11 research outputs found

    Deep Convolutional Neural Fields for Depth Estimation from a Single Image

    Full text link
    We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions, etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimations can be naturally formulated into a continuous conditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of-the-art depth estimation methods on both indoor and outdoor scene datasets.Comment: fixed some typos. in CVPR15 proceeding

    Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support

    Get PDF
    Estimation problems are frequent in several fields such as engineering, economics, and physics, etc. Linear and non-linear regression are powerful techniques based on optimizing an error defined over a dataset. Although they have a strong theoretical background, the need of supposing an analytical expression sometimes makes them impractical. Consequently, a group of other approaches and methodologies are available, from neural networks to random forest, etc. This work presents a new methodology to increase the number of available numerical techniques and corresponds to a natural evolution of the previous algorithms for regression based on finite elements developed by the authors improving the computational behavior and allowing the study of problems with a greater number of points. It possesses an interesting characteristic: Its direct and clear geometrical meaning. The modelling problem is presented from the point of view of the statistical analysis of the data noise considered as a random field. The goodness of fit of the generated models has been tested and compared with some other methodologies validating the results with some experimental campaigns obtained from bibliography in the engineering field, showing good approximation. In addition, a small variation on the data estimation algorithm allows studying overfitting in a model, that it is a problematic fact when numerical methods are used to model experimental values.This research has been partially funded by the Spanish Ministry of Science, Innovation and Universities, grant number RTI2018-101148-B-I00

    A Survey and Perspectives on Mathematical Models for Quantitative Precipitation Estimation Using Lightning

    Get PDF
    Lightning is one of the most spectacular phenomena in nature. It is produced when there is a breakdown in the resistance in the electric field between the ground and an electrically charged cloud. By simple observation, we observe that precipitation, especially the most intense, is often accompanied by lightning. Given this observation, lightning has been employed to estimate convective precipitation since 1969. In early studies, mathematical models were deduced to quantify this relationship and used to estimate precipitation. Currently, the use of several techniques to estimate precipitation is gaining momentum, and lightning is one of the novel techniques to complement the traditional techniques for Quantitative Precipitation Estimation. In this paper, the authors provide a survey of the mathematical methods employed to estimate precipitation through the use of cloud-to-ground lightning. We also offer a perspective on the future research to this end

    Development of an integrated model for congestion prediction and determination of optimal number of active channels in module

    Get PDF
