily de-

ployed communications [11, 20].

Schollmeier et al. [74] proposed a protocol framework based on current Internet

protocols for P2P networking in the mobile environment. An inter-layer communi-

cation protocol named Mobile Peer Control Protocol is used to bridge the network

layer and the application layer, which are coordinated to operate with minimum

routing cost.

For a quality presentation of the state of the art on wireless mobile ad hoc

networking, readers are referred to a book [11], which covers extensive relevant

topics including location discovery, routing protocols, energy saving, security issues

etc.

2.3.2 Data Management in Mobile Ad-Hoc Networks

Charas [26] reviewed the history of wireless mobile networks with an emphasis on

system architecture, and claimed that mobile P2P would be the ultimate busi-

ness model in mobile network. A new architecture was proposed, with conceptual
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descriptions for each component inside.

Kortuem et al. [50] describe scenarios where mobile devices can collaborate to

exchange information when they encounter each other. They also discuss challenges

for such mobile ad hoc information systems based on a prototype mobile peer-to-

peer platform named Proem.

Budiarto et al. [22] mainly discuss strategies for data replication in a mobile P2P

environment, which is modelled by a hierarchy with wireless cells at the bottom

and fixed networks at the top. Master databases of mobile peers are replicated in

the fixed network for other peers to access.

Xu et al. [96] covered systemic topics on data management in mobile P2P net-

works. A data model and a data dissemination approach specific to mobile peers

were proposed that include security and transaction mechanisms. These ideas have

been applied to disseminate spatio-temporal resource information in mobile P2P

networks, where a mobile object exchanges information with peer objects it en-

counters [90].

Lindemann et al. [56] proposed a distributed document search service named

Passive Distributed Indexing (PDI) for applications in mobile ad hoc networks.

Their proposal confines the wireless broadcast transmission of query requests and

response messages to a limited region instead of globally, and utilizes local storage

to cache results on each mobile device. With these optimizations, PDI is able

to avoid flooding messages throughout the network and improve the hit rates of

searches.

Based on a review of previous technologies, Fife and Gruenwald [31] categorized

different research issues of interest for data communication in MANETs.
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CHAPTER 3

Continuous Skyline Queries for Moving
Objects

The literature on skyline algorithms has so far dealt mainly with queries of static

query points over static datasets. With the increasing number of mobile service

applications and users, however, the need for continuous skyline query processing

has become more pressing. A continuous skyline query involves not only static

dimensions but also the dynamic one. In this chapter, we examine the spatiotem-

poral coherence of the problem and propose a continuous skyline query processing

strategy for moving query points. First, we distinguish the data points that are

permanently in the skyline and use them to derive a search bound. Second, we

investigate the connection between the spatial positions of data points and their

dominance relationship, which provides an indication of where to find changes in

the skyline and how to maintain the skyline continuously. Based on the analysis,

we propose a kinetic-based data structure and an efficient skyline query processing

algorithm. We concisely analyze the space and time costs of the proposed method

and conduct an extensive experiment to evaluate the method.
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3.1 Introduction

With rapid advances in electronics miniaturization, wireless communication and

positioning technologies, the acquisition and transmission of spatiotemporal data

using mobile devices are becoming pervasive. This fuels the demand for location-

based services (LBS) [14, 75, 95, 99]. A skyline query retrieves from a given dataset

a subset of interesting points that are not dominated by any other points [19].

Skyline queries are an important operator of LBS. For example, mobile users could

be interested in restaurants that are near, reasonable in pricing, and provide good

food, service and view. Skyline query results are based on the current location of

the user, which changes continuously as the user moves.

The existing work on skyline queries assumes a static setting, where the dis-

tances from the query point to the data points do not change. Refer to the example

of skyline in a static scenario shown in Figure 3.1. Assume there is a set of hotels,

and for each hotel, we have its distance to the beach (x axis) and its price (y axis).

The interesting hotels are all the points not worse than any other point in both

the distance to the beach and the price. Hotels 2, 4 and 6 are interesting and can

be derived by a skyline query, for their distances to the beach and their prices are

preferable to those of any other hotels. Note that a point with minimum value

in any dimension is a skyline point – hotels 2 and 6 for example. Also, skyline

is different from convex hull in that it is not necessarily convex. In this example,

hotel 4 makes the skyline not convex.

In the above query, the skyline is obtained with respect to a static query point;

in this case, it is the origin of both axes. Now, let us change the example to the

scenario of a tourist walking about to choose a restaurant for dinner. We consider

three factors in the skyline operation, namely the distance to the restaurant, the

average price of the food and the restaurant rank. Different from the previous
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Figure 3.1: An example of skyline in a static scenario

example, the distance now is not fixed since the tourist is a moving object. Figure

3.2 shows the changes in the skyline due to the movement. In the figure, the

positions of the restaurants are drawn in the X-Y plane while the table shows their

prices and ranks. Lower values are preferred for all three dimensions. A tourist

as the query point moves as the arrow indicates from time t1 to t2. The skyline –

which refers to the interesting restaurants – changes with respect to the tourist’s

position. Skylines at different times are indicated by different line chains. The

situation becomes more complex when all data points can move, which is frequent

in real-time applications like e-games and digital war systems. For instance, one

player in a field fighting game wants to keep track of those enemies who are close

and most dangerous in terms of multiple aspects like energy, weapon, strategy and

etc.

In this chapter, we address the problem of continuous skyline query processing,

where the skyline query point is a moving object and the skyline changes continu-

ously due to the query point’s movement. We solve the problem by exploiting its

spatiotemporal coherence. Coherence refers to properties that change in a relevant

way from one part to other parts within a scene in computer graphics [37], which is
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Figure 3.2: Skylines in mobile environment

used to build efficient incremental processing for operations such as area filling and

face detection. We use spatiotemporal coherence to refer to those spatial properties

that do not change abruptly between continuous temporal scenes. The positions

and velocities of moving points do not change by leaps between continuous tempo-

ral scenes, which enables us to maintain the changing skyline incrementally. First,

we distinguish the data points that are permanently in the skyline and use them to

derive a search bound to constrain the processing of the continuous skyline query.

Second, we investigate the connection between the spatial locations of data points

and their dominance relationship, which provides an indication of where to find

changes in the skyline and update it. Third, to efficiently support the processing

of continuous skyline queries, we propose a kinetic-based data structure and the

associated efficient query processing algorithm. We present concise space and time

cost analysis of the proposed method. We also report on an extensive experimen-

tal study, which includes a comparison of our proposed method with an existing

method adapted for the application. The results show that our proposed method

is efficient in terms of storage space, and is especially suited for continuous skyline

queries. To the best of our knowledge, this is the first work on continuous skyline
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queries in the mobile environment.

The rest of this chapter is organized as follows. In Section 3.2, we present the

preliminaries including our problem statement and a brief review of related work. In

Section 3.3, we present a detailed analysis of the problem. In Section 3.4, we propose

our solution which continuously maintains the skyline for moving query points

through efficient update. In Section 3.5, we present cost analysis and discussion

on our method. The experimental results are presented in Section 3.6. Section 3.7

summarizes the chapter.

3.2 Preliminaries

3.2.1 Problem Statement

In LBS, most queries are continuous queries [95]. Unlike snapshot queries that

are evaluated only once, continuous queries require continuous evaluation as the

query results vary with the change of location and time. Continuous skyline query

processing has to re-compute the skyline when the query location and objects

move. Due to the spatiotemporal coherence of the movement, the skyline changes

in a smooth manner. Notwithstanding this, updating the skyline of the previous

moment is more efficient than conducting a snapshot query at each moment.

For intuitive illustration, we limit the data and the moving query points to

a two-dimensional (2D) space. Our statement is however sufficiently general for

high-dimensional space too. We have a set of n data points in the format <xi, yi,

vxi, vyi, pi1, ..., pij, ..., pim> (i = 1, ..., n), where xi and yi are positional coordinate

values in the space, vxi and vyi are respectively velocity in the X and Y dimensions

while pij’s (j = 1, ..., m) are static non-spatial attributes, which will not change

with time.
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For a moving object, xi and yi are updated using vxi and vyi. When it is

stationary, vxi and vyi are zero. We use Tuple(i) to represent the i-th data tuple

in the database. Users move in the 2D plane. Each of them moves in velocity

(vqx, vqy), starting from position (xq, yq). They pose continuous skyline queries while

moving, and the queries involve both distance and all other static dimensions. Such

queries are dynamic due to the change in spatial variables. In our solution, we only

compute the skyline for (xq, yq) at the start time 0. Subsequently, continuously

query processing is conducted for each user by updating the skyline instead of

computing a new one from scratch each time. Moving points are allowed to change

their velocities, which will be addressed in Section 3.4.3. Without loss of generality,

we restrict our discussion to what follows the MIN skyline annotation [19], in which

smaller values of distance or attribute pij are preferred in comparison to determine

dominance between two points.

3.2.2 Time Parameterized Distance Function

In our problem, the distance between a moving query point and a data point

is involved in the skyline operator. For a moving data point pti starting from

(xi, yi) with velocity (vix, viy), and a query point starting from (xq, yq) moving with

(vqx, vqy), the Euclidean distance between them can be expressed as a function of

time t: dist(q(t), pti(t)) =
√

at2 + bt + c, where a, b and c are constants determined

by their starting positions and velocities: a = (vix − vqx)
2 + (viy − vqy)

2; b =

2[(xi−xq)(vix−vqx)+(yi−yq)(viy−vqy)]; c = (xi−xq)
2 +(yi−yq)

2. For simplicity,

we use function fi(t) = at2+bt+c to denote the square of the distance. When pti is

static, a, b and c are still determined by the formulas above with vix = viy = 0. This

time parameterized distance function has been used in literature to help processing

queries in moving object databases [43, 71, 84].
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3.2.3 Terminologies

For two points pt1 and pt2, if dist(pt1, q) ≤ dist(pt2, q) and pt1.pk ≤ pt2.pk,∀k, and

at least one “<” holds, i.e., ∃k, such that pt1.pk < pt2.pk, we say pt1 dominates

pt2. We say pt1 and pt2 are incomparable if pt1 does not dominate pt2, and pt1 is

not dominated by pt2. We use pt1 ≺ pt2 to represent that pt1 dominates pt2, and

pt1 ¹ pt2 to represent that pt1 dominates pt2 for all static non-spatial dimensions.

In kinetic data structures, a certificate is a conjunction of algebraic conditions,

which guarantees the correctness of some relationship to be maintained between

mobile data objects. Readers are referred to [12] for the formal and detailed de-

scription of kinetic data structures (KDS). In this chapter, we use a certificate to

ensure the status of a data point is valid within a period of time t. For example, a

certificate of a point can guarantee it staying in the skyline for a period of time t.

Beyond t, its certificate is invalid and an event will trigger a process to update the

certificate, which may result in a change in the skyline.

3.3 The Change of Skyline in Moving Context

In this section, we analyze the change in skyline in continuous query processing.

We first point out the search bound that can be used to filter out unqualified data

points in determining the skyline for a moving query point. Then we carry out an

analysis of the skyline change due to the movement, which reveals some insights

for the algorithms in the next section.

3.3.1 Search Bound

Although in our problem the skyline operator involves both dynamic and static

dimensions, some data points could be always in the skyline no matter how the
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data points and query points move. This is because they have dominating static

non-spatial values, which guarantee that no other objects can dominate them. We

denote this subset of skyline points as SKns and the whole set of skyline points as

SKall. We call SKns the static partial skyline, and SKall the complete skyline.

We call points in SKns permanent skyline points. In this way, we distinguish

those points always in the complete skyline from the rest of the dataset. The benefit

of this discrimination is threefold:

1. It extracts the unchanging part of a continuous skyline query result from

the complete skyline SKall. This allows efforts in query processing to be

concentrated on the changing part only, i.e., SKall − SKns. We name that

part SKchg, and call those points in it volatile skyline points. In continuous

skyline query processing, only SKchg needs tracking for each query. In this

manner, we can reduce overall processing cost.

2. The discrimination can reduce the amount of data to be sent to clients. Since

SKns is always in the final skyline result, we need to send it only once from

server to client. This benefits mobile applications where clients and servers

are usually connected via limited bandwidth.

3. Static partial skyline SKns also provides an indication of the search bound

for processing a continuous skyline query. Since SKns is always contained in

SKall, for any point not in SKns to enter SKall, it must be incomparable to

any item in SKns. More specifically, it must have advantage in distance to

the query point since it is dominated in all static dimensions by at least one

point in SKns. This leads to Lemma 3.3.1.1.

Lemma 3.3.1.1 At any time t, if spf is the farthest point in SKns to the query

point, then any point pt not nearer to the query point than spf is not in the complete
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skyline.

Proof. Obviously pt /∈ SKns, thus ∃sp ∈ SKns s.t. ∀k, sp.pk ≤ pt.pk and at least

one inequality holds. From dist(q, sp) ≤ dist(q, spf ) and dist(q, spf ) ≤ dist(q, pt),

we get dist(q, sp) ≤ dist(q, pt) by transitivity. Because of its disadvantage in both

spatial and non-spatial dimensions, pt is dominated by sp at time t so that it is not

in the complete skyline. ¦

Lemma 3.3.1.1 indicates a search bound for the complete skyline. This can be

used to filter out unqualified points in query processing: those farther away than all

points in SKns cannot be in the complete skyline. Refer to the example in Figure

3.2, SKns = {3, 5}. At time t1, SKchg = {1} and restaurants 2, 4 and 6 are not in

the skyline as they are farther to the query point than restaurant 5, which is the

farthest permanent skyline point to the query point.

3.3.2 Change in the Skyline

When the query point q and data points move, their distance relationships may

change. This causes the skyline to change as well. As discussed in Section 3.3.1,

such changes only happen to SKchg, i.e. SKall − SKns. It is also mentioned in

Section 3.2.2 that the square of the distance from each point to the query point

can be described as a function of time t. Figure 3.3 illustrates an example of such

functions of several points with respect to the moving query point.

Intuitively, a skyline point si in SKchg before time tx may leave the skyline

after tx. On the other hand, a non-skyline point nsp at time tx may enter the

skyline and become part of SKchg after tx. For the former, after time tx, si must

be dominated by a skyline point sj in SKall. For the latter, when nsp enters the

skyline after time tx, those points that used to dominate nsp before tx will stop

dominating it. That moment tx is indicated by an intersection of two distance
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Figure 3.3: An example of distance function curves

function curves. We use <pt1, pt2, tx> to represent an intersection shown in Figure

3.3, where at time tx point pt2 is getting closer to the query than point pt1, opposite

to the situation before tx. From the figure, we can see that such an intersection

only alters pt1 and pt2’s presence in or absence from SKchg if it does cause change.

This is because before and after the intersection, the only change of comparison is

dist(q, pt1) < dist(q, pt2) to dist(q, pt2) < dist(q, pt1). If no intersections happen,

the skyline does not change at all because the inequality relationship between the

distances of all points to the query point remains unchanged. Nevertheless, not

every intersection necessarily causes the skyline to change. Whether an intersection

<pt1, pt2, tx> causes change is relevant to which set pt1 and pt2 belong to just before

time tx, i.e., SKns, SKchg or SKall (neither of the former two, i.e., not in SKall).

We have following lemmas to clearly describe these possibilities.

Lemma 3.3.2.1 An intersection <pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) before

tx) has no influence on the skyline if one of the following conditions holds before

tx:

(1) pt1 ∈ SKns and pt2 ∈ SKns

(2) pt1 ∈ SKns and pt2 ∈ SKchg
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(3) pt1 6∈ SKall and pt2 ∈ SKns

(4) pt1 6∈ SKall and pt2 ∈ SKchg

(5) pt1 6∈ SKall and pt2 6∈ SKall

Proof. (1) This is obvious according to the definition of permanent skyline points.

(2) Obviously pt1 does not leave the skyline. Assuming that pt2 leaves the skyline

after tx, there must be another skyline point s dominating it, i.e., dist(q, s) <

dist(q, pt2) for t > tx and ∀k, s.pk ≤ pt2.pk. Since intersection <pt1, pt2, tx> does

not change the distance inequality relationship between s and pt2, dist(q, s) <

dist(q, pt2) also holds for t < tx. Thus s dominates pt2 before tx, which contradicts

pt2 ∈ SKchg before tx. Therefore pt2 does not leave the skyline either, and there is

no influence on the skyline.

(3) Since pt1 /∈ SKall before tx, there must be at least one skyline point s ∈
SKall dominating it. Because dist(q, s) < dist(q, pt1) does not change after the

intersection, s still dominates pt1 and thus pt1 will not enter the skyline. Since pt2

is a permanent skyline point, it will not leave the skyline.

(4) Due to the same reasoning as in (3), pt1 will not enter the skyline after tx. Due

to the same reasoning in (2), pt2 itself will not leave the skyline after tx.

