88,291 research outputs found

    Orthogonal-Array based Design Methodology for Complex, Coupled Space Systems

    Get PDF
    The process of designing a complex system, formed by many elements and sub-elements interacting between each other, is usually completed at a system level and in the preliminary phases in two major steps: design-space exploration and optimization. In a classical approach, especially in a company environment, the two steps are usually performed together, by experts of the field inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. To support designers and decision makers during the design phases of this kind of complex systems, and to enable early discovery of emergent behaviours arising from interactions between the various elements being designed, the authors implemented a parametric methodology for the design-space exploration and optimization. The parametric technique is based on the utilization of a particular type of matrix design of experiments, the orthogonal arrays. Through successive design iterations with orthogonal arrays, the optimal solution is reached with a reduced effort if compared to more computationally-intense techniques, providing sensitivity and robustness information. The paper describes the design methodology in detail providing an application example that is the design of a human mission to support a lunar base

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Real-Time Distributed Aircraft Simulation through HLA

    Get PDF
    This paper presents some ongoing researches carried out in the context of the PRISE (Research Platform for Embedded Systems Engineering) Project. This platform has been designed to evaluate and validate new embedded system concepts and techniques through a special hardware and software environment. Since many actual embedded equipments are not available, their corresponding behavior is simulated using the HLA architecture, an IEEE standard for distributed simulation, and a Run-time infrastructure called CERTI and developed at ONERA. HLA is currently largely used in many simulation applications, but the limited performances of the RTIs raises doubts over the feasibility of HLA federations with real-time requirements. This paper addresses the problem of achieving real-time performances with HLA. Several experiments are discussed using well-known aircraft simulators such as the Microsoft Flight Simulator, FlightGear, and X-plane connected with the CERTI Run-time Infrastructure. The added value of these activities is to demonstrate that according to a set of innovative solutions, HLA is well suited to achieve hard real time constraints

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead
    corecore