    ΠŸΠΎΡΠ»Π΅Π΄ΡšΠΈΡ… Π³ΠΎΠ΄ΠΈΠ½Π° Π²Π΅Π»ΠΈΠΊΠΈ Π±Ρ€ΠΎΡ˜ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° јС усмСрСн ΠΊΠ° ΠΏΡ€Π΅Π΄ΠΈΠΊΡ†ΠΈΡ˜ΠΈ ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Π½ΠΈΡ… Π³ΡƒΠΆΠ²ΠΈ. Π Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ статистичкС ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ нису ΠΏΠΎΠΊΠ°Π·Π°Π»Π΅ Π·Π½Π°Ρ‡Π°Ρ˜Π°Π½ допринос Ρƒ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ пСрформансама ΠΏΡ€Π΅Π΄ΠΈΠΊΡ†ΠΈΡ˜Π΅ Π³ΡƒΠΆΠ²ΠΈ. Π‘Ρ‚ΠΎΠ³Π° сС данас свС Ρ‡Π΅ΡˆΡ›Π΅ користС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ машинског ΡƒΡ‡Π΅ΡšΠ° Ρƒ Ρ†ΠΈΡ™Ρƒ ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ° Π·Π°Π΄ΠΎΠ²ΠΎΡ™Π°Π²Π°Ρ˜ΡƒΡ›ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° ΠΏΡ€Π΅Π΄ΠΈΠΊΡ†ΠΈΡ˜Π΅. Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ, прСдстављСна јС ΠΌΠ΅Ρ‚ΠΎΠ»ΠΎΠ΄ΠΎΠ³ΠΈΡ˜Π° Π·Π° ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Π³ΡƒΠΆΠ²ΠΈ Π½Π° Π±Π°Π·ΠΈ Π½ΠΎΠ²ΠΎΡ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Гаусових условних ΡΠ»ΡƒΡ‡Π°Ρ˜Π½ΠΈΡ… ΠΏΠΎΡ™Π° Π·Π° стрктурну Π±ΠΈΠ½Π°Ρ€Π½Ρƒ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ†ΠΈΡ˜Ρƒ (GCRFBC). Π˜ΡΡ‚Π° јС ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€Π°Π½Π° Π½Π° Ρ€Π΅Π°Π»Π½Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ° Π³ΡƒΠΆΠ²ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Π»ΠΎΠ³ΠΈΡ˜Π° ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π½Π° класификационС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ описанС нСусмСрСним Π³Ρ€Π°Ρ„ΠΎΠ²ΠΈΠΌΠ° који сС Π½Π΅ ΠΌΠΎΠ³Ρƒ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΠΈ стандардним условним ΡΠ»ΡƒΡ‡Π°Ρ˜Π½ΠΈΠΌ ΠΏΠΎΡ™ΠΈΠΌΠ° (CRF). ΠΠΎΠ²ΠΎΡ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈ ΠΌΠΎΠ΄Π΅Π», ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜ΠΈ, јС заснован Π½Π° стандардним Гаусовим условним ΡΠ»ΡƒΡ‡Π°Ρ˜Π½ΠΈΠΌ ΠΏΠΎΡ™ΠΈΠΌΠ° Π·Π° Ρ€Π΅Π³Ρ€Π΅ΡΠΈΡ˜Ρƒ (GCRF) која су ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½Π° Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΈΠΌ ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ™ΠΈΠ²ΠΈΠΌ ΡˆΡ‚ΠΎ дајС Π±Ρ€ΠΎΡ˜Π½Π΅ прСдности истом. Π—Π°Ρ…Π²Π°Ρ™ΡƒΡ˜ΡƒΡ›ΠΈ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΡ˜ структури, ΡƒΡ‡Π΅ΡšΠ΅ ΠΈ Π·Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΠ΅ Ρƒ ΠΌΠΎΠ΄Π΅Π»Ρƒ Π½Π΅ Π·Π°Ρ…Ρ‚Π΅Π²Π° ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠΎΠ²Π°Π½Π΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅, Π²Π΅Ρ› ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΎ Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈ. ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, ΠΏΠΎΡΡ‚ΠΎΡ˜Π°ΡšΠ΅ Π»Π°Ρ‚Π΅Π½Ρ‚Π½Π΅ структурС ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π΄Π° ΠΌΠΎΠ΄Π΅Π» Π±ΡƒΠ΄Π΅ ΠΎΡ‚Π²ΠΎΡ€Π΅Π½ ΠΊΠ° Π΄Π°Ρ™ΠΈΠΌ ΠΏΠΎΠ±ΠΎΡ™ΡˆΠ°ΡšΠΈΠΌΠ°. Π’Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° су Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π°: GCRFBCb (GCRFBC – Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΈ), GCRFBCb-fast (GCRFBC – Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΈ са Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜ΠΎΠΌ) ΠΈ GCRFBCnb (GCRFBC – Π½Π΅-Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΈ). ΠŸΡ€ΠΎΡˆΠΈΡ€Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π»ΠΎΠΊΠ°Π»Π½Π΅ Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½Π΅ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ сигмоиднС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½Π° јС Π·Π° Ρ€Π΅ΡˆΠ°Π²Π°ΡšΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠΎ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΈΠΌ ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ™ΠΈΠ²ΠΈΠΌ Ρƒ Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΎΡ˜ Π²Π΅Ρ€Π·ΠΈΡ˜ΠΈ GCRFBC ΠΌΠΎΠ΄Π΅Π»Π°. Π£ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π½Π΅-Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΎΠ³ GCRFBC ΠΌΠΎΠ΄Π΅Π»Π° Ρƒ ΡƒΡ‡Π΅ΡšΡƒ ΠΈ Π·Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ јС ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½Π° Π»Π°Ρ‚Π΅Π½Ρ‚Π½Π° ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ™ΠΈΠ²Π° са максималном Π²Ρ€Π΅Π΄Π½ΠΎΡˆΡ›Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ густинС Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎΡ›Π΅. Π—Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΠ΅ Ρƒ GCRFBCb ΠΌΠΎΠ΄Π΅Π»Ρƒ јС Ρ€Π΅ΡˆΠ΅Π½ΠΎ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ ΠŠΡƒΡ‚Π½-ΠšΠΎΡ‚Π΅ΡΠΎΠ²ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠ° Π·Π° Ρ˜Π΅Π΄Π½ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½Ρƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡ˜Ρƒ. УслСд Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, рачунски Ρ‚Ρ€ΠΎΡˆΠ°ΠΊ ΡƒΡ‡Π΅ΡšΠ° јС Π²Π΅Π»ΠΈΠΊΠΈ, стога јС Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π° Π±Ρ€Π·Π° Π²Π΅Ρ€Π·ΠΈΡ˜Π° Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΎΠ³ GCRFBC ΠΌΠΎΠ΄Π΅Π»Π°. ΠŸΠ΅Ρ€Ρ„ΠΎΡ€ΠΌΠ°Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»Π° су Π΅Π²Π°Π»ΡƒΠΈΡ€Π°Π½Π΅ Π½Π° синтСтичким ΠΈ Ρ€Π΅Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠ΄Π°Ρ†ΠΈΠΌΠ°. Показано јС Π΄Π° сС ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π»ΠΎΠ³ΠΈΡ˜Π΅ ΠΎΡΡ‚Π²Π°Ρ€ΡƒΡ˜Ρƒ Π±ΠΎΡ™Π΅ пСрформансС ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ° Π³ΡƒΠΆΠ²ΠΈ Ρƒ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ са нСструктурним ΠΌΠΎΠ΄Π΅Π»ΠΈΠΌΠ°. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΎ су Π΅Π²Π°Π»ΡƒΠΈΡ€Π°Π½ΠΈ рачунски ΠΈ ΠΌΠ΅ΠΌΠΎΡ€ΠΈΡ˜ΡΠΊΠΈ Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΈΠ· Π΄Ρ€ΡƒΠ³ΠΈΡ… Π΄ΠΎΠΌΠ΅Π½Π°. Π”Π΅Ρ‚Π°Ρ™Π½Π΅ прСдности ΠΈ ΠΌΠ°Π½Π΅ свих Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° су наглашСнС. Π£ Π΄Ρ€ΡƒΠ³ΠΎΠΌ Π΄Π΅Π»Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½a јС Ρ…ΠΈΠ±Ρ€ΠΈΠ΄Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π»ΠΎΠ³ΠΈΡ˜Π° Π·Π° ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ΅ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° ΡΠ°ΠΎΠ±Π°Ρ›Π°Ρ˜Π° који сС заснива Π½Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ Гаусових условних ΡΠ»ΡƒΡ‡Π°Ρ˜Π½ΠΈΡ… ΠΏΠΎΡ™Π° Π·Π° Ρ€Π΅Π³Ρ€Π΅ΡΠΈΡ˜Ρƒ ΠΈ ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ. УслСд ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° структурних ΠΌΠΎΠ΄Π΅Π»Π°, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° сС користи Π·Π° ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ΅ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Π° Π½Π° вишС ΠΈΠ·Π»Π°Π·Π° који су мСђусобно зависни. ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, ΠΎΠ±Π΅Π·Π±Π΅Ρ’ΡƒΡ˜Π΅ сС ΡƒΡ‡Π΅ΡšΠ΅ ΠΈΠ· Ρ€Π΅Ρ‚ΠΊΠΈΡ… ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ°, односно ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Π³Π΄Π΅ ΠΌΠ½ΠΎΠ³ΠΈ ΠΈΠ·Π»Π°Π·ΠΈ Π½Π΅ΠΌΠ°Ρ˜Ρƒ Π½ΠΈΠΊΠ°ΠΊΠ°Π²Ρƒ врСдност (Π½ΠΈΡˆΡ‚Π°). ΠšΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½ΠΈ ΠΌΠΎΠ΄Π΅Π» слуТи Π·Π° СлиминисањС ΠΈΠ·Π»Π°Π·Π° са врСдностима Π½ΠΈΡˆΡ‚Π°, Π΄ΠΎΠΊ рСгрСсиони ΠΌΠΎΠ΄Π΅Π» слуТи Π·Π° ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ΅ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Π° Π½Π° ΠΎΠ½ΠΈΠΌ ΠΈΠ·Π»Π°Π·ΠΈΠΌΠ° који Π½Π΅ΠΌΠ°Ρ˜Ρƒ врСдност Π½ΠΈΡˆΡ‚Π°. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΈΠΌΠ° ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Π° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π°Ρ˜Ρƒ Сфикасан ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Π°, ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅, ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ ΠΊΠ°ΠΎ ΠΈ доношСњС ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π° којС учСсникС Ρƒ ΡΠ°ΠΎΠ±Ρ€Π°Ρ›Π°Ρ˜Ρƒ ΠΌΠΎΠ³Ρƒ Π΄Π° Π½Π°Π²Π΅Π΄Ρƒ Π½Π° ΠΏΡƒΡ‚Π°ΡšΠ΅ Π³Π΄Π΅ Π³ΡƒΠΆΠ²Π΅ ΠΌΠΎΠ³Ρƒ Π΄Π° сС Π·Π°ΠΎΠ±ΠΈΡ’Ρƒ. ΠŸΡ€Π΅Π΄Π½ΠΎΡΡ‚ΠΈ ΠΈ ΠΌΠ°Π½Π΅ Π½ΠΎΠ²ΠΎΡ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π»ΠΎΠ³ΠΈΡ˜Π΅ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½Π΅ су Π½Π° Π΄Π²Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°. ΠŸΡ€Π²ΠΈ сС Ρ‚ΠΈΡ‡Π΅ ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ° Π³ΡƒΠΆΠ²ΠΈ Π½Π° Π°ΡƒΡ‚ΠΎ-ΠΏΡƒΡ‚Ρƒ E70-E75 који ΠΏΡ€ΠΎΠ»Π°Π·ΠΈ ΠΊΡ€ΠΎΠ· Π‘Ρ€Π±ΠΈΡ˜Ρƒ, Π΄ΠΎΠΊ јС Π΄Ρ€ΡƒΠ³ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π²Π΅Π·Π°Π½ Π·Π° ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΠ΅ Π³ΡƒΠΆΠ²ΠΈ Π½Π° ски-Ρ†Π΅Π½Ρ‚Ρ€Ρƒ Копаоник. Π£ послСдњСм Π΄Π΅Π»Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π° јС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π°3 ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΊΠ°Π½Π°Π»Π° Ρƒ будућности. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС заснована Π½Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΈΡ… нСуронских ΠΌΡ€Π΅ΠΆΠ°, Ρ‚Π΅ΠΎΡ€ΠΈΡ˜Π΅ Ρ€Π΅Π΄ΠΎΠ²Π° Ρ‡Π΅ΠΊΠ°ΡšΠ° ΠΈ мСтахСуристика Ρƒ Ρ†ΠΈΡ™Ρƒ ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΊΠ°Π½Π°Π»Π° Ρƒ будућности. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° сС Π±Π°Π·ΠΈΡ€Π° Π½Π° ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π°ΡšΡƒ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ‚Π΅Ρ‚Π° Π΄ΠΎΠ»Π°Π·Π°ΠΊΠ° ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΡƒ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ‚Π΅Ρ‚Π° ΠΎΠΏΡΠ»ΡƒΠΆΠΈΠ²Π°ΡšΠ° Ρƒ Π½Π΅ΠΊΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρƒ Ρƒ будућности. ΠšΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ Ρ‚ΠΈΡ… ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ‚Π΅Ρ‚Π° Ρƒ ΠΌΠΎΠ΄Π΅Π»ΠΈΠΌΠ° Ρ‚Π΅ΠΎΡ€ΠΈΡ˜Π΅ Ρ€Π΅Π΄ΠΎΠ²Π° Ρ‡Π΅ΠΊΠ°ΡšΠ°, поставља сС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° Ρ†ΠΈΡ™Π° која сС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΡƒΡ˜Π΅ посрСдством ΠΈΠ·Π±ΠΎΡ€Π° Π±Ρ€ΠΎΡ˜Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΊΠ°Π½Π°Π»Π° Ρƒ ΠΌΠΎΠ΄ΡƒΠ»Ρƒ. ΠŸΡ€ΠΈΠΊΠ°Π·Π°Π½Π° су Π΄Π²Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°: ΠΏΡ€Π²ΠΈ заснован Π½Π° Π½Π΅-Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΎΠΌ приступу ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° Π±Ρ€ΠΎΡ˜Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΊΠ°Π½Π°Π»Π° Ρƒ ΠΌΠΎΠ΄ΡƒΠ»Ρƒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ заснован Π½Π° Π‘Π°Ρ˜Π΅ΡΠΎΠ²ΡΠΊΠΎΠΌ приступу. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Π½Π°ΠΏΠ»Π°Ρ‚Π½ΠΈΡ… Ρ€Π°ΠΌΠΏΠΈ који Ρ‚Ρ€Π΅Π±Π° Π΄Π° Π±ΡƒΠ΄Π΅ ΠΎΡ‚Π²ΠΎΡ€Π΅Π½ Ρƒ будућности Π½Π° Π½Π°ΠΏΠ»Π°Ρ‚Π½ΠΎΡ˜ станици Π’Ρ€Ρ‡ΠΈΠ½ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π° јС ΠΏΡ€ΠΈΠΌΠ΅Π½Π° истС. МоТС сС Π²ΠΈΠ΄Π΅Ρ‚ΠΈ Π΄Π° Ρƒ свим Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΈΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²ΠΈΠΌΠ°, Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни Π½ΠΎΠ²ΠΎΡ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π½Π΅ΡƒΠΏΠΎΡ€Π΅Π΄ΠΈΠ²ΠΎ Π½ΠΈΠΆΠ΅ ΠΎΡ‡Π΅ΠΊΠΈΠ²Π°Π½Π΅ ΡƒΠΊΡƒΠΏΠ½Π΅ Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π΅ Ρƒ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ са Ρ‚Ρ€Π΅Π½ΡƒΡ‚Π½ΠΎΠΌ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜ΠΎΠΌ ΠΎΡ‚Π²Π°Ρ€Π°ΡšΠ° Π½Π°ΠΏΠ»Π°Ρ‚Π½ΠΈΡ… Ρ€Π°ΠΌΠΏΠΈ.In the recent years, research committed in the field of congestion prediction present one of the most popular area of interest. A variety of novel methods for congestion prediction based on unstructured statistical (machine) learning have become the standard for congestion prediction. However, in this dissertaion I argue that structured machine (statistical) learning algorithms can significantly improve congestion prediction performances. In this