(5) Due to the same reasoning as in (3), neither pt1 nor pt2 will enter the skyline

after tx. ¦

Lemma 3.3.2.2 An intersection <pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) before

tx) may have influence on the skyline if one of the following conditions holds before

tx:

(1) pt1 ∈ SKns and pt2 6∈ SKall

(2) pt1 ∈ SKchg and pt2 ∈ SKns

(3) pt1 ∈ SKchg and pt2 ∈ SKchg

(4) pt1 ∈ SKchg and pt2 6∈ SKall
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Table 3.1: Intersections and possible skyline changes

pt1 \ pt2 SKns SKchg SKall

SKns — —
√

SKchg

√ √ √
SKall — — —

Proof. (1) Obviously pt1 will not leave the skyline after tx. Since pt2 /∈ SKall

before tx there must be at least one skyline point in SKall dominating it. If pt1

is the only dominating pt2 before tx, after tx, pt1 will stop dominating pt2 and no

other skyline points will dominate it. Consequently, pt2 will enter the skyline after

tx.

(2) Obviously pt2 will not leave the skyline after tx. But if ∀k, pt2.pk ≤ pt1.pk

holds, pt2 will dominate pt1 and cause pt1 to leave the skyline since dist(q, pt2) <

dist(q, pt1) holds after tx.

(3) If ∀k, pt2.pk ≤ pt1.pk holds, pt2 will dominate pt1 and cause pt1 to leave the

skyline because dist(q, pt2) < dist(q, pt1) holds after tx. Due to the same reasoning

as in (2) of Lemma 3.3.2.1, pt2 itself will not leave the skyline since no other points

will dominate it after tx.

(4) Due to the same reasoning as in (1), pt2 may enter the skyline after tx. ¦
Table 3.1 lists all possibilities attached to an intersection. For (4) in Lemma

3.3.2.2, an interesting issue is whether pt2 can dominate pt1 after time tx.

Lemma 3.3.2.3 For an intersection <pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) be-

fore tx) in which pt1 ∈ SKchg and pt2 6∈ SKall before tx, pt1 will not be dominated by

pt2 and leave the skyline after tx, if no other intersection happens at the same time

and the static non-spatial values of pt1 and pt2 are not the same for all dimensions.

Proof. Assume that pt1 will be dominated by pt2 and leave the skyline after tx,

we have pt2 ¹ pt1. Because pt2 is not in SKall before tx, in SKall there must exist
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at least one pt3 dominating pt2, i.e. pt3 ≺ pt2. For simplicity of presentation, we

assume that pt3 is the only one skyline point of such kind. By transitivity, we

have pt3 ¹ pt1. But because pt1 is in SKchg, the distance from pt3 to the query

point must be larger than that from pt1 before tx; otherwise pt3 ≺ pt1 means pt1’s

absence from SKchg. Thus for pt2 to dominate pt1 after tx, it must first become

incomparable to pt3, which requires that an intersection between pt1 and pt3 must

happen no later than tx. If the time of intersection is earlier than tx, however, pt2

will be in SKchg before tx. Thus that time must only be tx. Therefore, their three

distance function curves must intersect at the same point, and <pt1, pt2, tx> is not

the only intersection at time tx.

Note that pt3 cannot be pt1 in the above proof. Otherwise, before tx, we have

pt1 ≺ pt2. Thus, ∃k such that pt1.pk < pt2.pk because their static non-spatial at-

tribute values are not the same for all dimensions. This means pt2 cannot dominate

pt1 even after time tx. ¦
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Figure 3.4: An example of multiplex intersection

Figure 3.4 shows such a scenario indicated by Lemma 3.3.2.3, and we call such

an intersection multiplex intersection. One feasible processing strategy for this

situation is to only consider if pt2 has the chance to enter SKchg. We need to



45

check if pt1 is the only one that used to dominate pt2. We ignore the possibility

that pt2 might enter the skyline and start dominating pt1 at the same time. That

possibility is indicated by other intersections at the same time, each of which is to

be processed in isolation.

Accordingly, the intersection <pt1, pt2, tx> in Figure 3.4 will be ignored. After

time tx, both pt2 and pt3 are in SKall but pt1 is not. This result can be achieved as

long as the three intersections are correctly processed one by one according to our

discussion above, regardless of the order in which they are processed. Now, let us

look at the processing of the intersections in the order listed in the figure. First,

<pt1, pt2, tx> does not change the skyline because pt1 does not dominate pt2 and

thus pt2 will not enter SKchg though it is getting closer to the query point than pt1.

Second, <pt1, pt3, tx> will cause pt1 to leave SKchg because pt1 starts dominating

it. Finally, <pt3, pt2, tx> will cause pt2 to enter SKchg because pt3 is the only one

that used to dominate pt2 and now it stops dominating the point as its distance

to the query point becomes larger. The procedures of other processing orders are

similar and thus omitted due to space constraint.

An extreme situation is that many distance function curves are involved in the

same multiplex intersection. Our processing strategy can also ensure the correct

change as long as each legal intersection is processed correctly in isolation. In fact,

this situation is rather special and seldom happens because it requires that all the

points involved to be on the same circle centered at the query point. This situation

usually happens to minority data points only, and it becomes more infrequent in

the moving context.

To summarize the above analysis, we only need to take into account two prim-

itive cases in which the skyline may change.

Case 1 Just before time tx, si ∈ SKchg and ∃sj ∈ SKall s.t. sj ¹ si. At time tx,
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an intersection <si, sj, tx> between their distance function curves happens. Then

from time tx on, si /∈ SKchg and leaves the skyline because sj ≺ si, and sj ∈ SKall

still.

Case 2 Just before time tx, nsp /∈ SKall and ∃si ∈ SKall s.t. si ≺ nsp. At time tx,

an intersection <si, nsp, tx> between their distance function curves happens. Then

from time tx on, nsp ∈ SKchg because 6 ∃sj ∈ SKall s.t. sj ≺ nsp.

Case 1 determines a skyline change, whereas Case 2 suggests a possibility of

change which requires further checking. For a period of time before the change in

Case 1, sj must be out of the circle determined by the query point q and si. We use

Cir(q, si) to denote the circle whose center is q and radius is dist(q, si). In Case

2, the possible non-skyline point nsp is also out of circle Cir(q, si) for a period

of time before the change. Namely, the distance from each current skyline point

(permanent or volatile) provides indication of future change in the skyline.

3.3.3 Continuous Skyline Query Processing

We now address the issues of continuous skyline query processing. A naive way is

to pre-compute and store all possible intersections of any pair of distance function

curves, and then process each one when its time comes according to the discussion

in Section 3.3.2. This method produces many false hits which actually do not cause

skyline to change as we have shown in Table 3.1.

Based on those observations, we compute and store intersections in an evolving

way. We only keep those intersections with possibility to change the skyline ac-

cording to Table 3.1. Specifically, first, we get the initial skyline and compute some

intersections of the distance curves in terms of the current skyline points. Then,

when some intersections happen and the skyline is changed, we further compute
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intersections in terms of the updated skyline. By looking into the near future, we

ensure that the skyline query result is kept updated, and more information will be

obtained later for updating the skyline further into the future.

Besides, we keep all the current skyline points sorted based on their distance to

the query point. At each evolving step, we only compute those possible intersections

that involve points between two adjacent skyline points si and si+1, and will happen

before si and si+1 stop being adjacent. Therefore, we need to keep track of any

intersection between two skyline points that are adjacent to each other in sorted

order.
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Figure 3.5: An example of evolving intersections

Figure 3.5 shows the distance curves of the restaurant example in Figure 3.2.

At time t1, restaurants r1, r3 and r5 are three adjacent skyline points, and only

those two dotted intersections are computed and stored for future processing. Then

at time t1,3, r1 will leave the skyline as r3 becomes dominating it. Next at time

t5,4, r4 will enter the skyline as its only dominator r5 stops dominating it. Not all

intersections are stored for processing, e.g., the intersection between r2 and r4, and

that between r4 and r1.

Note our method is a kind of sweeping algorithm but with two distinctive fea-
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tures. We have a search bound which renders the search limited in some specific

regions instead of the whole data space. The case study in Section 3.3.2 helps

identify result changes and reduce processing in the maintenance. The next section

addresses the data structure and relevant algorithms in detail.

3.4 Data Structure and Algorithms

3.4.1 Data Structure

We use a bidirectional linked list, named Lsp to store all current skyline points,

which are sorted in ascending order of their distances to the query point. For each

current skyline point si, we keep an entry of form (flag, tuple id, a, b, c, tv, tskip).

flag is a boolean variable indicating if si is in SKns. tuple id is the tuple identifier

of si which can be used to access the record. a, b, c are coefficients of the distance

function between si and query point q, introduced in Section 3.2.2. tv is only

available to each changing skyline point, indicating its validity time. tskip is the

time when si will exchange its position with its successor in Lsp. Besides Lsp,

a global priority queue Qe is used to hold all events derived from certificates to

represent future skyline changes, with preference being given to earlier events.

Based on the analysis in Section 3.3, we define three kinds of certificates used in

the KDS, which are listed in Table 3.2. The first column is the name of a certificate,

the second is what the certificate guarantees, and the third lists the data points

involved in the certificate.

An event occurs when any certificate fails due to the distance change resulting

from movement. Each event is in the form of (type, time, self, peer), where type

represents the kind of its certificate; time is a future time instance when the event

will happen; and self and peer respectively represent skyline point and relevant
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data point involved in the event.

Certificate sisj ensures for an existent volatile skyline point si that any other

skyline point sj with the potential to dominate si (sj ¹ si) keeps being farther to

query point q than si, therefore si is not dominated by any of them and stays in

the skyline. Here self and peer respectively point to si’s and sj’s entries in Lsp.

Certificate nspij ensures for a non-skyline point nsp that all those skyline points

currently dominating it keeps being closer to query point q than nsp, therefore nps

is prevented from entering the skyline. When a certificate of this kind fails at time,

nsp will get closer to query point q than one skyline point si, but whether it will

enter the skyline or not depends on whether si is the only one that used to dominate

it. This will be checked when an event of this kind is being processed. Here self

points to si’s entry in Lsp, whereas peer is the tuple identifier of data point nsp.

Certificate ordij ensures for an existent skyline point si that its successor sj

in Lsp keeps being farther to query point q than it. This sj does not have the

potential to dominate si, otherwise an sisj certificate will be used instead. Here

self points to the entry of the predecessor skyline point in the pair, and peer to

the successor. Certificate ordij not only keeps the order of all skyline points in Lsp,

but also implies a way to simplify event computation and evolvement. For Case

1 described in Section 3.3.2, it also involves a position exchange in Lsp, i.e., just

before sj dominating si, sj must be its successor. And we need to determine if an

exchange in Lsp really results in sisj event. In this sense, we only need to check for

si its successor to compute a possible sisj or ordij event. If si does have an sisj or

ordij event, the event’s time value is exactly si’s validity time tv. If si has no such

event, its validity time is set to infinity. An event of certificate nspij with self = si

is supposed to have a time stamp no later than si.tv, and those events with a later

time are not considered.
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Table 3.2: Certificates
Cert. Objective Data Points

sisj ∀si ∈ SKchg, sj ∈ SKall, s.t. self = si

sj ¹ si → dist(q, si) < dist(q, sj) peer = sj

nspij ∀nspj 6∈ SKall,∀si ∈ SKall, s.t. self = si

si ≺ nspj → peer = nspj

dist(q, si) ≤ dist(q, nspj)
ordij ∀si ∈ SKall, s.t. self = si

∃sj ∈ SKall ∧ sj 6¹ si peer = sj

∧sj = si.next in Lsp

→ dist(q, si) < dist(q, sj)

Initially, Lsp contains the current skyline points, and Qe contains events that

will happen in the nearest future. As time elapses, every due event is dequeued and

processed based on its type. While processing due events and updating the sky-

line accordingly, our method also creates new events for future. Thus, Qe evolves

with due events being dequeued and new events being enqueued, providing infor-

mation for correctly maintaining the skyline. At any time t after all due events

are processed, Lsp is the correct skyline with respect to the query point q’s current

position.

3.4.2 Algorithms

For a given dataset, its SKns is pre-computed and stored as a system constant.

Before maintaining skyline continuously, an initialization is invoked to compute

the initial SKchg and the earliest events. To compute SKchg over static dataset for

the query point’s starting position, in order to use the search bound determined by

SKns and reduce intermediate steps to access data tuples when computing events,

we use the grid file to index all data points. Grid file provides a regular partition of

space and at most two-disk-access feature for any single record [64]. In our solution

for the static dataset, we use a simple uniform 2D grid file dividing the data space
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into h× v cells to index D′, and the data points within each cell are stored in one

disk page.

For the similar reasons we use a hash based method [79] to index moving data

points in D′. The data space is also divided into regular cells, with each representing

a bucket to hold all those moving data points within its extent. Data points can

move across adjacent cells with the velocities in its tuple, which is monitored by

a pre-processing layer and declared in an explicit update request to the database.

An update request can also change a data point’s speed. How to deal with the

updates of moving data points to maintain the correct skyline will be addressed

in Section 3.4.3. Except for the difference on underlying indexing schemas, the

initializations for static and moving datasets share the same framework and events

creation algorithm.

The initialization framework is presented in Figure 3.6. First all permanent

skyline points in SKns are inserted into Lsp according to their distance to query

point q’s starting position. The farthest distance is recorded in variable dbnd as the

search bound. Then starting from cell cellorg where q’s starting position lies, all

grid cells are searched in a spiral manner that those on an inner surrounding circle

are searched before those on an outer one. Cells beyond dbnd are pruned, where

mindist is computed as in [73] by regarding a cell as an MBR. Points in a cell

not pruned are sequentially compared to the current skyline points in Lsp, which

is adjusted with deletion or insertion if necessary. After all cells are searched or

pruned, algorithm createEvents is invoked for each skyline point si from outermost

to innermost, to compute all events for all skyline points except the last one slast.

Finally, algorithm handleBound is called to compute a possible nspij event for those

points farther than slast.

Algorithm handleBound is presented in Figure 3.7. It does not involve all outer
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Algorithm initialization(q)
Input: q is the query point
Output:the skyline for q’s starting position

the event queue to be used in maintenance
// load SKns into skyline list

1. for each si in Skns

2. Compute a, b, c in terms of q;
3. Insert an entry (1, si, a, b, c,∞,∞) into Lsp;

// search bound determined by SKns

4. dbnd = dist(Lsp.last, q);
// compute initial skyline

5. Search the grid cell cellorg in which q lies;
6. while there still exist grid cells unsearched
7. for each cell celli on next outer surrounding circle
8. if (mindist(q, celli) ≥ dbnd)
9. break;
10. else Search celli;

// compute events
11. for each si from Lsp.last.prev to Lsp.first
12. createEvents(si, q);
13. handleBound(q, tcur);

Figure 3.6: Initialization framework

Algorithm handleBound(q, tcur)
Input: q is the query point
Output:upcoming events for Lsp.last
1. tnext = Qe.first.time;
2. slast = Lsp.last;
3. C = Cir(q(tnext), slast)− Cir(q(tcur), slast)
4. for each point nsp in C
5. for each sj from slast to Lsp.first
6. t = time nsp will get closer to q than sj;
7. if ((t ≥ sj.tv) or (t ≥ sj.tskip)) continue;
8. if (∀k, sj.pk ≤ nsp.pk)
9. Enqueue (sj, t, nsp, nspij) to Qe;
10. break;

Figure 3.7: Handle bound
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non-skyline points of slast’s, instead it is limited to an estimated region. This region

C is the difference between the two circles determined by slast and query point q at

two different times, the current time and the earliest event time tnext in the future.

Only those non-skyline points in C have chance to enter the skyline before tnext.

Algorithm createEvents is presented in Figure 3.8. For a given skyline point si

in Lsp, the algorithm first computes the time t when si and the next skyline point

sj in Lsp will exchange their position in the list, i.e. when sj will get closer to q than

si. If t is later than sj’s skip time or si’s validity time, it is ignored. Otherwise, it

means an sisj event depending on sj’s validity time if si ∈ SKchg, or it is a simple

order change event. Then for each non-skyline point nsp between Cir(q, si) and

Cir(q, sj), the algorithm computes nspij event by looping on all skyline points in

the inner of nsp. Once an nsp event is derived, the loop on all inner skyline points

breaks.

During the lifespan of a continuous skyline query, the skyline result is main-

tained by correctly processing due events and creating new events. In each main-

tenance step, the due events are dequeued and processed according to their types,

and new events for further future are computed and enqueued based on new posi-

tions. As in the initialization, the event of those points out of the last skyline point

is computed in a special way with an estimated search region by calling algorithm

handleBound.

The actions to process each kind of events, respectively shown in Figures 3.9 to

3.11, are described as follows. For an sisj event, si is removed from the skyline list

Lsp and new events are computed for si’s predecessor because its successor skyline

point in Lsp has been changed. For an nspij event, the non-skyline point nsp will

be checked against all those skyline points closer to the query point, to see if nsp

will enter the skyline. If not, a possible new nsp event is computed an enqueued.
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Algorithm createEvents(si, q)
Input: si is a skyline point in Lsp

q is the query point
Output:upcoming events for si

1. peer = null;
// compute events with next skyline point in Lsp

2. sj = si.next;
3. t = time si and sj will exchange position;
4. if ((t < sj.tskip) and (t < sj.tv))
5. if (!si.f lag)
6. if ((t < si.tv) and (∀k, sj.pk ≤ si.pk))
7. si.tv = t; peer = sj;
8. else si.tskip = t;

// enqueue relevant events
9. if (peer 6= null)
10. Enqueue (si, si.tv, rep, sisj) to Qe;
11. if (si.tskip < si.tv)
12. Enqueue (si, si.tskip, sj, ordij) to Qe;

// compute events involving non-skyline points
13. for each point nsp between Cir(q, si) and Cir(q, sj)
14. for each sk from si to Lsp.first
15. t = time nsp will get closer to q than sk;
16. if ((t ≥ sk.tv) or (t ≥ sk.tskip)) continue;
17. if (∀k, sk.pk ≤ nsp.pk)
18. Enqueue (sk, t, nsp, nspij) to Qe;
19. break;

Figure 3.8: Create events
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Process sisj event e
1. si = e.self ; sj = e.peer;
2. Delete si from Lsp;
3. si = sj.prev;
4. createEvents(si, q);

Figure 3.9: Process sisj event

Process nspij event e
1. si = e.self ; nsp = e.peer
2. dominated = FALSE;

// check inner skyline points
3. for each sj in Lsp from si.prev to first
4. if (∀k, sj.pk ≤ nsp.pk)
5. dominated = TRUE;
6. break;

//nsp does not enter the skyline this time
7. if (dominated)
8. sk = si.prev;
9. t = time nsp will get closer to q than sk;
10. if ((t < sk.tv) and (t < sk.tskip)

and (∀k, sk.pk ≤ nsp.pk))
11. Enqueue (sk, t, nsp, nspij) to Qe;
12. else // nsp enters the skyline
13. Insert nsp into Lsp before si;
14. sj = si.prev;
15. createEvents(sj, q);
16. createEvents(sj.prev, q);

Figure 3.10: Process nspij event

Process ordij event e
1. si = e.self ; sj = e.peer;
2. Switch si and sj’s positions in Lsp;
3. createEvents(si, q);
4. createEvents(sj, q);
5. if (sj.prev 6= null)
6. createEvents(sj.prev, q);

Figure 3.11: Process ordij event
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Otherwise, nsp will be added into the skyline list Lsp and relevant events will be

computed for it and its predecessor. For an ordij event, the skyline list Lsp is

correctly adjusted by switching si and sj, and relevant events are computed and

enqueued for them and their predecessor if it exists.

3.4.3 Updating the Moving Plan

A moving data point mpti’s distance function does not change unless its moving

plan changes. When this happens, the intersections of its distance function and

other points’ will also be changed as a consequence, which invalidates those events

computed based on mpti’s old distance function. Figure 3.12 shows how a data

point’s velocity change causes the intersections of the function curves to change.

Thus, it may cause the skyline to change in the future.
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Figure 3.12: An example of the change of moving plan

To ensure correct process with updates, we need to add for each moving object’s

tuple a field tupt indicating its last update time. We define an update request for any

moving data point mpti in the form update(id, x, y, vx, vy). id is mpti’s identifier

which can be used to locate its tuple directly. x and y represent its current position.

vx and vy represent its current speed. The algorithm updateMotion in Figure 3.13 is



57

used to process such updates. When an update request comes in, it is first checked

if mpti has moved to a new cell and if its speed has been changed since the last

update. If x and y indicate that mpti has moved to a different cell, we need to

remove it from the old one and insert it into the new one (line 1-5), which incurs

2 IOs. If vx and vy indicate that mpti’s speed is not changed, the algorithm stops

(line 6-7). Otherwise, we need to update the speed record for mpti (line 8-10), and

adjust relevant events starting from the first skyline points till the first one out of

mpti (line 17). If mpti is a skyline point, then its events will be re-computed and

the algorithm stops (line 12-15). Otherwise, the algorithm continues to compute

nspi events for mpti (line 19-24). With the independent distribution assumption,

(|SKall|+ 1)/2 skyline points are expected to be accessed. To facilitate location of

events involving a data point efficiently, the priority event queue is implemented

using a B+-tree, and each current skyline point si has a list of pointers to all those

events whose self is si.

It also can be seen in Figure 3.12 that right at the moment tupt when an update

request comes in, the skyline does not change abruptly. To keep the skyline cor-

rect, the update request is only processed after all due events are processed, i.e.,

updateMotion(req) at time tupt executes after updateSkyline(tupt) completes.

3.5 Cost Analysis and Discussion

3.5.1 Cost Analysis

The space cost incurred by our method consists of two components: the space used

to keep the skyline and that used to store events. For a d-dimensional dataset with

N points subject to independent distribution, the expected size of its skyline is

nsky = O((ln N)d−1) [16]. Since there are m static dimensions involved in skyline
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Algorithm updateMotion(req)
Input: req is an update request
Output:updated hash index, tuple and Qe

1. cell1 = Tuple(req.id).cell;
2. cell2 = Hash(req.x, req.y);
3. if (cell1 6= cell2)
4. Tuple(req.id).cell = cell2;
5. remove req.id from cell1 and insert it to cell2;

// Still in the same grid cell
6. if ((req.vx == Tuple(req.id).vx) and (req.vy == Tuple(req.id).vy))
7. return;
8. Tuple(req.id).vx = req.vx

9. Tuple(req.id).vy = req.vy

10. Tuple(req.id).tupt = tcur

// Adjust relevant events
11. for each si in Lsp from Lsp.first
12. if (si.tuple id == req.id)
13. Delete all si’s events;
14. createEvents(si, q);
15. return;
16. Delete all si’s events with peer == req.id;
17. if (dist(q, Tuple(req.id)) ≤ dist(q, si)) break;
18. nsp = req.id;
19. for each sj from si to Lsp.first
20. t = time nsp will get closer to q than sj;
21. if ((t ≥ sj.tv) or (t ≥ sj.tskip)) continue;
22. if (∀k, sj.pk ≤ nsp.pk)
23. Enqueue (sj, t, nsp, nspij) to Qe;
24. break;

Figure 3.13: Handle the change of moving plan
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operator in our assumption in Section 3.2.1, the size of skyline on static dimensions

is |SKns| = O((ln N)m−1), and the size of skyline on all dimensions is |SKall| =

O((ln N)m) at any time. Thus the size of changing part is |SKchg| = |SKall| −
|SKns| = O((ln N)m − (ln N)m−1) at any time.

Now we consider the worst-case number of events, i.e., failure of certificates, at

any time. In our method, any sisj event or ordij event is determined by an un-

derlying intersection between two adjacent skyline points’ distance function curves.

They are external events because they affect the skyline result we maintain [12].

Therefore, the maximum number of events of these two kinds is |SKall|max/2, since

we reduce multiplex intersections into simple ones and store only one at a time. In

contrast, nspij events are internal events because they are used to adjust internal

data structure. As we at most keep one nspij event for a non-skyline point at any

time, the worst case is that every non-skyline point is involved in such an event,

which means the number of nspij events is not more than N −|SKall|max. By sum-

ming up all events, the total number of events in the worst case is N−|SKall|max/2.

Hence, the ratio of total events to external events is 2N/|SKall|max−1. In the worst

case where |SKall|max is 1, the upper bound of this ratio is 2N − 1 which is linear

with the number of all points involved. This worst case ratio verifies that our KDS

is efficient.

As we store datasets in hard-disk, our method needs to do IO when accessing

data points. The main IO cost is incurred by createEvents, which accesses all non-

skyline points between the circles of two adjacent skyline points in Lsp. This access

can be regarded as a special region query over the dataset indexed by grid file,

asking for points between two circles with same center but different radiuses. The

IO cost of such a query can be estimated with a simple probabilistic model. Let the

data space be a 2D unit space (as we use a 2D grid file to index all data points), and
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the outer and inner circles have radii Ri and ri respectively when we create events

for the ith skyline in Lsp. Then the area of the query circle is S = π(R2
i − r2

i ),

and the query will access SP = π(R2
i − r2

i )P grid cells (pages), where P is the

total number of grid cells. Next we estimate Ri, the distance from q to the i+1th

skyline point in Lsp. Suppose we do an incremental kNN search for q, if we have

met i+1 permanent skyline points, then we must have met the the i+1th skyline

point already. With the assumption of independent distribution, (i + 1)N/|SKns|
points are met before the i+1th permanent skyline point. Then in the 2D unit

space, we have πR2
i = ((i + 1)N/|SKns|)/N , which leads to an upper bound of Ri

satisfying R2
i = (i + 1)/(π|SKns|). For ri, which is the distance from query point q

to the ith skyline point, we use a lower bound min(
√

i/(π|SKns|), i/(
√

N − 1)) to

approximate it. In this way, we get an upper bound of SP .

Let us compare the time cost of continuous skyline query to that of snapshot

skyline queries. Assume N snapshot queries are triggered within a time period

[t1, t2], and the cost of each is Ci. Then the total and average cost of that method

are
∑N

i=1 Ci and
∑N

i=1 Ci/N respectively. More snapshot queries incur higher total

processing cost, while each single snapshot query’s cost is expected to vary little

from the average cost C because of the static processing fashion. For the same

time period, our method computes the initial skyline and events at time t1, and

then updates the skyline only when some certificate fails before t2. Suppose the

number of certificate failures during [t1, t2] is N ′ (including the initialization), and

the cost of each is C ′
i, the total and average cost of our method are

∑N ′
i=1 C ′

i and

∑N ′
i=1 C ′

i/N ′ respectively. The number of certificate failures N ′ is a constant in

a fixed time period, therefore the average cost C ′ is determined by the total cost

only. It makes little sense to compare the total costs of these two methods. If

too many snapshot queries are triggered the total cost will be very high, while
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few snapshot queries deteriorate the result accuracy. To ensure a fair comparison

of average costs, we set N = N ′ in our experiment. In other words, we trigger

snapshot queries by assuming when the skyline changes is known, which is gained

from our method. The experimental study results in next section show that our

method even outperforms the privileged snapshot query method.

Our problem formulation assumes a linear movement model for both query

point and data points (if they are moving), which is justified by the fact that linear

movement model has so far been the most popular one in the literature of moving

objects research [6, 48, 63]. This model itself assumes that moving objects hold

their current velocities for a period of time, which is also usually considered as a

system parameter in typical indexing structures such as TPR-tree [75] and Bx-tree

[45]. In most cases, on the other hand, a user can change the speed but seldom

changes it every time stamp while still issuing a continuous query. As long as the

velocity keeps for a period of time, our method pays off because it saves much

computation cost in the result maintenance for future, and it always reports result

changes in time, which renders our method beneficial.

3.5.2 Possible Extensions

It is true that users may issue continuous skyline queries with constraints in SQL

WHERE clauses. Our current solution can be adapted to deal with such constraints

with some modifications of the kinetic data structures (the certificate) to tender

the WHERE clauses. In brief, we first apply the given constraints to SKns so

that an updated SK ′
ns are gained for further use. Then, in the use of the kinetic

data structures, only those data points satisfying the specified constraints will

be considered and processed. Thus, our method is still effective to support the

WHERE clauses.
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Our current method is focused on processing single continuous skyline query

efficiently, whereas it still provides helpful indications for concurrent continuous

skyline queries. |SKns| obviously is the common part for all concurrent queries,

which means computation savings can be achieved with |SKns|. Besides, concurrent

queries still can share volatile skyline points in some way. These indicate that with

proper adaptations our current method can be used to handle this more complex

case.

3.6 Performance Studies

We conducted our experiments on a desktop PC running on MS Windows XP

professional. The PC has a Pentium IV 2.6GHz CPU and 1GB memory. All

experiments were coded in ANSI C++. The parameters used in the experiments

are listed in Table 5.6. We used both static datasets and moving datasets. For the

former, we explored into the effects of cardinality and non-spatial dimensionality

on the performance. For the latter, we investigated into the effect of points speed

distribution and moving plan update.

Table 3.3: Parameters used in experiments
Parameter Setting

Dataset cardinality 100K, 200K, . . . , 1000K
Dimensionality of non-spatial attributes 2, 3, 4, 5
Distribution of non-spatial attributes Independent, Anti-Correlated
Spatial range 10000 × 10000
Non-spatial attribute range [0, 10000]
Point speed range [10, 30]
Speed Zipf factor 0, 0.5, 1.0, 1.5, 2.0
Update interval 30, 60, 90, 120
Update ratio 4%, 6%, 8%, 10%



63

3.6.1 Effect of Cardinality

In this set of experiments, we used synthetic datasets of data points with spatial

attributes (x and y) and two non-spatial attributes. For each dataset, all data

points are distributed randomly within the spatial space domain of 10, 000×10, 000,

and their non-spatial attribute values range from 1 to 100,000 according to either

independent or anti-correlated distribution. The cardinality of datasets ranges from

100K to 1M. For each set of data we executed 100 continuous queries moving in

random directions. For each query, we randomly generated a point within the data

space as the starting position of the moving query point. The speed of each moving

query point is also randomly determined and ranges from 10 to 30. Each query

ends as soon as the query point moves out of the data space extent. The minimum,

maximum and average validity time for all these queries are 1, 475 and 149 units

respectively. The experimental results to be reported are the average values on

those 100 queries.

Since BBS algorithm is the most efficient method for computing skyline in static

settings (both dataset and query point are static) [66], we adapted it for comparison

in our experiments. At each time instance, the BBS algorithm is invoked to re-

compute the skyline in terms of the query point’s new position. It is worth noting

that BBS cannot correctly tell when the skyline changes as our method does.

The comparison was carried out on a fair basis. The same set of randomly

generated queries are used by both methods on the same series of datasets. Pro-

cessing costs, IO count and CPU time, in both methods are amortized over the

same number of time units when the skyline changes. For both indices, R∗-tree

and grid file, we set the data page size to 1K bytes.

I. Datasets of Independent Non-spatial Attribute Values

Figure 3.14(a) shows that as cardinality increases the logarithm of IO count of
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our maintenance method grows steadily, and nearly 2 orders of magnitude less than

that of BBS. Figure 3.14(b) shows that as cardinality increases the CPU time cost

of our maintenance solution grows steadily, in a rate much less than that of BBS.

At each time instance, our maintenance solution does not need to search the whole

dataset again to re-compute the skyline from scratch, instead it mainly involves

event processing which consists less computation of distance and comparison of

attribute values than BBS, which does a totally new search via R∗-tree. This

processing behavior difference leads to the difference on processing costs.

Figure 3.15(a) shows the effect of cardinality on event queue size at any time

unit. The maximum size is gained throughout all 100 queries. It can be seen that

the queue event size increases as the cardinality increases, the average queue size

is much smaller compared to the maximum size, and it does not exceed 6% of the

cardinality.

Figure 3.15(b) shows the effect of cardinality on skyline size and the number of

events being processed at any time unit. It can be seen that complete skyline size

roughly increases as cardinality increases, but the average number of due events at

any time unit of skyline change never exceeds 4, which indicates the efficiency of our

maintenance strategy. Figure 3.15(b) also implies the percentage of the complete

skyline points that are permanent skyline points. Furthermore, by contrasting

Figure 3.15(b) with Figure 3.14, we can see how BBS and CSQ perform as the

percentage roughly decreases. The similar implications and contrasts can also be

gained from results on effect of anti-correlated data cardinality, as well as results

on effect of non-spatial dimensionality.

By comparing Figures 3.15(a) and 3.15(b), we can see that some events are not

processed before the query ends. In a real application, we can take advantage of

this observation to further reduce the queue size. The lifetime of a query can be
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estimated in a specific scenario, e.g., in 2 hours or this afternoon, and any event

whose due time later than it will be prevented from being enqueued.

II. Datasets of Anti-Correlated Non-spatial Attribute Values

We also carried out experiments on datasets whose two non-spatial attributes

are anti-correlated. We used the method in [19] to generate such datasets. Fig-

ures 3.16 and 3.17 show that our continuous skyline query processing still out-

performs adapted BBS. The higher cost than that on independent datasets is

attributed to the increase of skyline size of anti-correlated datasets. The anti-

correlation between non-spatial attributes also makes the events number increases

less unsteadily, as the dominance relationship of data points is more irregular com-

pared to the independent datasets.

3.6.2 Effect of Non-spatial Dimensionality

In this set of experiments, we used datasets of 500K points with non-spatial dimen-

sionality ranging from two to five to evaluate the effect of non-spatial dimension-

ality on our solution. Values on those non-spatial dimensions are of independent

distribution. Other settings are the same as in Section 3.6.1. Datasets with anti-

correlated non-spatial values incur similar performance trends, except that every

single cost is higher than its counterpart on the independent datasets. Hence we

omit those figures here.