dissertation, a Gaussian conditional random field model for structured binary classification (GCRFBC) is proposed for solving problems of congestion prediction. The model is applicable to classification problems with undirected graphs, intractable for standard classification CRFs. The model representation of GCRFBC is extended by latent variables which yield some appealing properties. Thanks to the GCRF latent structure, the model becomes tractable, efficient and open to improvements previously applied to GCRF regression models. In addition, the model allows for reduction of noise, that might appear if structures were defined directly between discrete outputs. Three different forms of the algorithm are presented: GCRFBCb (GCRGBC - Bayesian), GCRFBCbfast (GCRGBC - Bayesian approximation) and GCRFBCnb (GCRFBC - non-Bayesian). The extended method of local variational approximation of sigmoid function is used for solving empirical Bayes in Bayesian GCRFBCb variant, whereas MAP value of latent variables is the basis for learning and inference in the GCRFBCnb variant. The inference in GCRFBCb is solved by Newton-Cotes formulas for one-dimensional integration. Due to large numbers of variational parameters the computational costs of learning is significant, so fast version of GCRFBCb model is derived (GCRFBCb-fast). Models are evaluated on synthetic data and real data. It was shown that models achieve better congestion prediction performance than unstructured predictors. Furthermore, computational and memory complexity is evaluated. The generalization of the proposed models on other problems are discussed in details. Moreover, in the second part of this dissertation a hybrid model of two Gaussian Conditional Random Fields models (one recently proposed for classification, and one for regression) for inference of traffic speed, a relevant variable for traffic state estimation and travel information systems is proposed. It addresses two specifics of the problem - sparsity in traffic data and the fact that observations are not independent. It does so by combining a Gaussian conditional random field binary classification (GCRFBC) model (for gating of free-flow regimes and potentially congested traffic regimes) and a regression Gaussian conditional random field (GCRF) model with varying structure of nodes for prediction of traffic speed in dependent variables of potentially congested traffic regimes only. The information provided by the model can help in traffic monitoring, control, and planning, as well in congestion mitigation by providing information for avoiding congested routes. The proposed model is tested on two large-scale networks in Serbia, an arterial E70-E75 335km long highway stretch as well as in the ski resort Kopaonik with 55 km of ski slopes. The advantages and disadvantages of hybrid model is shown. In the last section of dissertation methodology for determination of optimal number of active channels in module is developed. Methodology is based on combination of recurrent neural networks, queuing theory and metaheuristics. Recurrent neural networks are used for prediction of arrival intensity and estimation of service intensity in some period in future. The predicted intensities are used in queuing theory models in order to develop objective function5 that has to be minimized. Two different algorithms are presented: the first one is based on nonBayesian and the second one is based on Bayesian approach. The application of methodology is presented on the example of pay toll ramp optimization on pay toll station Vrčin. In all analyzed cases the estimated total costs are significantly reduced compared to current polic
    corecore