Figures 3.18(a) and 3.18(b) show the IO and CPU cost respectively. Again our

maintenance method outperforms the BBS method. As the non-spatial dimension-

ality increases the gap of cost keeps steady.

Figure 3.19(a) shows that the event queue size decreases as the non-spatial

dimensionality increases. The probability that one volatile skyline point will be

dominated by others is lower when more dimensions are involved, because all di-
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mensions are independent in our dataset. This reduces the number of events in the

queue.

Figure 3.19(b) shows the effect of non-spatial dimensionality on skyline size

and the number of events being processed at any time unit. It can be seen that

both static partial skyline and complete skyline size increases as non-spatial dimen-

sionality increases, but the average number of due events at any time unit is still

drastically smaller. This indicates that our continuous query processing method

still works efficiently.

3.6.3 Effect of Movement Update

In this set of experiments, we used the dataset of 500K data points with spatial

attributes (x and y) and two static non-spatial attributes. Every point in each

dataset moves within the 2D extent with a speed ranging from 10 to 30. The hash

mechanism is based on the same grid file used for static datasets, with each cell

as a bucket containing moving data points. Periodically, a number of moving data

points send in update requests. Queries are picked up in the same way as in Section

3.6.1.

In this set of experiments, the initial speeds of all 500K points were randomly

distributed in the range of 10 to 30. We mainly explore into two aspects of moving

data points update: update interval length and the ratio of points requesting up-

date. We varied the update interval length from 30 to 120 time units and update

ratio from 4% to 10%.

Figure 3.20(a) shows the IO count decreases as the update interval increases,

and higher ratio of moving data update incurs more IO counts. The reason for

this is as follows. Longer update intervals reduce the amortized update costs which

involve changing point records in the database and recomputing events, and weaken
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the effects of different update ratios. While higher update ratios increase update

costs at every update time, as more point records are involved in modification and

event re-computation. Referring to Figure 3.20(b), the similar changing trend is

seen for the CPU time as the update interval increases.

3.6.4 Effect of Speed Distribution

In this set of experiments, we fixed the moving data points update interval to 60,

varied the update ratio from 4% to 10% to see the effect of initial speed distri-

butions. For all moving data points, their initial speeds follow the Zipfian dis-

tribution [101]. The Zipf factor θ of speed distribution varies from 0, which is a

uniform distribution, to 2, which is a skewed distribution where 80% data points

move slowly and the rest 20% move fast. Other settings are the same as those used

in Section 3.6.3.

Figure 3.21(a) shows that the IO cost of the proposed method is not too sensitive

to skewness on speed. Referring to Figure 3.21(b), CPU time increases slowly as

Zipf factor θ increases from 0 to 1.5, and then decreases when θ increases from 1.5

to 2. For the same Zipf factor θ, a higher ratio of mobility data set incurs a higher

processing cost in terms of both IO count and CPU time. The experiments show

that our method performs well for the different distributions of moving speed. This

is because speed distribution has no crucial impact on the event computation and

process in our method.

3.7 Summary

In this chapter, we have addressed the problem of continuous skyline query pro-

cessing for moving objects. In our problem, a continuous query is issued by a
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continuously moving query point, and the data points of interest can be either

static or moving too. The changing distance between the query point to any data

point is considered as a unique dimension in the skyline computation. Based on a

thorough analysis that exploits the spatiotemporal coherence of the problem, we

propose our solution with an underlying kinetic data structure. Although in the

moving setting, the skyline changes continuously due to the movement of the query

point (and the data points if applicable), our solution does not need to compute

the skyline from scratch at every time instance. Instead, the possible change from

one time to another is predicted and processed accordingly, thus making the sky-

line query result updated and available continuously. The experimental studies

conducted using different datasets and parameters demonstrate that the proposed

method is robust and efficient.

Assuming a client/server architecture in this chapter, we process continuous

skyline queries on the powerful server side. In a real dynamic setting where users

have mobile devices, a user may store data on his or her device and want a query

to be answered locally and instantly. In next chapter, we address efficient skyline

query processing on mobile lightweight devices.
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CHAPTER 4

Skyline Queries on Mobile Lightweight
Devices

Due to the successful electronics miniaturization, mobile devices are becoming

increasingly popular. By offering practical computing capability with great flexi-

bility and mobility, such devices free computer users from fixed seats and awkward

machines and set them into dynamic computing environments. Mobile device users

can store their data on those devices, and carry out supported computations on

the data with their devices anytime and anywhere. Like on normal computers,

skyline queries on mobile devices may be interesting to users when the data are of

multi-dimensional and the retrieval is based on multiple criteria. In this chapter, we

consider skyline queries on spatial data with multiple attributes stored on mobile

lightweight devices, which can provide sort of on-device location base service by lo-

cally solving user queries without contacting the remote wireless application server.

However, such mobile devices are not so powerful as normal computers in terms

of both storage space and computing capacity. Using existing skyline algorithms

directly without any specific adjustments towards mobile lightweight device char-

acteristics might be not efficient. To get good performance, we need to do skyline
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queries on such lightweight devices appropriately. We in this chapter compare and

propose suitable data storage schemes on such lightweight devices, and then adapt

existing skyline query processing algorithms properly onto the resource-limited de-

vices.

4.1 Introduction

Computer users get great freedom and mobility from the advances in electronics

miniaturization, which has successfully made possible variety of mobile devices with

computing capabilities. Data, and even data management modules or systems, are

squeezed into such devices, which renders mobile computing anytime and anywhere.

As a consequence, corresponding on-device data querying or retrieving is worth

studying on such devices that usually are resource-constrained in terms of both

storage space and computation power compared to normal computers.

Like on normal computers, a mobile device user may issue skyline queries when

the data stored are of multi-dimensional and the retrieval is based on multiple

criteria. In a practical situation, such a skyline query is likely to be related to the

mobile user’s current location, and the distance from that location to any point of

interest is taken into account in the skyline computation.

Refer to Figure 4.1 for a motivation example. A mobile device stores a set of

hotels in the city, each of which has its geographic location, together with price

and rating. A simplest case is as follows. The mobile user wants to get the best

choices from all hotels, by considering both price and rating. This is a typical

skyline query. A more complex case is reached by introducing spatial constraints.

The mobile device is supposed to be equipped with a GPS receiver to tell its

current geographic location in longitude and latitude. Additionally, the user is

only interested in those hotels within a specific distance to him, indicated by the
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circle in the figure. For all those hotels covered by the distance, both price and

rating are considered to retrieve best choices for the user.

Mobile device


Figure 4.1: Skyline query on a mobile device

An intuitive way to address such on-device skyline queries is to directly squeeze

existing skyline algorithms into the lightweight devices. As skyline query processing

usually is more expensive than others like range query or k nearest neighbor query,

this approach without any adjustments specific to the resource-limited character-

istics of such devices is not expected to be efficient, though it is able to produce

results. Proper adjustments and configurations, on the contrary, are likely to im-

prove the performance.

In this chapter, we consider possible adjustments and configurations to be used

on a mobile device to speed up the local skyline query processing. Because mobile

devices are equipped with limited storage space, data should be stored in a way

that takes into account this space constraint. Besides, it is favorable if the stor-

age benefits the corresponding skyline query processing algorithm based on it by

shortening the query processing time.

First, we carry out a reasonable analysis on the existing storage schemes for

space-constrained devices, by taking into account the skyline computation char-
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acteristics – dominance comparison. Based on the analysis, we propose a hybrid

storage scheme that deals differently with spatial coordinates and non-spatial at-

tributes. Furthermore, we adapt a simple skyline algorithm BNL to the hybrid

storage scheme. Results of experiments on a real pocket PC show that our proposal

not only saves data storage space but also speeds up the skyline query processing

on the device.

The rest of this chapter is organized as follows. In Section 4.2, we give a brief

definition of our problem. In Section 4.3, we propose the hybrid data storage

scheme based on an analysis on existing schemes. In Section 4.4, we adapt sky-

line algorithms for normal computers to the proposed hybrid storage scheme on

lightweight devices. Section 4.5 presents the experimental results, followed by the

summary of this chapter in Section 4.6.

4.2 Problem Definition

We assume a mobile lightweight device M holds a database relation R that contains

the data that pertains to sites of interest located in a geographical area. Relation R

conforms to the schema <x, y, p1, p2, . . . , pn>, where (x, y) represents the location

of a site and the p1 to pn are attributes describing a site.

In this setting, a mobile device M can ask a local skyline query, whose result

consists of all sites s in relation R that satisfy these conditions: (a) site s is within

distance d of M ’s current position; (b) site s is in the skyline of R′ in terms of all

attributes pi, where R′ is the set of all sites satisfying condition (a). Such a query

can be defined as Qsky = (pos , d), pos is the current location of M , and d is the

distance specifying the region of interest.

The queries we consider here differ from traditional skyline queries in that a
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region of interest is specified in each query, making the query a constrained skyline

query. However, this query differs from those obtained by placing constraints on

the dimensions involved in the skyline operation [66]. In particular, we use spa-

tial constraints that are not involved in the skyline operation. Such queries are

meaningful in practice. For instance, a tourist in a city may want to know about

inexpensive and highly rated restaurants within a certain range, in order to find

a near-by place for dinner. If no spatial constraint is applied first to filter out far

restaurants, a skyline query on all restaurants will return those that are very cheap

but are too far away, which are not desirable to the tourist because to their long

distances. Thus, the use of distance of interest as a spatial constraint is reasonable

as it helps to filter out answers with low acceptance.

As a matter of fact, a mobile user usually is only interested in sites located within

a region around the user’s current position, rather than in the entire geographical

space. For example, people are more likely to know about the restaurants nearby

than to get complete information of all those ones throughout the city. While

within the region of interest, the specific location of a site is often not particularly

important as all sites are not far away. Instead, other multiple attributes of the sites

are of importance for comparison and choice. As this is a multi-criteria decision

making, a skyline query is perfectly capable of retrieving desired options for the

user from those sites within the spatial range.

Typical skyline algorithms so far have been focused on efficient query processing

on normal computers without any resource constraints. Whereas, our objective in

this chapter is to find appropriate adjustments and configurations that are suitable

for skyline computation on individual lightweight devices. We expect proper mea-

sures that not only consume less data storage space, but also speed up on-device

skyline query processing.
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4.3 Data Storage Scheme on Lightweight Devices

To support on-device skyline queries or any other queries, the first task of all is to

store the data on a given hand-held device. In our problem, we need to store the

relation R on a hand-held lightweight device. Although the storage space available

on a hand-held device keeps increasing, it is still meaningful to find space-efficient

storage scheme for data on hand-held devices for the following reasons:

1. First, the volume of data also keeps growing up with a considerable speed.

This trend consumes more available storage spaces due to the fragments hard

to avoid and the possible backup requirement for security purpose.

2. Second, applications for hand-held devices develops very quickly. On hand-

held devices, application programs and even runtime codes usually compete

with data for limited storage space, which makes the problem more pressing.

3. Last but never least important, proper data storage scheme can speed up

data-centric tasks while straightforward schemes are likely to hold them back.

As we will show in this chapter, an properly configured data storage does make

the on-device skyline query processing faster.

For the reasons aforementioned, we proceed to find proper storage scheme for

relation R on mobile hand-held device M .

4.3.1 Existing Storage Schemes for Limited Space

The most straightforward storage scheme is to directly squeeze a relational table

into a lightweight device without any specific modifications, and therefore it is

called Flat Storage (FS) [18, 4]. It simply stores all tuples of a table sequentially
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on a device. As Flat Storage Scheme does not use any specific measures, it is the

least desirable way in most cases.

Several alternatives so far have been proposed for relational data on lightweight

devices with limited space [7, 18, 76]. Next, we carry out a brief review on these

existing schemes, and show why they are not suitable for our on-device skyline

query processing purpose.

An obvious problem with FS lies in that all duplicated values are stored re-

peatedly, which causes large space consumption. To remedy this, a pointer based

scheme named Domain Storage (DS) is introduced for memory resident DBMS [7]

and later is adopted into lightweight devices [18]. Basically, DS keeps all unique

values of an attribute in a domain, and replaces original values of that attribute

with pointers to the corresponding real values stored in the domain. Different at-

tributes also can share a common domain. By grouping duplicated values in the

domain(s) and using pointers with shorter length measured in bytes, DS is able

to reduce storage space consumption, especially for enumerated types with small

number of values.

To facilitate join operation on device with compact indices, a storage scheme

called Ring Storage (RS) [18] is proposed as a modification of DS. RS does not

replace every value of an attribute with a pointer to the value stored in the domain.

Instead, it modifies the domain structure by adding to each domain value a value-to-

tuple pointer, which points to the first tuple with that value on a specific attribute.

Besides, within the table all tuples with the same value on the concerned attribute

are linked by inter-tuple pointers, and the last tuple holds the only pointer to the

domain value for all tuples. In this way a ring of pointers is formed across both

table and domain, and this explains how this storage scheme is named.

To further reduce the space cost incurred by the pointers in DS, ID Based
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Storage (IS) is proposed [76]. In IS, all distinct domain values are organized in

an array, and those tuple-to-value pointers DS keeps in a relation are replaced

by identifier values, which are exactly the positioning indexes of the corresponding

domain values in the array. IS can be regarded as a dictionary-based value mapping

scheme, which uses a compact integer domain {0, 1, 2, . . . , k} to refer to an attribute

domain of k + 1 distinct values. All identifier values consume minimum number of

bytes, which is determined by the length of the domain value array. In order to

make storage space consumption more economically, IS even allows the byte length

of identifiers to grow or shrink dynamically according to the updated domain size.

Now we consider those aforementioned storage schemes’ suitability for the sky-

line query processing. The crucial part in the skyline computation is the dominance

relationship determining for points, which is usually based on value comparison.

This means that it is beneficial if values can be retrieved quickly and if comparisons

can incur less computing time.

We first point out that RS scheme is not an appropriate for our skyline query

processing on lightweight devices. This is because not every tuple has a pointer to

value in RS scheme. Rather, on any attribute all tuples of the same value are linked

by internal pointers, and only the last tuple has a direct pointer to the shared value.

This causes expensive cost to access the real tuple values, since we have to traverse

the internal pointer chain to reach the unique tuple with the external pointer. This

seriously hurts skyline query processing, which needs tuple values in dominance

determining based on value comparison.

We next argue that DS scheme is not an ideal choice either. Though DS pro-

vides tuple-to-value pointers for each attribute of each tuple, we also do not use

this scheme as it still consumes extra time to use tuple-to-value pointers to ac-

cess a tuple’s attribute values from separate domains. In an operation involving
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single or very few attributes, this extra cost might be tolerable. While skyline

queries involves a number of attributes, the accumulated extra costs is not negligi-

ble. Besides, the relation R in our problem has spatial coordinates which unlikely

share common values required by DS as sites of interest are located on different

geographic positions.

IS scheme faces the similar difficulties as DS does, since the former is a mod-

ification of the latter. However, by differently storing the spatial coordinates and

non-spatial attributes in R and properly adapting IS scheme, we are able to achieve

a storage scheme suitable for skyline query processing.

4.3.2 Hybrid Storage Scheme

Based on the analysis presented previously, we adopt a hybrid storage scheme for

the relation R stored on a mobile device M . Relation R consists of both both spatial

and non-spatial attributes. All spatial coordinates are measured and digitized in

floating-point numbers, and they seldom share common values. This is attributed

to the digitization accuracy and the fact that usually no geographic entities share

the same exact location in reality. Lack of duplicated values in spatial attributes

make it not effective to store spatial attribute values separately from the tuples,

as DS and IS do, since this does not save storage space. Hence, we store for each

tuple its spatial coordinate values directly in R, as the FS scheme does. Non-spatial

attribute values are likely to be shared among multiple tuples, making it beneficial

to store them separately. To facilitate skyline query processing on mobile device

M , we use ID based storage (IS) for the non-spatial attributes.

Our choice is justified by several specific measures applicable to IS and bene-

ficial to skyline query processing. First, we sort the domain of every non-spatial

attribute. Second, we also sort R on the identifiers of one attribute. This is inspired
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by the SFS algorithm [29], and reduces the number of value comparisons in deter-

mining dominance during query processing, as the tuple with a smaller identifer

also has a smaller real attribute value. We choose the attribute with the largest

number of distinct values as the attribute whose identifiers in R are to be sorted.

For simplicity and without loss of generality, we assume that p1 is that attribute

we look for. If tie happens on p1, then the order is determined by comparing values

on p2. Possible ties on further dimensions will be handled in the same way.

As we store the spatial coordinates and non-spatial attributes in R differently,

FS for the former and modified IS for the latter, we call this storage scheme Hybrid

Storage (HS). Our hybrid storage scheme for relation R on a lightweight device is

illustrated in Figure 4.2.
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Figure 4.2: Hybrid storage model

4.3.3 Discussion

Those storage schemes presented above can be regarded as means of compression

of original relations. The compression effect is accomplished as storage space is

saved on lightweight devices. As a matter of fact, our IS-based HS scheme can

be regarded as a dictionary-based order preserving (OP) compression scheme [8],
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because each domain in HS is sorted and the whole relation is sorted on one selected

attribute. As for other relation compression schemes in the literature [35, 88],

they are aimed at large scale databases in traditional computing environments

instead of mobile lightweight devices, the setting of our problem. In particular, they

have a common performance characteristic: their compression reduces IO cost but

increases CPU cost, and the former gain is ensured to be larger than the latter loss

such that the overall query processing cost is still reduced on a compressed relation.

Unfortunately, the IO reduction gain expected by those compression schemes is not

available on lightweight devices, where no expensive IOs take place. As a result,

the extra processing cost introduced by those relation compression schemes, which

is overly offset on normal computers, is not affordable on lightweight devices. This

platform particularity makes those compression relation schemes not applicable to

our problem.

We intend to accommodate efficient skyline query processing on resource-limited

devices. This requires that we consider not only storage space saving but also query

processing efficiency. However, conventional database compression schemes [35, 88],

which may produce higher compression ratio, need considerable extra processor

costs to restore original values when tuples are accessed. Such extra costs are really

expensive on lightweight devices, and therefore slow down the targeted skyline

query processing. Our dual goals make the HS scheme a very reasonable and

favorable choice. Our IS-based HS scheme not only saves storage space, but also

helps to reduce processing cost in skyline computing. The latter will be further

analyzed in Section 4.4.2.

Another issue is related to the update cost on the hybrid storage scheme. When

a new tuple is to be inserted, two steps are to be done. First, a correct ID value

should be decided for each attribute. This needs n binary searches, each on an
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attribute domain. The average time cost is n log2 k, if k is the average domain size.

Second, the tuple should be placed in a correct position in the relation with respect

to the sorted attribute p1. This on average needs to move O(N/2) tuples, where N

is the relation cardinality. When a tuple is to be deleted from the relation, it also

needs to move O(N/2) tuples on average. For bulk update, a usual way is to connect

the lightweight device to a desktop computer where the update can be executed

much more quickly. There are special softwares supporting such synchronization.

A typical example is the ActiveSync program Microsoft provides for lightweight

devices running Windows Mobile operating system.

4.4 Skyline Computation on Lightweight Device

For several reasons we do not consider index based skyline algorithms, like BBS

based on R∗-tree. First, considerable extra storage space may be consumed by

indices like a R∗-tree. Second, our skyline query in the problem definition is a

dynamic one [66], which hurts the pruning efficiency of the index based skyline

algorithm as the dynamic dimension is not indexed. Third, lightweight devices

do not have secondary storage as normal computers do, which causes the benefit

gained by the index much less significant than hard-disk based IO reductions on

normal computers.

4.4.1 Flat Storage Based Skyline Algorithm with Pre-computed

Skyline Points

Recall the static partial skyline SKns we define in Section 3.3.1, which is the skyline

concerning all non-spatial attributes. There, we have shown that SKns is always

a part of the final skyline result SKall that takes both distance and non-spatial
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attributes into account. For the problem we define in this chapter, SKns still can

be utilized. If no spatial constraint (distance of interest d) is specified in the query

Qsky , SKns is undoubtedly a part of the query result, termed SKQ. For this extreme

case, pre-computing the SKns will be enough and no realtime query processing will

be needed. For a skyline query Qsky with a distance of interest d, some points in

SKns are not wanted as they are too far away from the query’s location; others

are also part of the result SKQ, as no other points can dominate them regarding

all non-spatial attributes. Note that in SKQ some points do not come from SKns.

Those points used to be dominated by those skyline points out of the query distance

d, but are not dominated when only near points are considered. These points must

be found to get correct SKQ.

Based on the flat storage (FS), we adapt the BNL [19] skyline algorithm to

incorporate the SKns to help filter out dominated points in the scan. We pre-

compute the skyline regarding all non-spatial attributes, and for each skyline point

sp we add into SKns its identifier, i.e., its sequential index in the relation R. Given

such an identifier we can retrieve the real tuple from the flat storage in O(1) time.

Besides, we use an extra bit string for all tuples in the relation R. Each bit in the

string corresponds to a tuple based on the sequential index in both string and the

relation. If a tuple belongs to SKns its corresponding bit is 1, otherwise 0.

The algorithm based on the arrangements above is shown in Figure 4.3, called

fltSkyline algorithm. It first gets those qualified skyline points from the pre-

computed SKns into SK, by checking the distances (line 2-4). Then it carries

out a simple loop to determine for every tuple if it is in the result. Those points

that belong to Sns or are out of the query distance are skipped (line 6-7). Then

Sns is used to filter out dominated points (line 9-12). For a point that passes the

filtering, it is compared to the temporary skyline points in SKtmp. Note that during
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Algorithm fltSkyline(pos, d, SKns)
Input: pos is the location of query originator

d is the distance of interest
SKns is the static partial skyline

Output:skyline result of query Qsky

1. SKtmp = ∅; SK = ∅;
// Identify partial result from SKns

2. for each tuple identifer i ∈ SKns

3. if (dist(pos, tpi) <= d)
4. add tpi into SK;
5. for each tuple tpj in Ri

// A skyline point in SKns or, too far away from query point
6. if ((bits string[j] == 1) or (dist(pos, tpj) > d))
7. continue;
8. dominated = FALSE;

// Filtering with SKns

9. for each tuple identifer i ∈ SK
10. if (∀l ≥ 1, tpi.idl ≤ tpj.idl)
11. dominated = TRUE;
12. break;
13. if (dominated)
14. continue;
15. for each tuple identifer k ∈ SKtmp

16. if (∀l ≥ 1, tpk.pl ≤ tpj.pl) // tpk dominates tpj

17. dominated = TRUE;
18. break;
19. if (∀l ≥ 1, tpj.pl ≤ tpk.pl) // tpj dominates tpk

20. remove k from SKtmp;
21. if (!dominated)
22. add j into SKtmp

23. return SKtmp ∪ SK;

Figure 4.3: Skyline algorithm with pre-computed SKns
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the loop a point in SKtmp is not ensured to be a final skyline point. Finally the

union of SKtmp and SK is returned as the result.

By utilizing SKns, dominated points can be early detected and thus filtered

out. Therefore, the total comparison between tuples are expected to be reduced.

Suppose in relation R, a point pt is only dominated by a skyline point sp ∈ SKns.

Consider a pure BNL skyline algorithm is used. If pt is met before sp is added into

the temporary skyline list, pt will keep residing there and all subsequent points will

be compared with it. This is avoided in the fltSkyline algorithm, which identifies pt

early by filtering with Skns. If pt is met after sp, two algorithms performs almost

the same. Similar analysis also applies to the cases that pt is dominated by more

than one point.

4.4.2 Hybrid Storage Based Skyline Computation

In a skyline algorithm without any index, value comparison is the crucial operation

that determines the computation time. Our hybrid storage supports efficient value

comparison. We adapt the SFS algorithm to the hybrid storage and propose a

comparison efficient skyline algorithm, as shown in Figure 4.4. We call it hsSkyline

algorithm.

In the algorithm, relation R is sequentially scanned to obtain the skyline result

SK, which takes advantage of the sorted attribute p1 and checks the rest of the di-

mensions only. Two aspects make this algorithm different from the SFS algorithm.

First, a spatial distance check is used to exclude tuples too far away from the query

position. Second, attribute identifiers are compared instead of real attribute val-

ues. Because the domain values of any dimension pj is stored in a sorted way, the

identifiers in relation R exactly reflect the inequality between the real pj values of

different tuples. For instance, suppose two tuples tp1 and tp2 have idj1 and idj2,
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Algorithm hsSkyline(pos, d)
Input: pos is the location of query originator

d is the distance of interest
Output:skyline result of query Qsky

1. SKQ = ∅;
// Local ID-based skyline processing

2. for each tuple tpj in R
// Too far away from query point

3. if (dist(posorg, tpj) > d)
4. continue;
5. dominated = FALSE;
6. for each skyline point spk in SKi

// spk dominates tpj

7. if (∀l > 1, spk.idl < tpj.idl)
8. dominated = TRUE;
9. break;
10. if (!dominated)
11. add tpj into SKQ

12. return SKQ;

Figure 4.4: Comparison efficient on-device skyline query processing



93

respectively, on dimension pj, and that all domain values are stored in ascending

order. Then simply comparing each pair of idj1 and idj2, instead of accessing and

comparing the real domain values, is enough to determine the dominance between

tp1 and tp2. This has two benefits. One is that it saves access time since no offset

based addressing is needed to access values. The other is that comparison of simple

identifier integers generally costs less time than that of real domain values.

One may wonder why we do not use pre-computed SKns in the hsSkyline al-

gorithm above as we do in the algorithm presented in Figure 4.3. We argue that

using Sns for filtering in the hsSkyline algorithm does not help, on the contrary it

may cause more unnecessary value comparisons. Because in our hybrid storage the

first non-spatial attribute is sorted in the non-descending order, a point pti cannot

be dominated by any point ptj that is met behind pti in the scan. Now suppose in

the fltSkyline algorithm, a point pti is being considering and compared with spj,

a skyline point gained from SKns. If spj is located before pti in the relation R,

the hsSkyline algorithm will already have identified spj and added it into SKQ.

This means the comparison is not missed in hsSkyline algorithm and not saved

in fltSkyline algorithm either. If spj is located behind pti in the relation R, spj

cannot dominate pti and the comparison between them is unnecessary as it does

not contribute to the result. If we introduce SKns for filtering into the hsSkyline

algorithm, the algorithm will have to do many unnecessary comparisons of this

kind. While in the hsSkyline algorithm above, this comparison between spj and pti

does not happen when we determine if spj is a skyline point.
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4.5 Performance Studies

In this section we present the results of performance studies on our proposals. All

experiments are conducted on an HP iPAQ h6365 pocket PC running MS Win-

dows Mobile 2003. The device has a 200MHz TI OMAP1510 processor and 64MB

SDRAM (55MB user accessible). All programs are written using SuperWaba, a

Java-based open-source platform for PDA and Smartphone application develop-

ment [3]. The parameters and their corresponding settings used in the experiments

are listed in Table 5.6. These settings in bold are the defaults, used when their

corresponding parameters are not varied.

Parameter Setting

Cardinality of local relations 10K, . . . , 50K, . . . , 100K
Storage model for local relations Flat, Hybrid
Number of non-spatial attributes 2, 3, 4, 5
Non-spatial attribute domain range [0.0, 9.9]
Spatial extent of local relation 1000.0 × 1000.0
Attribute distribution Independent, Anti-Correlated
Query distance of interest 100, 250, 500

Table 4.1: Parameters used in experiments

For tests on dataset cardinality, the datasets contain 10K to 100K points with

two non-spatial attributes. For tests on non-spatial dimensionality, the datasets

contain 50K points with two to five non-spatial attributes. Each non-spatial at-

tribute is of float type and its domain is {0.0, 0.1, . . . , 0.9, 1.0, . . . , 9.0, . . . ,

9.9}. Since each domain contains 100 distinct values, we use byte type IDs in

the hybrid storage implementation. Synthetic datasets with both independent and

anti-correlated distributed attributes are used. We first investigate into the storage

space cost of our hybrid storage scheme, and then study the time efficiency of the

skyline query processing algorithm based on the hybrid storage scheme.
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4.5.1 Storage Space Cost

For on-device storage space cost, we compare the hybrid storage scheme with the

flat storage scheme, as the latter is very simple and used most possibly when users

do not bother to do any on-device adjustments. The results on space cost are shown

in Figure 4.5. Datasets with both independent and anti-correlated attributes are

used, but tests on two distributions exhibit close results. Therefore we only show

the results on the independent distribution.

It is seen from Figure 4.5(a) that our hybrid storage scheme saves storage space

compared to the flat storage scheme. As the dataset cardinality grows up, the space

saving by the hybrid storage scheme also goes up steadily. This is because a larger

cardinality causes IDs to be used more often in the hybrid storage scheme, which

consume less space than the raw data in the flat storage scheme.

Similar space savings and differences are observed when the dimensionality in-

creases, as shown in Figure 4.5(b). The gap becomes larger as dimensionality

increases, because a larger number of attributes also makes simple IDs to be used

more frequently in the hybrid storage scheme.

4.5.2 Skyline Query Processing Time

For on-device skyline query processing time cost, we compare three algorithms.

The first and simplest one is the BNL algorithm on the flat storage scheme. The

second one is the algorithm fltSkyline presented in Figure 4.3, which is also based

on the flat storage scheme. And the last one is the hsSkyline algorithm we propose

for our hybrid storage scheme, i.e., the one presented in Figure 4.4. No extra index

is used for either storage scheme.

Although it is theoretically possible to combine any of BNL, fltSkyline and

hsSkyline with either storage scheme, we only compare the three combinations
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Table 4.2: Reasonable algorithm/storage combinations

Algorithm \ Scheme FS HS

BNL
√

–

fltSkyline
√

–

hsSkyline × √

aforementioned, as shown in Table 4.2. The choices are justified by the reasons

that follows. First, applying algorithm BNL on HS does not perform better than

hsSkyline on HS. Given the same sorted relation processed by SFS based hsSkyline,

BNL incurs much more unnecessary value comparisons and maintains intermedi-

ate skyline candidates that are not in the final skyline, according to the research

on SFS [29]. Second, following the argument presented in the last paragraph of

Section 4.4.2, applying algorithm fltSkyline or filtering with pre-computed sky-

line points on HS does not get any improvement but probably some unnecessary

comparisons. Third, algorithm hsSkyline, which requires a relation to be sorted

specifically, is definitely not applicable to FS that does not sort the relation at all.

We do not take into consideration those earlier main-memory algorithms for the

maximal vector problem [16, 52, 15]. All those algorithms are divide-and-conquer

based algorithms. Our decision is mainly justified by a detailed comparative re-

search conducted by Godfrey et al. [34]. The authors disclose that such divide-

and-conquer based algorithms do not perform better than the scan-based skyline

algorithms such as BNL and SFS, either in the main-memory environment or on

the secondary storage. Therefore, we here focus on comparing different scan-based

skyline algorithms on specific storage schemes for lightweight devices.

We investigate into the impacts of dataset cardinality and dimensionality on

the query processing efficiency. For each cardinality or dimensionality setting, 10

skyline queries are issued and the average processing cost is recorded. For each

query, its position pos is randomly determined within the spatial extent, and its
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distance of interest d is randomly picked from 100, 250 and 500.

Figure 4.6 shows how the query processing time of each algorithm is affected

by the dataset cardinality, where both independent and anti-correlated datasets

are used. It is not surprising that hsSkyline algorithm (denoted as HS) needs less

query processing time than both BNL algorithm and fltSkyline algorithm(denoted

as FLT). This is because in HS, most comparisons are between simple IDs of type

byte, whereas in BNL and FLT, all comparisons are between float raw values which

consume more time. In addition, HS keeps the domains and the first attribute

sorted, which is also helpful in speeding up skyline computation.

Figure 4.7 shows how the query processing time of each algorithm is affected by

the non-spatial dimensionality. It can be seen that HS still outperforms BNL and

FLT, and the gap here is marked and steady. This indicates that our hybrid storage

scheme and hsSkyline algorithm are robust to the increase of dimensionality.

Referring to Figure 4.6, the performance difference between pure BNL algorithm

and fltSkyine algorithm is not significant. This is because for datasets with two non-

spatial attributes the pre-computed skyline size is small, and therefore the filtering

effect is not strong. When the dataset dimensionality increases the filtering effect

becomes clear, as shown in Figure 4.7. For anti-correlated datasets, the gain by

fltSkyline increases as the dimensionality goes up. This is attributed to the fact

that a higher dimensionality produces more additional skyline points for an anti-

correlated distribution than for an independent distribution.

4.6 Summary

In this chapter, we focus on processing skyline queries efficiently on individual

resource-constrained mobile lightweight devices. A mobile device user may issue
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skyline query with distance of interest to understand the surroundings, where sites

of interest are abstracted as points with both spatial coordinates and non-spatial

attributes stored on the device. Directly squeezing both data and algorithms from

normal computers into such lightweight devices is not an efficient way. We propose

some specific measures for efficient skyline query processing on such devices.

After an analysis on existing data storage schemes for resource-limited devices,

we propose a hybrid storage scheme which deals differently with spatial coordinates

and non-spatial attributes. Based on that, we are able to propose a on-device

skyline algorithm that carries out efficient skyline computation with less and faster

comparisons. Besides, we also adapt the BNL skyline algorithm for the simple flat

storage case. We incorporate those pre-computed skyline points to early filter out

dominated points. Through experiments on a real pocket PC device, we show that

our hybrid storage proposal not only saves on-device storage cost but also speeds

up on-device skyline query processing.

In this chapter we focus on skyline query processing on individual lightweight

devices without any inter-connections. A bolder conception is to let multiple devices

communicate with each other and share data through distributed queries. We will

address this novel problem in the next chapter.
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CHAPTER 5

Skyline Queries Against Mobile
Lightweight Devices in MANETs

While skyline querying is gaining in interest, most previous work on skyline

querying has assumed the traditional, centralized data storage. The growing popu-

larity of mobile computing devices challenges this assumption. Assuming a mobile

setting, this chapter considers skyline querying from a new and unexplored angle.

In this setting, each mobile device is capable of holding only a portion of the whole

dataset; devices communicate through mobile ad hoc networks (MANETs); and a

query issued by a mobile user is interested only in a fixed area, although a query

generally involves data stored on many mobile devices due to the storage limita-

tions. We propose a distributed skyline query processing strategy that aims to

reduce the communication costs among mobile devices in a MANET. In our strat-

egy, skyline query requests are forwarded among mobile devices in a deliberate

way, such that the amount of data to be transferred is reduced. Besides, specific

measures are proposed for resource-constrained mobile devices, in order to make

the whole system work properly. We conduct extensive experiments to show that

our proposal performs efficiently in simulated wireless ad hoc networks.
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5.1 Introduction

With the continued advances in electronics and wireless communications, more

and more mobile handsets with computing and wireless networking capabilities are

being deployed. For example, mobile handsets are being equipped with infrared,

Bluetooth, or even Wi-Fi capabilities. Further, positioning capabilities are becom-

ing available on handsets, based, e.g., on GPS, the communication infrastructure,

or a combination.

In particular, handsets are now being equipped with wireless peer-to-peer (P2P)

capabilities. This enables handsets to become parts of self-organizing, wireless mo-

bile ad hoc networks (MANETs) that allow seamless, low-cost, and easily deployed

communications [11, 20]. It is conceivable that ad hoc and P2P technologies will be

combined to bring about wireless communications without the presence of central

servers [5].

Within relational data management, most previous work on skyline queries [19,

82, 51, 29, 66] has assumed that the data is stored in a centralized fashion. However,

the developments just outlined make it relevant to consider a much more distributed

setting: processing skyline queries in a MANET.

This chapter considers skyline querying in a mobile context with the following

assumptions: 1) each mobile device only holds a portion of the entire dataset; 2)

devices communicate through MANETs; 3) and mobile users posing skyline queries

are only interested in data pertaining to a limited geographical area, although the

queries involve data stored on many mobile devices due to the storage limitations

of the devices.

Consider the example skyline query shown in Figure 5.1. Here, M1 to M4 are

four mobile devices, each having data corresponding to different portions of the

geographical space within which these devices move. Device M2 is interested in the



104

region represented by the circle, the data of which is held on all four mobile devices.

Thus, the skyline query of M2 involves all four mobile devices. The problem here

is different from the one we address in Chapter 4, where a skyline query is issued

on a device against its local data only.

M
1
 M
2


M
3


M
4


Figure 5.1: Skyline query on mobile devices in a MANET

To improve the efficiency of such distributed skyline queries, two most important

costs need to be considered: the cost of the communication among the mobile

devices and the cost of query execution on the mobile devices. To reduce the

former cost, a skyline query request is sent to the mobile devices involved in a

deliberate way such that the amount of data to be transferred is minimized. To

reduce the latter, specific measures are proposed for resource-constrained mobile

devices. Our experimental study shows that the proposed method is efficient in

terms of both communication cost and response time.

The chapter makes the following contributions: First, it identifies and formal-

izes the problem of skyline querying in MANETs. Second, it proposes distributed

processing strategies that aim to reduce the data to be transferred during the pro-

cessing of queries. Third, it proposes necessary measures to ensure the proper query

strategy and speed up local processing on resource-constrained devices. Fourth, it
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reports on extensive experiments conducted on a MANET simulator.

The remainder of this chapter is organized as follows. Section 5.2 defines the

problem to be solved. Section 5.3 presents two unsophisticated distributed skyline

query processing strategy in a MANET. Section 5.4 proposes our data transmis-

sion efficient distributed skyline query processing strategy in a MANET. Section 5.5

presents necessary local configurations on each resource-constrained device. Sec-

tion 5.6 experimentally evaluates the proposed techniques, followed by the summary

of this chapter in Section 5.7.

5.2 Problem Definition

We assume a MANET setting with m mobile devices M = {M1,M2, . . . , Mm}.
Each device Mi holds a database relation Ri that contains the data that pertains

to sites located in a small geographical area. All Ris on all devices conform to the

same schema <x, y, p1, p2, . . . , pn>, where (x, y) represents the location of a site

and the p1 to pn are attributes describing a site. The contents of different Ris may

overlap, i.e., it is possible that Ri ∩Rj 6= Ø for any i 6= j. We may also envision a

global (and virtual) relation R, such that
⋃m

i=1 Ri = R.

In this setting, a mobile device Mi can ask a distributed skyline query, whose

result consists of all sites s in global relation R that satisfy these conditions: (a)

site s is within distance d of Mi’s current position; (b) site s is in the skyline of R′

in terms of all attributes pi, where R′ is the set of all sites satisfying condition (a).

Such a query can be defined as Qds = (id, posorg, d), where id is the identifier of the

device Morg issuing the query, posorg is the location of Morg, and d is the distance

specifying the region of interest.

The query in the problem defined above has the same semantics as that in the



106

previous chapter. However, in this chapter we assume that the data of interest is

distributed across multiple devices connected by a MANET, instead of being totally

available on the single device issuing the query. At least two practical possibilities

justify this assumption. On one hand, a single mobile device may not always have

the complete information about the whole region of its possible activities. Reasons

for this can be local space limitation, restricted data availability, or other possible

ones. On the other hand, mobile devices are capable of exchange data via MANETs

as long as they are equipped with appropriate networking interfaces..

The problem we consider differ from traditional skyline queries. First, a region

of interest is specified in the query, which we have discussed in Section 4.2. Second,

horizontal partitions of the global relation are distributed across different mobile

devices, which is different from the distributed skyline queries on vertical partition-

ing [10]. Third, the wireless communication channels between mobile devices are

slow and unreliable, in comparison to wired connections. Finally, because different

Ris on different mobile devices may overlap, duplicate elimination must be applied

before results are returned.

Together, the above features pose several challenges to our distributed skyline

queries. Proper distributed skyline query strategy is expected for horizontal parti-

tions. And because they are distributed in a dynamic MANET environment, the

amount of data transferred between devices should be reduced. Besides, on those

lightweight devices, necessary configurations are needed to ensure the success of

the whole paradigm.

In the target environment, both communication costs and processing costs on

the mobile devices are important to the overall query performance. Indeed, these

two aspects determine the performance of a query. With this in mind, we provide

processing methods that can reduce the amount of data to be transferred among
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mobile devices and speed up the query processing on a single mobile device. Sym-

bols to be used throughout this chapter are summarized in Table 5.1.

Symbol Description

m Total number of mobile devices
Mi One mobile device
n Number of attributes of a tuple
pi ith non-spatial attribute of a tuple
Ri Local relation on Mi

R Virtual global relation, union of all Ris
Morg The mobile device originating query Qds

Qds Distributed mobile skyline query
posorg Location of query originator Morg

d Distance of interest in query Qds

SKi Local skyline on Mi w.r.t. Qds

SK ′
i Reduced local skyline on Mi w.r.t. Qds

SK Final skyline w.r.t. Qds

FSK
⋃m

i=1 SKi − SK
FSKi SKi − SK
tpflt Tuple used for filtering
dom(pi) The set of values of attribute pi

Table 5.1: Symbols used in discussion

5.3 Unsophisticated Distributed Skyline Process-

ing in MANETs

In this section, we present two unsophisticated strategies for distributed skyline

processing in MANETs, as preliminaries and motivations for our efficient strategy

to be presented in Section 5.4.

5.3.1 Naive Strategy

A naive method for computing our skyline queries is for the query originator to

get all local relations from all other devices and then perform the query locally.
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The local query can be performed after all relations have been received, or it can

be repeated each time a single relation has arrived. This method may work in a

wired, distributed environment, although it is unlikely to yield good performance.

In a mobile setting, at least two limitations make this method infeasible. One is

that wireless connections between mobile devices have low bandwidths. Therefore,

transferring an entire local relation Ri from Mi to Morg is too time consuming,

especially when Ri is large. The other is that device Morg lacks the capacity

needed to store all the relations received from the other devices. Even using the

incremental approach, an extra relation may still use up the limited storage, which

in some mobile devices is also used as memory for computations. The storage

limitation is likely to slow down the naive method or even make it impractical.

Thus, we need to look beyond the naive method.

5.3.2 Straightforward Strategy

We observe that it is not necessary to obtain all relations from all other mobile

devices—only those tuples that may potentially appear in the final skyline are

needed. Based on this observation, we can reduce the amounts of data to be

transferred as follows: query originator Morg sends the query specification, Qds =

(id, posorg, d), rather than simple data requests. On receiving the specification,

device Mi does a skyline query on its relation Ri and then sends Morg the result

only, not the entire Ri. Device Morg also computes a local skyline for its relation

after sending out the query specification. Later, it merges each result it receives

with the previous result in an incremental fashion, while also removing the non-

qualifying tuples.

This method reduces the amount of data to be transferred at the cost of local

computations at each Mi. Suppose for relation Ri on mobile device Mi that the
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result of skyline query Qds is SKi. Then the reduction ratio of the data transferred

is (|Ri| − |SKi|)/(|Ri|) = 1− |SKi|/|Ri|. Clearly, the more selective a local skyline

query is, the smaller the communication cost.

Although the use of local skyline queries can reduce the amount of data sent

back to the query originator, there is still a chance that a local result may contain

tuples that do not belong to the final skyline. In other words,
⋃m

i=1 SKi = SK does

not hold. Instead, the union of all SKis is a superset of SK. The set
⋃m

i=1 SKi−SK

contains all those tuples that appear in one or more local skylines SKi, but not in

the final skyline SK, and we use FSK to represent it. Transmitting SKi−SK from

mobile device Mi to query originator Morg is a waste because it does not affect the

final query result. We use FSK i to represent that subset SKi−SK on each mobile

device. If we can reduce each FSK i, we can also reduce the communication cost. As

an extreme, if each FSK i is empty,
⋃m

i=1 SKi = SK will hold, and communication

cost is at its lowest. Unfortunately, this is almost impossible practically because

it implies a very special data distribution: the final skyline SK must be perfectly

partitioned among all mobile devices, and every tuple in Mi not belonging to SK

has at least a dominator in SK within the same local relation Ri.

In distributed join processing, semi-join [97] works as follows. A smaller pro-

jection of one relation is first sent from one site to its peer site, where it is used

to reduce the tuples to be sent to the first site, so that the total communication

cost of joining the two relations is reduced. In our setting, FSK i and FSK provide

indications as to where and how to reduce the communication cost. We proceed

to present a strategy that is based on the analysis above and is inspired by the

semi-join processing approach.
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5.4 Efficient Distributed Skyline Processing in

MANETs

5.4.1 Filtering Tuple Based Strategy

Since in each local skyline SKi there may exist non-qualifying tuples for the fi-

nal skyline SK, it may be helpful to identify these and prevent them from being

transmitted. If a tuple tpi in SKi does not appear in SK, there must be at least

one tuple tpj in SK and not in SKi that dominates tpi. If we can know tpj when

doing the local skyline query on device Mi, tpi can be removed from the result.

We use SK ′
i to represent SKi from which some (maybe not all) tpis of this kind

have been removed. In this way, the number of reduced tuples for transmission is

|SKi| − |SK ′
i|.

The problem is now how to get such tpjs for a mobile device Mi. Such a tpjs

must come from somewhere else than Mi. Since we do a local skyline query on

query originator Morg, we can pick possible tpjs from its local result. We use SKorg

to represent the initial, local skyline on Morg. Which tuple to choose from SKorg is

then of interest. To address this issue, we need to consider for a tuple tpj in SKorg

its ability to dominate and then remove other tuples.

For a tuple tpj (<pj1, . . . , pjn>), its ability to dominate other tuples is deter-

mined by its own values and the boundaries of the data space, i.e., the hyper-

rectangle whose diagonal is the line segment with tpj and the maximum corner

of the data space as coordinates. Any other tuple that resides in that region is

dominated by tpj and is excluded from the skyline. For this reason, we call that

hyper-rectangle the dominating region of tuple tpj. Intuitively, the larger tpjs

dominating region is, the more other tuples are dominated by tpj because a larger

hyper-rectangle covers more tuples in the data space, especially when the tuples
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are distributed independently. For simplicity, we use a 2-D illustration as shown in

Figure 5.2 in our discussion.
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Figure 5.2: Dominating Region

Suppose the value range on dimension pk is [sk, bk] in the virtual global relation

R. Then the volume of tuple tpjs dominating region is VDRj =
∏n

k=1(bk−pjk). We

choose the tuple, termed tpflt, from SKorg with the maximum VDRj value and use

this tuple to filter out non-qualifying tuples. Then instead of sending only the query

specification to the mobile devices, we include also tpflt. Each device Mi will then

use tpflt to prune non-qualifying tuples during its local skyline query processing.

This tpflt is called filtering tuple or filtering point interchangeably throughout the

remainder of this thesis.

Because we add a tuple to what we send to the mobile devices from query

originator Morg, the communication savings is |SKi| − |SK ′
i| − 1 for one Mi. It

can be seen that if tpflt fails to remove any non-qualifying tuples from SKi, the

communication cost is actually increased by one tuple. However, we expect that in

total, this strategy will be competitive. That is, we expect that
∑m

i=1,i6=org(|SKi| −
|SK ′

i| − 1) =
∑m

i=1,i6=org(|SKi| − |SK ′
i|)−m + 1 > 0.

As an example, two mobile devices M1 and M2 hold hotel relations R1 and R2,
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hotel price rank
h11 20 7
h12 40 5
h13 80 7
h14 80 4
h15 100 7
h16 100 3

Table 5.2: Example relation R1

hotel price rank
h21 60 3
h22 80 2
h23 120 1
h24 140 2
h25 100 4

Table 5.3: Example relation R2

respectively, as shown in Tables 5.2 and 5.3. Assume M2 is the query originator that

wants information on cheap and good hotels. In both relations, each hotel tuple has

attributes for the price and the rank based on recommendations of previous visitors.

The skyline on M2 is {h21, h22, h23}, whereas that on M1 is {h11, h12, h14, h16}. If no

filtering tuple is used, all four tuples in M1’s local skyline are transferred to M2. To

use a filtering tuple, assuming the global upper bounds of price and rank are 200 and

10, respectively. We need to pick a filtering tuple from M2’s local skyline {h21, h22,

h23}. Using the VDR definition from above, we have VDR21 = (200−60)∗(10−3) =

980, VDR22 = (200−80)∗(10−2) = 960, and VDR23 = (200−120)∗(10−1) = 720.

Because h21 has the largest VDR value, we choose it as the filtering tuple. This

tuple eliminates h14 and h16 from M1’s local skyline. As a result, the amount of

data transferred to M2 is reduced by two, and the total savings are one tuple. As

the cardinality of Ri increases, more non-qualifying tuples can be identified from

the local skyline using a filtering tuple.
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5.4.2 Estimated Dominating Region

In the above, we have assumed that the global domain range of any attribute pj

is known on mobile device Mi. This ensures exact computation of the dominating

region. Sometimes, the global domain range may be unknown to Mi. In this case,

we can compute over-estimated and under-estimated dominating regions for a given

tuple tpi.

Over-estimation of the dominating region for tuple tpj is achieved using formula

VDRo =
∏n

k=1(maxk−pjk), where maxk is a pre-specified value larger than the

global domain upper bound bk, or the largest possible value of the attribute value

type. Underestimation is done using VDRu =
∏n

k=1(hk−pjk), where hk is the local

maximum value of attribute pk known to Mi. The estimations of the dominating

region are shown in Figure 5.3. Note that neither over- nor under-estimation affect

the correctness of query results. They possibly pick different filtering tuples and

therefore have different filtering abilities. Section 5.6 explores this aspect.

D
o
m
i
n
a
t
i
n
g
 
R
e
g
i
o
n


0
 b
1


b
2


p
j
1


p
j
2


O
v
e
r
e
s
t
i
m
a
t
i
o
n


p
1


p
2


t
p
j


M
A
X
1


M
A
X
2


U
n
d
e
r
e
s
t
i
m
a
t
i
o
n


h
1


h
2


Figure 5.3: Estimated Dominating Region
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5.4.3 Adaptations to Wireless Ad Hoc Networks

So far, we have assumed that the query originator can directly communicate with

any other mobile device. In that setting, the filtering tuple decided by the originator

is used for all mobile devices. In a real MANET setting, however, communication is

more likely to be accomplished using multiple hops via intermediate mobile devices

if source and destination cannot contact each other directly. In such a setting, we

need to adapt our strategy to reduce the communication cost.

First, tpflt is dynamically updated during the procedure of query relay to in-

crease its pruning potential. After doing a local skyline query on mobile device Mi,

the tuple tp′flt with the maximum VDR value is obtained from the local skyline

result SKi. Then tp′flt is compared with the current tpflt, and the one with the

larger pruning potential, i.e., the larger VDR value, will be used as the new filtering

tuple for other mobile devices to which Mi will forward this query.

hotel price rank
h31 60 3
h32 80 5
h33 120 4

Table 5.4: Example relation R3

hotel price rank
h41 80 2
h42 120 1
h43 140 2

Table 5.5: Example relation R4

As an example consider the three mobile devices M1, M3, and M4, whose rela-

tions are shown in Tables 5.2, 5.4 and 5.5. This time, we assume M4 is the query

originator and M3 is the intermediate in-between M4 and M1. The local skyline

on M4 is {h41, h42} and that on M3 is {h31}. Based on the VDR values, h41 on M4
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is chosen as the filtering tuple and is sent to M3. If the filtering tuple is not dy-

namically adjusted, h41 will be sent to M1 as well, where it will eliminate h16 only.

If the filtering tuple is dynamically adjusted, h31 on M3 will be used as the new

filtering tuple because VDR31 > VDR41. When h31 is sent to M1, it will eliminate

both h16 and h14. This example shows how dynamic updates of the filtering tuple

can make a difference.

Second, a check is made in every mobile device to avoid processing the same

query more than once. To support this check, a tag cnt is added to every query,

which then becomes (id, cnt, posorg, d). This tag is a local count, generated by each

query originator. In other words, each mobile device maintains a count for all

queries it issues, and this count is attached to the corresponding query. When a

mobile device Mi receives a query (id, cnt, posorg, d), it will check its log to see if

this query has been processed. If not, Mi processes this query and forwards it to

others. Otherwise, the query is ignored.

To save communication cost, this count cnt can be defined as a byte, allowing a

device to generate 256 queries. After a period of time, e.g., one day, this count can

be reset. The log on a device keeps for every device its last arriving query’s count

cnt, which is implemented simply by a hash table that maps the device identifier id

to a count. On each mobile device, the worst case space cost of such a hash table is

O(m), where m is the total number of mobile devices. The time cost of the check

is O(1). This mechanism works well under the assumption that a mobile device is

only interested in its latest query.
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5.5 Local Configurations on Mobile Devices

In this section, we present some necessary local configurations on mobile devices

to make our distributed skyline query processing strategy work properly and effi-

ciently.

5.5.1 Dataset Storage

Basically, we store every local relation Ri on each mobile device Mi according to the

hybrid storage scheme we have proposed in Section 4.3.2. Additionally, to support

fast spatial range check, the maximum and minimum spatial coordinates are kept

as constants in xmax, ymax, xmin and ymin. These coordinates specify the minimum

bounding rectangle MBRi of all sites in Ri.

In the hybrid storage, all attribute domain values are stored in an array for each

attribute. This arrangement can be used to facilitate local skyline query processing

on a mobile device. Suppose on mobile device Mi the value range of attribute pj

is [lj, hj]. Such an lj or hj value can be fetched on a mobile device in O(1) time,

if we store all available values in each domain sequentially and sorted (either in

ascending or descending order). We assume that smaller values are preferred for

each attribute pi, and all values in each attribute domain are stored in ascending

order. In the local skyline computing presented next, we will show how to take

advantage of these range values.

5.5.2 Local Skyline Computing

With the domain information and tpflt received from the query originator, we

can determine efficiently whether we need to do a local skyline on mobile device

Mi. If on every attribute, we have tpflt.pj ≤ lj, which means that the best tuple
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(potentially, maybe unavailable) on Mi is dominated by tpflt, no tuple in relation

Ri will be in final skyline SK. All these comparisons cost O(n) time, where n is

the number of attributes. In this case, Mi needs to do nothing but return a correct,

short message to Morg. Thus, local computation is saved significantly. If the range

check does not imply that the whole Ri is dominated by tpflt, we need to do a local

skyline query, as we have presented in Section 4.4.2.

The algorithm for a local skyline query on mobile device Mi is presented in

Figure 5.4. Initially, a spatial range check is done to see if the spatial extent

covered by mobile device Mi overlaps with the query region specified in Qds. If

not, the processing stops. Otherwise, each attribute domain range’s lower bound

is checked against the filtering tuple tpflt, to determine whether the entire local

relation Ri is dominated by tpflt. If not, Ri is sequentially scanned to obtain the

local skyline SKi, which takes advantage of the sorted attribute p1 and checks the

rest of the dimensions only. After getting the local skyline SKi, the filtering tuple

is used again to filter out non-qualifying tuples. While filtering, the skyline point

with the maximum VDR is recorded. Finally, if the recorded VDR value is larger

than that of the current filtering tuple, which indicates that the recorded skyline

point has more powerful ability to dominate other points, that skyline point will

be used as the new filtering point to replace the old one. Then, when the device

continues to forward the query to other devices, the new filtering tuple will be

attached in the request instead.

5.5.3 Assembly on Query Originator

When receiving results back from devices, the query originator needs to combine

them properly with its own local skyline to obtain the correct global skyline. As-

sembly involves two tasks. The one is to remove all non-qualifying tuples that are
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Algorithm local skyline(posorg, d, tpflt)
Input: posorg is the location of query originator

d is the distance of interest
tpflt is the filtering tuple

Output:reduced local skyline
updated filtering tuple

// Check if Ri’s MBR overlaps the query region
1. if (mindist(posorg,MBRi) > d) return;

// Check if Ri is dominated by the filtering tuple
2. skip = TRUE;
3. for each attribute j of Ri

4. if (tpflt.pj > lj)
5. skip = FALSE; break;
6. if (skip) return; else SKi = ∅;

// Local ID-based SFS processing
7. for each tuple tpj in Ri

// Too far away from query point
8. if (dist(posorg, tpj) > d) continue;
9. dominated = FALSE;
10. for each skyline point spk in SKi

// spk dominates tpj

11. if (∀l > 1, spk.idl < tpj.idl)
12. dominated = TRUE; break;
13. if (!dominated)
14. add tpj into SKi

// Filtering, and picking up maximum VDR
15. idx = null; VDRm = 0;
16. for each skyline point spk in SKi

17. if (∀l, tpflt.pl < spk.pl)
18. remove spk from SKi

19. else if (VDRk > VDRm)
20. idx = k; VDRm = VDRk

// Update filtering tuple if necessary
21. if (VDRm > VDRflt) tpflt = tpidx;

Figure 5.4: Local skyline query processing on Mi
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present in both an incoming result and Morg’s own local result. The other is to re-

move all duplicate tuples in the final skyline result. Both tasks can be done within

a simple nested loop, i.e., for each tuple tpj in an incoming result SK ′
i, every tuple

tpk in the local current result SKorg is checked. Duplicates can be identified by

checking the x and y values only, since we assume that no two tuples represent the

same geographic location. If tpj and tpk are not the same, the dominance between

them is determined by checking all their non-spatial attributes. In this way, SK ′
i

and SKorg are merged together correctly to produce the updated SKorg.

5.6 Performance Studies

We proceed to offer insight into the properties of the method proposed in this

chapter based on experimental studies. The parameters used in the experiments

are listed in Table 5.6.

Parameter Setting

Number of total mobile devices 32, . . . , 52, . . . , 102

Cardinality of global relation 100K, . . . , 500K, . . . , 1000K
Cardinality of local relations 10K, . . . , 50K, . . . , 100K
Storage model for local relations Hybrid
Number of non-spatial attributes 2, 3, 4, 5
Non-spatial attribute domain range [0, 1000], [0.0, 9.9]
Spatial extent of global relation 1000.0 × 1000.0
Attribute distribution Independent, Anti-Correlated
Query distance of interest 100, 250, 500

Table 5.6: Parameters used in experiments

5.6.1 Experimental Settings

We test our proposed methods in a MANET environment simulated using JiST-

SWANS [1], a Java-based wireless ad hoc network simulator. We consider three
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main performance aspects: (1) the data reduction efficiency of the distributed query

processing strategy; (2) the overall response time; and 3) the number of messages

used to forward the query between mobile devices. The simulation experiments

have been conducted on a Pentium IV desktop PC running MS Windows XP with

a 2.99GHz CPU and 1GB main memory.

We use global relations of 100K to 1M. In each global relation, all tuples are

distributed randomly within a 1000 × 1000 spatial domain. Based on a uniform

grid on the spatial domain, a global relation R is divided into local relations (Ris),

each containing all the tuples within its corresponding grid cell.

We vary the total number of mobile devices (m) as the squares of the numbers

3 to 10, i.e., {9, 16, 25, 36, 49, 64, 81, 100}, with each device containing the data of a

grid cell. The number of non-spatial attributes is varied from 2 to 5. All non-spatial

attributes are of integer type in the range [1, 1000], and they conform to either

independent or anti-correlated distributions. The total number of mobile devices

indicates that we test our methods in environments of small-scale and moderate-

scale MANETs, according to a recent classification [60]. All devices move within

the spatial domain according to the random waypoint mobility model [20]. In

that model, every device moves towards its own destination with its own speed,

and when it reaches that destination it will stop there for a period of time (holding

time) and then move to another destination with a new random speed. The mobility

and wireless settings used are listed in Table 5.7. Every mobile device issues 1 to

5 queries at random times during the simulation. Queries of different devices can

coexist, while a single device does not issue a new query if it has one in progress.

For query forwarding, we compared two different strategies. The first is a

breadth-first strategy, where initially the query originator sends its query to all

its neighbors. Each neighbor processes the query locally, sends the result back to
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Parameter Setting

Total simulation time 2h
Maximum speed 10m/s
Minimum speed 2m/s
Holding time 120s
Wireless routing protocol AODV

Table 5.7: Parameters used in MANET simulations

the query originator directly and then forwards the query to its own neighbors. The

same procedure is repeated on every mobile device involved: processing the query

locally, sending the local result directly back to the query originator and forwarding

the query to its own neighbors. The second is a depth-first strategy, where a query

is forwarded to only one neighbor to which the query has not been sent. The query

result will only be returned when no further neighbor is available or all neighbors

have processed it. Then the result will be forwarded back along the reversed path.

Each mobile device Mi (including the originator) on the path merges the received

result with its own result. The merge on any intermediate device Mi is similar to

the assembly on the query originator, as introduced in Section 5.5.3. Besides, it

updates the filtering tuple if necessary. Then, Mi either sends the result further

back, or forwards the query (with either the old or the updated filtering tuple) to

another available neighbor. These two strategies are illustrated in Figure 5.5.

5.6.2 Data Reduction Efficiency

In this set of experiments, we investigate the efficiency of distributed processing

strategies in terms of their data reduction rate. The data reduction rate (DRR)

is the proportion of tuples reduced by the filtering tuple to the number of in the

unreduced skyline. To be specific, recall that in Section 5.4, for each mobile device

Mi (except the query originator Morg), its unreduced skyline was given as SKi and

its reduced skyline was given as SK ′
i. The data reduction rate with respect to the
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Figure 5.5: Query request forwarding strategies
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whole system is then defined as:

DRR =

∑m
i=1,i6=org(|SKi| − |SK ′

i| − 1)
∑m

i=1,i6=org |SKi| . (5.1)

I. Pre-Tests in Static Setting

Before conducting the simulation, we tested the different filtering tuple selec-

tions in a static setting where no devices move and queries are forwarded recursively

from the originator to the outer neighbors in the grid framework. We also ignore

the distance constraint and use every device Mi as the query originator once. The

final result is the average of a total of m×m queries for each single experiment.

The experimental results on independent global relations are shown in Fig-

ure 5.6. The results show that different estimations of the dominating region (OVE

for over-estimation, EXT for exact computation, and UNE for under-estimation)

barely affect the filtering efficiency for uniform global relations. This justifies the

use of estimation in a mobile device that does not require knowledge about the

global bounds of each attribute.

In the experiment reported upon in Figure 5.6(a), all global relations have two

non-spatial attributes and are partitioned among 5 × 5 mobile devices. For the

strategy using a single filtering tuple (SF), the data reduction rate grows slowly as

the global cardinality increases. A data space D of fixed size becomes denser if more

tuples fall into D, which renders a given tuple tpflt possibly dominate more tuples.

The strategy using a dynamic filtering tuple (DF) has obviously higher efficiency

than SF for all relations. This is because the filtering tuple is dynamically changed

based on its pruning capacity such that a tuple with higher pruning potential (if

there exists one) is picked for further processing. This dynamic adjustment also

makes DF lack steadiness along the relation cardinality.

In the experiment covered by Figure 5.6(b), all global relations have 500K tuples
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Figure 5.6: DRR on independent datasets in a static setting
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Figure 5.7: DRR on anti-correlated datasets in a static setting
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and are partitioned among 5 × 5 mobile devices. For both filtering strategies,

the data reduction rate decreases as the attribute dimensionality increases. In

contrast to Figure 5.6(a), a data space D of fixed cardinality becomes sparser if

the dimensionality increases, which leaves a given tuple tpflt possibly dominating

fewer tuples.

In the experiment reported upon in Figure 5.6(c), all global relations have 500K

tuples with two non-spatial attributes. For the SF strategy, the data reduction

rate decreases slightly as the number of mobile devices increases. As the global

relation is partitioned among more mobile devices, the denominator
∑m

i=1,i6=org |SKi|
in Formula 5.1 possibly becomes larger while the single filtering tuple strategy

cannot prune more tuples, which leads to a smaller DRR value. The pruning

capacity of the dynamic strategy is not affected, as the filtering tuple is dynamically

changed according to the local skyline on every mobile device.

The experimental results on anti-correlated global relations are shown in Fig-

ure 5.7. We can see that for the SF strategy, over-estimation of the dominating

region exhibits the best filtering efficiency for anti-correlated global relations in

almost all cases. However, for every single experiment, the filtering efficiency here

is lower compared to that of its counterpart for independent global relations. This

is not surprising because the filtering tuples are chosen based on the assumption of

an independent distribution.

II. Tests in MANET Simulation

Through the pre-tests in the static setting, we found that the use of estimated

versus exact selections led only to very slight differences, especially for uniform

datasets. It is also shown that dynamic filtering of tuples yields better DRRs.

Thus, we decided to use only under-estimation of dominating regions when selecting

filtering tuples in the simulation, and dynamically update them between mobile



127

100

75

50

25

 
1000K800K600K400K200K

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Global relation cardinality

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(a) DRR vs. global cardinality

100

75

50

25

 
5432

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Attribute dimensionality

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(b) DRR vs. attribute dimensionality

100

80

60

40

20

 
10x109x98x87x76x65x54x43x3

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Mobile device number

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(c) DRR vs. mobile network scale

Figure 5.8: DRR on independent datasets in MANET simulation



128

20

15

10

5

 
1000K800K600K400K200K

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Global relation cardinality

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(a) DRR vs. global cardinality

20

15

10

5

 
5432

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Attribute dimensionality

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(b) DRR vs. non-spatial dimensionality

25

20

15

10

5

 
10x109x98x87x76x65x54x43x3

D
at

a 
re

du
ct

io
n 

ra
te

 (
%

)

Mobile device number

DF-100
DF-250
DF-500
BF-100
BF-250
BF-500

(c) DRR vs. mobile network scale

Figure 5.9: DRR on anti-correlated datasets in MANET simulation
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devices, if possible. The same series of datasets are used in the simulation as in

the pre-tests. The DRR results are shown in Figures 5.8 and 5.9, where DF (BF)

is for the depth-first (breadth-first) query forwarding strategy and the integers are

distances of interest in queries.

For both distributions, DRRs are lower compared to those in the static setting.

The is attributed to the MANET setting, where not all devices always participate in

the query processing, thus decreasing the data reduction. The mobile characteristic

also makes DRR changes more untidy as the global cardinality increases. This is

because it is not fixed which part(s) of the global relation that do not participate

in the query processing. The DRR change in terms of attribute dimensionality is

still pronounced, which indicates that dimensionality still plays an important role

to the query processing performance in MANETs.

5.6.3 Response Time

For the BF strategy, the response time is defined as the elapsed time from the

moment that a query is issued at a mobile device Morg to the moment that 80% of

all other devices in the network have sent back results, since it is not ensured that all

devices are always reachable and available in MANETs. In our initial experiments,

it was found that a query forwarded in BF manner more often than not fell into

an infinite wait for replies from all mobile peers in the simulated MANET. This

is due to the instable wireless connections in the MANET, which totally isolate

some peers such that they are not accessible from any other peers including the

query originator. This happens in a real MANET environment. To overcome this

infinite wait problem, we stipulate that a query forwarded in BF ends when it has

got replies from 80% of all peers. The percentage was a careful decision based on

empirical tests. For the DF strategy, the response time is defined a little different in
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that a query ends when the query originator Morg receives the result and finds that

all its neighbors have processed the query. As a matter of fact, DF strategy also

faces the similar difficulty caused by instable network connections, as those peers

inaccessible in BF are also unreachable in DF. Nevertheless, DF strategy does not

fall into an infinite wait as it can backtrack and finally end a query as soon as it

finds no neighbor to contact.

The simulation results are shown in Figures 5.10 and 5.11, covering indepen-

dent and anti-correlated datasets, respectively. The response time consists of both

the wireless communication overhead and the estimated local processing time on

involved devices. In the experiments in Chapter 4, we learn that the local sky-

line processing cost (algorithm hsSkyline on the hybrid storage) increases almost

linearly with respect to the local relation cardinality of each given dimensionality.

We add the local filtering mechanism to algorithm hySkyline as presented in Fig-

ure 5.4, and run it on the pocket PC used in Chapter 4. We use two batches of

50K local relations: one with 2 to 5 independent attributes and the other with 2 to

5 anti-correlated attributes. We run 5 queries on each relation, each query issued

with a query position randomly determined within the spatial extent, a distance

of interest randomly picked from {100, 250, 500}, and a filtering tuple randomly

chosen from the global relation. Only minor extra costs are observed in the conse-

quent results, compared to those counterparts gained in Chapter 4. Based on these

findings, we use the results gained in this way as a baseline to linearly estimate

the local skyline query processing times on devices in the simulation. Note that

the accuracy of the estimation of the local cost is not a significant concern, as in

our simulation the response time of a query is dominated by the communication

overhead via the MANET.

From the figures, we see that BF exhibits shorter response time than does DF.
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Figure 5.10: Response time on independent datasets in MANET simulation
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Figure 5.11: Response time on anti-correlated datasets in MANET simulation
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The most important reason for the difference is that the BF query forwarding

strategy enables parallel query processing among the mobile devices, while the DF

strategy only allows each query to be processed serially along all devices involved.

Another reason that leads to a marginal difference is that we only count 80% results

back in computing the response time for BF, whereas DF needs to wait longer before

a query stops.

DF deteriorates much more quickly than does BF when the dimensionality in-

creases, as shown in Figures 5.10(b) and 5.11(b). Local skyline processing over

multi-dimensional datasets is time-consuming on resource-constrained mobile de-

vices. BF offsets that effect through parallelism; on the contrary, DF is only hurt

by that effect because of serialization.

BF improves as the number of mobile devices increases, as shown in Fig-

ures 5.10(c) and 5.11(c). This is because more devices increases the degree of

parallelism of BF. The distance constraints make a more obvious difference to DF

than to BF. This is also attributed to DF’s serialization, which is more sensitive

than parallelism to distance constraints, as larger search ranges usually involves

more devices and data.

5.6.4 Query Message Count

In the simulation we found that the cardinality, the dimensionality, and the distri-

bution have little impact on the message count. Therefore, we only show in Fig-

ure 5.12 how the message count varies as the number of mobile devices increases.

Although BF shows better performance than does DF in terms of response time,

this gain is not for free. Parallelism generates and forwards more messages in

the wireless network, which in turn consumes more wireless communication band-

width. As a result of this effect, the improvement of response time slows down in
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our simulation (shown in Figures 5.6.3 and 5.6.3) as the number of mobile devices

increases.
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Figure 5.12: Query message count

5.6.5 Data Reduction Efficiency with Multiple Filtering Tu-

ples

So far in the experiments we have used only one filtering tuple, though we allow

the single filtering tuple to be changed dynamically. It is possible to generalize the

filtering idea and use more than only one filtering tuple. This poses questions of

how many (and which) points should be used as filters to ensure sufficient data

reduction rate. To obtain an intuition of the effect of multiple filtering tuples,

we conduct experiments with multiple filtering tuples in a static setting used in

Section 5.6.2. In the experiments, we vary the number of filtering tuples from 2

to 5. In each single experiment, the number of filtering tuples is fixed. Given the

set of local skyline points, k (2 ≤ k ≤ 5) points with the largest exact VDR values

are selected as multiple filtering tuples. During the query forwarding, they are

dynamically changed to ensure that those skyline points with the highest expected
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Figure 5.13: DRRm on independent datasets
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Figure 5.14: DRRm on anti-correlated datasets
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filtering capacity are always selected.

The results of data reduction rates with multiple filtering tuples (DRRm) are

shown in Figure 5.13 and Figure 5.14, respectively on independent and anti-correlated

datasets. Referring to those results, we can see that more filtering tuples produce

higher data reduction rates. This is not surprising, because more filtering tuples

are likely to identify more unqualified skyline points on each intermediate device.

Furthermore, this improvement attributed to multiple filtering tuples is more ap-

parent on anti-correlated datasets. Our estimation of VDR values is based on the

assumption of an independent data distribution, which causes a gap between the

estimation and the real datasets. Nevertheless, when multiple filtering tuples are

used, this gap is reduced by the collective filtering effect, and therefore the data re-

duction rate is increased markedly. Besides, the filtering effect still suffers from the

data dimensionality increase. The same reason behind Figures 5.6(b) also applies

here.

By comparing those results to their counterparts with single filtering tuple,

shown in Figures 5.6 and 5.7, we see that the performance gain from 2 filtering

tuples to 5 ones is slighter than that from a single filtering tuple to 2 ones. This

indicates that using only 2 filtering tuples is favorable, as it improves the data

reduction rate remarkably but incurs slight additional computation cost in selecting

the top-2 filtering tuples. This also implies that it does not help much if we change

the number of filtering tuples (from 2 to more) on the fly in the query forwarding.

We here employ a simple greedy strategy to select k (2 ≤ k ≤ 5) filtering tuples,

which have the largest VDR values. It is worth noting that the problem of finding

from a set of s skyline points the optimal subset(s) of k (1 < k < s) filtering points,

which requires the largest collective filtering capability by those k points, is similar

to a recent work on selecting k most representative skyline points [55] and is also
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of NP-hard computation complexity. According to the experimental results, our

simple greedy strategy is efficient in terms of data reduction.

5.7 Summary

In this chapter, we have addressed distributed skyline querying in a wireless mo-

bile ad-hoc network (MANET). The queries have spatial constraints and involve

multiple mobile devices in a MANET. Each mobile device contains some portion

of the data of the geographical space within which they move. Any mobile device

may issue skyline queries against other peers through the MANET.

To reduce the wireless communication cost, we have proposed a distributed

query processing strategy that takes advantage of the skyline dominance relation-

ship to filter out non-qualifying intermediate tuples. When the local skyline is

computed on the query originator device, the skyline point with the maximum

capability to dominate other points is selected based on a probability model we

propose. That filtering point is then sent out together with the query request to

other peers. On any other device, the filtering point is used to remove unquali-

fied answers in the local skyline otherwise to be sent back to the query originator,

and thus reducing the amount of data transmitted. During the query forwarding

via multiple hops in the MANET, the filtering point is dynamically changed on

involved devices so that its dominating capability is maximized. On each mobile

device involved, the local query processing is made faster by specific measures. Ex-

tensive experimental studies demonstrate the efficiency of the strategy proposed,

in terms of both communication cost savings and response time.



139

CHAPTER 6

Conclusions and Future Work

In the database community, skyline queries have gained considerable attention in

the past few years because of their suitability in retrieving data according to mul-

tiple criteria. However, little work on skyline queries has been done in dynamic

computing environments including moving objects databases and mobile ad-hoc

networks (MANETs). Due to the constant advances in electronics miniaturization,

positioning systems and wireless communication, such dynamic environments are

becoming increasingly popular. This important trend, plus the significance of sky-

line queries, renders it meaningful or even pressing to address skyline queries in

dynamic computing environments.

This thesis work is motivated by above observations. In this thesis, along three

different but correlated aspects, we explore skyline queries in dynamic computing

environments. First, by assuming a client/server architecture, we consider continu-

ous skyline queries for moving objects stored on a powerful server. The continuously

changing distances between points of interest and the moving query point pose the
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most significant challenge in this problem. Second, we address skyline queries on

mobile lightweight devices, which are the most usual computing platforms in a

mobile environment. Resource limitations in both storage space and computing

capability necessitate careful adjustments and configurations, in order to speed up

skyline query processing on such devices. Third, we go further and set skyline

queries in a MANET, which is formed by multiple mobile lightweight devices via

wireless peer-to-peer communication. Our goal in this problem is to find an efficient

distributed skyline query processing strategy in a MANET.

6.1 Conclusions

6.1.1 Continuous Skyline Queries for Moving Objects

The literature on skyline queries has so far dealt mainly with static query points

and static points of interest. This static setting is being shaken by the growing

popularity of moving objects. Motivated by this, we consider continuous skyline

queries for moving objects. In our problem, a continuous query is issued by a

continuously moving query point, and the data points of interest can be either

static or moving too. The changing distance between the query point to any data

point is considered as a unique dimension in the skyline computation.

Due to the movement of query point (and points of interest if applicable), the

skyline result taking the changing distance into account changes continuously. Re-

computing the skyline result from scratch every time it changes is not attractive,

as this method does not capture the problem characteristics to ensure solution

efficiency and feasibility.

Based on a thorough analysis that exploits the spatiotemporal coherence of

the problem, we propose our solution that maintains continuous skyline result in
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an incremental way. An invariant part of the skyline result is identified and uti-

lized to derive a search bound for further processing and maintenance. Then the

preconditions for potential skyline changes are strictly discovered, based on the

popular linear movement model. After the detailed analysis, we propose a kinetic-

based data structure [12] and relevant processing algorithms for continuous skyline

queries.

Our solution for continuous skyline queries is applicable to both static and

moving points of interest. For the latter case, we also address how to accommodate

moving plan updates of points of interest. We also present the space and time costs

of the proposed solution. Results of an extensive experiment demonstrate that the

proposed solution is robust and efficient.

6.1.2 Skyline Queries on Mobile Lightweight Devices

In a mobile computing environment, devices are frequently lightweight as they have

limited resources including storage space and computing capabilities. Though pro-

cessing skyline queries locally on such devices is attractive when users are moving

around, this remains a challenge because of the resource constraints. Squeezing

existing skyline algorithms for normal computers into such devices is unlikely to

achieve good performance.

On the contrary, we propose for such devices proper measures that contribute

to speed up the on-device skyline query processing. Base on an analysis on exist-

ing data storage schemes for resource-limited devices, a hybrid storage scheme is

proposed to store data points of interest on devices in a space-efficient way. The

hybrid storage scheme deals with spatial coordinates and non-spatial attributes

differently. Different point location coordinates are directly stored in their float

values, whereas non-spatial attributes sharing float type duplicates are stored in
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a scheme modified from the ID based storage [76]. With attribute value domains

correctly sorted, subsequent skyline processing only needs to access the integer IDs.

One attribute is selected and also sorted to further reduce value comparison in sky-

line computation. Based on the hybrid storage scheme, we propose an adaption of

the existing skyline algorithm SFS [29] for the resource-limited devices. Compared

to straightforward using of existing algorithms, our method is more efficient as it

carries out less value comparisons, and it compares integer IDs instead of raw float

values.

We conduct experiments on a real HP pocket PC device. The experimental

results show that our hybrid storage proposal not only saves on-device storage cost

but also speeds up on-device skyline query processing.

6.1.3 Skyline Queries Against Mobile Lightweight Devices

in MANETs

The previous problem addresses skyline queries on individual mobile lightweight

devices. Due to the wireless peer-to-peer networking technologies nowadays, such

devices are able to constitute self-organizing, wireless mobile ad hoc networks

(MANETs) that allow seamless, low-cost, and easily deployed communications [11,

20]. Within a MANET, such mobile devices can exchange data and even collab-

orate query processing. This makes it possible for one device to issue distributed

skyline queries, and each query retrieves data from multiple mobile peers instead

of accessing local data only.

To efficiently process such distributed skyline queries in a MANET, we need

to cut both the local skyline query processing time and the data transmission

time among mobile devices. For the former, the findings on the previous problem

are utilized to guide on-device configurations. For the latter, we propose a filtering
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based query processing strategy that is able to identify some unqualified data points

and prevent them from being transmitted among mobile devices.

When the local skyline is computed on the device originating the query, the

skyline point with the maximum capability to dominate other points is selected

based on a probability model we propose. That point, termed filtering point, is

then attached to the query request sent out to other peers. On any other device,

the filtering point is used to filter out unqualified answers in the local skyline

otherwise to be sent back to the query originator. During the query forwarding

via multiple hops in the MANET, the filtering tuple is dynamically changed on

involved devices so as to maximize the dominating capability it holds.

We conduct extensive simulation experiments using a MANET simulator JiST-

SWANS [1]. The results show that our proposal reduces the amount of data to

transmit, especially for independent datasets. The data reduction consequently

shortens the response time of distributed skyline queries in the simulation.

6.1.4 Discussion

Throughout this thesis, we have focused on full space skyline computation in dy-

namic environments. Nevertheless, our solutions also support user queries that are

concerned with subspace skylines, as long as proper adaptations are taken.

For the first problem, subspace skyline can be supported in this way. For each

subspace including both dynamic distance and static attributes, its corresponding

static partial subspace skyline could be pre-computed and used as the SKns we

have in the full skyline case. Whereas, our spatiotemporal analysis and algorithms

still work as the changing distance is the same for both full space skyline and any

subspace skyline. To support arbitrary subspace skyline, extra computation time

is needed to build up the whole skyline cube [98] for all static attributes before the
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system is ready for continuous skyline queries. To store the whole skyline cube,

the storage requirement will be considerably high. Efficient data structures are

therefore expected. An existing proposal [93] may fit to this requirement.

For the second and third problems, the hybrid storage of the local relations

may become less helpful as the topological order of all tuples is unlikely to hold

on an arbitrary subspace. To compute a subspace skyline, we could resort to BNL

algorithm. The benefit still available is that comparisons are only to be conducted

between integer IDs instead of raw values.

For the third problem, the filtering strategy will still work as well. The selection

of filtering tuple can be adapted easily. A full space dominating region will be

projected onto the corresponding subspace of which the skyline is wanted, and

VDR values will be calculated in the subspace correspondingly.

6.2 Directions for Future Work

This thesis studies skyline queries in dynamic environments. There are several

directions for future work that extends the research presented in this thesis.

• First, the Euclidean distance we have used in all three problems can be re-

placed by network distance, as moving objects may be constrained in spatial

networks such as a road transportation network. In the first problem, the

Euclidean distance is used as a unique dimension in the skyline computa-

tion. When the network distance is used instead, the preconditions of skyline

changes must be reexamined, and result maintenance must be modified ac-

cordingly. The key difference is the time parameterized distance functions

between query point and points of interest, which are reduced to be segmen-

tally linear [28] in a road network. In the rest two problems, the spatial
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constraint for a skyline query will be specified in network distance, which

accordingly requires necessary and appropriate modifications in the relevant

solutions.

• Second, we have assumed the linear movement model for moving objects in

Chapter 3. Though this currently is the most popular model used in research

on moving objects, it is also of interest to address continuous skyline queries

for moving objects that are abstracted in other models including uncertainty

model [83]. Distance computation is still the crucial part when other models

are assumed. Accuracy might be traded for query processing efficiency, if the

model to use does not support accurate and fast distance computation.

• Third, we use a simple greedy strategy to choose from s local skyline points

k (1 < k < s) filtering points in Chapter 5. To incorporate such an NP-hard

selection of multiple filtering tuples into lightweight mobile devices, specific

heuristics are needed to improve the local computation efficiency. Otherwise,

considerable extra local selection costs can harm the overall performance of

the distributed filtering based skyline query processing, if the selected multi-

ple filtering points do not additionally identify and reduce enough unqualified

skyline points on intermediate devices. The similar unexpected outcome can

also happen in a wired distributed environment. As the subsequent work

beyond this thesis, we currently are investigating into those issues.



BIBLIOGRAPHY

[1] JiST/SWANS. http://jist.ece.cornell.edu.

[2] Merriam-webster online dictionary. http://www.m-w.com.

[3] Superwaba. http://www.superwaba.com.

[4] International standardization organizatin (ISO). Integrated Circuit(s) Cards

with Contacts – Part 7: Interindustry Commands for Structured Card Query

Language (SCQL), ISO/IEC 7816-7, 1999.

[5] Fusing ad hoc and P2P. Pictures of the Future (Siemens Magazine for Re-

search and Innovation), Spring:38–19, 2005.

[6] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proceed-

ings of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS ’00), pages 175–186, 2000.

[7] A. Ammann, M. Hanrahan, and R. Krishnamurthy. Design of a memory res-

ident dbms. In Proceedings of the 30th IEEE Computer Society International

Conference (COMPCON ’85), pages 54–57, 1985.

146



147

[8] G. Antoshenkov, D. B. Lomet, and J. Murray. Order preserving compression.

In S. Y. W. Su, editor, Proceedings of the 12th International Conference on

Data Engineering (ICDE ’96), pages 655–663. IEEE Computer Society, 1996.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and

issues in data stream systems. In Proceedings of the 21st ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS

’02), pages 1–16, 2002.
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