497 research outputs found

    Rationalization with ruled surfaces in architecture

    Get PDF

    Structural Response Analyses of Piezoelectric Composites using NURBS

    Get PDF
    Variational method deduced on the basis of the minimum potential energy is an efficient method to find solutions for complex engineering problems. In structural mechanics, the potential energy comprises strain energy, kinetic energy and the work done by external actions. To obtain these, the displacement are required as a priori. This research is concerned with the development of a numerical method based on variational principles to analyze piezoelectric composite plates and solids. A Non-Uniform Rational B-Spline (NURBS) function is used for describing both the geometry and electromechanical displacement fields. Two dimensional plate models are formulated according to the first order shear deformable plate theory for mechanical displacement. The electric potential varies non-linearly through the thickness, this variation is modelled by a discrete layer-wise linear variation. The matrix equations of motion are reported for piezoelectric sensors, actuator, and power harvester. Normal mode summation technique is applied to study the frequency response of displacement, voltage and the power output. A full three dimensional model is also developed to study the dynamics of piezoelectric sandwich structures. Simulations are provided for thick plates using plate theory and three dimensional models to verify the applicability of those theories in their regime. Newmarkโ€™s direct integration technique and a fourth order Runge-Kutta method were used to study the transient vibration. The variational method developed in this thesis can be applied to other structural mechanics problem

    ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ๋ฌผ์˜ ์•„์ด์†Œ-์ง€์˜ค๋ฉ”ํŠธ๋ฆญ ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2019. 2. ์กฐ์„ ํ˜ธ.In this thesis, a continuum-based analytical adjoint configuration design sensitivity analysis (DSA) method is developed for gradient-based optimal design of curved built-up structures undergoing finite deformations. First, we investigate basic invariance property of linearized strain measures of a planar Timoshenko beam model which is combined with the selective reduced integration and B-bar projection method to alleviate shear and membrane locking. For a nonlinear structural analysis, geometrically exact beam and shell structural models are basically employed. A planar Kirchhoff beam problem is solved using the rotation-free discretization capability of isogeometric analysis (IGA) due to higher order continuity of NURBS basis function whose superior per-DOF(degree-of-freedom) accuracy over the conventional finite element analysis using Hermite basis function is verified. Various inter-patch continuity conditions including rotation continuity are enforced using Lagrage multiplier and penalty methods. This formulation is combined with a phenomenological constitutive model of shape memory polymer (SMP), and shape programming and recovery processes of SMP structures are simulated. Furthermore, for shear-deformable structures, a multiplicative update of finite rotations by an exponential map of a skew-symmetric matrix is employed. A procedure of explicit parameterization of local orthonormal frames in a spatial curve is presented using the smallest rotation method within the IGA framework. In the configuration DSA, the material derivative is applied to a variational equation, and an orientation design variation of curved structure is identified as a change of embedded local orthonormal frames. In a shell model, we use a regularized variational equation with a drilling rotational DOF. The material derivative of the orthogonal transformation matrix can be evaluated at final equilibrium configuration, which enables to compute design sensitivity using the tangent stiffness at the equilibrium without further iterations. A design optimization method for a constrained structure in a curved domain is also developed, which focuses on a lattice structure design on a specified surface. We define a lattice structure and its design variables on a rectangular plane, and utilize a concept of free-form deformation and a global curve interpolation to obtain an analytical expression for the control net of the structure on curved surface. The material derivative of the analytical expression eventually leads to precise design velocity field. Using this method, the number of design variables is reduced and design parameterization becomes more straightforward. In demonstrative examples, we verify the developed analytical adjoint DSA method in beam and shell structural problems undergoing finite deformations with various kinematic and force boundary conditions. The method is also applied to practical optimal design problems of curved built-up structures. For example, we extremize auxeticity of lattice structures, and experimentally verify nearly constant negative Poisson's ratio during large tensile and compressive deformations by using the 3-D printing and optical deformation measurement technologies. Also, we architect phononic band gap structures having significantly large band gap for mitigating noise in low audible frequency ranges.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๋ณ€ํ˜•์„ ๊ณ ๋ คํ•œ ํœ˜์–ด์ง„ ์กฐ๋ฆฝ ๊ตฌ์กฐ๋ฌผ์˜ ์—ฐ์†์ฒด ๊ธฐ๋ฐ˜ ํ•ด์„์  ์• ์กฐ์ธ ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„ ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํ‰๋ฉด Timoshenko ๋น”์˜ ์„ ํ˜•ํ™”๋œ ๋ณ€ํ˜•๋ฅ ์˜ invariance ํŠน์„ฑ์„ ๊ณ ์ฐฐํ•˜์˜€๊ณ  invariant ์ •์‹ํ™”๋ฅผ ์„ ํƒ์  ์ถ•์†Œ์ ๋ถ„(selective reduced integration) ๊ธฐ๋ฒ• ๋ฐ B-bar projection ๊ธฐ๋ฒ•๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ shear ๋ฐ membrane ์ž ๊น€ ํ˜„์ƒ์„ ํ•ด์†Œํ•˜์˜€๋‹ค. ๋น„์„ ํ˜• ๊ตฌ์กฐ ๋ชจ๋ธ๋กœ์„œ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•œ ๋น” ๋ฐ ์‰˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ํ‰๋ฉด Kirchhoff ๋น” ๋ชจ๋ธ์„ NURBS ๊ธฐ์ €ํ•จ์ˆ˜์˜ ๊ณ ์ฐจ ์—ฐ์†์„ฑ์— ๋”ฐ๋ฅธ ์•„์ด์†Œ-์ง€์˜ค๋ฉ”ํŠธ๋ฆญ ํ•ด์„ ๊ธฐ๋ฐ˜ rotation-free ์ด์‚ฐํ™”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค๋ฃจ์—ˆ์œผ๋ฉฐ, ๊ธฐ์กด์˜ Hermite ๊ธฐ์ €ํ•จ์ˆ˜ ๊ธฐ๋ฐ˜์˜ ์œ ํ•œ์š”์†Œ๋ฒ•์— ๋น„ํ•ด ์ž์œ ๋„๋‹น ํ•ด์˜ ์ •ํ™•๋„๊ฐ€ ๋†’์Œ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฒ• ๋ฐ ๋ฒŒ์น™ ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ํšŒ์ „์˜ ์—ฐ์†์„ฑ์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ๋‹ค์ค‘ํŒจ์น˜๊ฐ„ ์—ฐ์† ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ˜„์ƒํ•™์  (phenomenological) ํ˜•์ƒ๊ธฐ์–ตํด๋ฆฌ๋จธ (SMP) ์žฌ๋ฃŒ ๊ตฌ์„ฑ๋ฐฉ์ •์‹๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ํ˜•์ƒ์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ๊ณผ ํšŒ๋ณต ๊ณผ์ •์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜์˜€๋‹ค. ์ „๋‹จ๋ณ€ํ˜•์„ ๊ฒช๋Š” (shear-deformable) ๊ตฌ์กฐ ๋ชจ๋ธ์— ๋Œ€ํ•˜์—ฌ ๋Œ€ํšŒ์ „์˜ ๊ฐฑ์‹ ์„ ๊ต๋Œ€ ํ–‰๋ ฌ์˜ exponential map์— ์˜ํ•œ ๊ณฑ์˜ ํ˜•ํƒœ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ณต๊ฐ„์ƒ์˜ ๊ณก์„  ๋ชจ๋ธ์—์„œ ์ตœ์†ŒํšŒ์ „ (smallest rotation) ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๊ตญ์†Œ ์ •๊ทœ์ง๊ต์ขŒํ‘œ๊ณ„์˜ ๋ช…์‹œ์  ๋งค๊ฐœํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„์„ ์œ„ํ•˜์—ฌ ์ „๋ฏธ๋ถ„์„ ๋ณ€๋ถ„ ๋ฐฉ์ •์‹์— ์ ์šฉํ•˜์˜€์œผ๋ฉฐ ํœ˜์–ด์ง„ ๊ตฌ์กฐ๋ฌผ์˜ ๋ฐฐํ–ฅ ์„ค๊ณ„ ๋ณ€ํ™”๋Š” ๊ตญ์†Œ ์ •๊ทœ์ง๊ต์ขŒํ‘œ๊ณ„์˜ ํšŒ์ „์— ์˜ํ•˜์—ฌ ๊ธฐ์ˆ ๋œ๋‹ค. ์ตœ์ข… ๋ณ€ํ˜• ํ˜•์ƒ์—์„œ ์ง๊ต ๋ณ€ํ™˜ ํ–‰๋ ฌ์˜ ์ „๋ฏธ๋ถ„์„ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ๋Œ€ํšŒ์ „ ๋ฌธ์ œ์—์„œ ์ถ”๊ฐ€์ ์ธ ๋ฐ˜๋ณต ๊ณ„์‚ฐ์—†์ด ๋ณ€ํ˜• ํ•ด์„์—์„œ์˜ ์ ‘์„ ๊ฐ•์„ฑํ–‰๋ ฌ์— ์˜ํ•ด ํ•ด์„์  ์„ค๊ณ„ ๋ฏผ๊ฐ๋„๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์‰˜ ๊ตฌ์กฐ๋ฌผ์˜ ๊ฒฝ์šฐ ๋ฉด๋‚ด ํšŒ์ „ ์ž์œ ๋„ ๋ฐ ์•ˆ์ •ํ™”๋œ ๋ณ€๋ถ„ ๋ฐฉ์ •์‹์„ ํ™œ์šฉํ•˜์—ฌ ๋ณด๊ฐ•์žฌ(stiffener)์˜ ๋ชจ๋ธ๋ง์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํœ˜์–ด์ง„ ์˜์—ญ์— ๊ตฌ์†๋˜์–ด์žˆ๋Š” ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ์„ค๊ณ„ ์†๋„์žฅ ๊ณ„์‚ฐ ๋ฐ ์ตœ์  ์„ค๊ณ„๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ํŠนํžˆ ๊ณก๋ฉด์— ๊ตฌ์†๋œ ๋น” ๊ตฌ์กฐ๋ฌผ์˜ ์„ค๊ณ„๋ฅผ ์ง‘์ค‘์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ž์œ ํ˜•์ƒ๋ณ€ํ˜•(Free-form deformation)๊ธฐ๋ฒ•๊ณผ ์ „์—ญ ๊ณก์„  ๋ณด๊ฐ„๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์ง์‚ฌ๊ฐ ํ‰๋ฉด์—์„œ ํ˜•์ƒ ๋ฐ ์„ค๊ณ„ ๋ณ€์ˆ˜๋ฅผ ์ •์˜ํ•˜๊ณ  ๊ณก๋ฉด์ƒ์˜ ๊ณก์„  ํ˜•์ƒ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์กฐ์ •์  ์œ„์น˜๋ฅผ ํ•ด์„์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด์˜ ์ „๋ฏธ๋ถ„์„ ํ†ตํ•ด ์ •ํ™•ํ•œ ์„ค๊ณ„์†๋„์žฅ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์„ค๊ณ„ ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ์„ค๊ณ„์˜ ๋งค๊ฐœํ™”๊ฐ€ ๊ฐ„ํŽธํ•ด์ง„๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์–‘ํ•œ ํ•˜์ค‘ ๋ฐ ์šด๋™ํ•™์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋น”๊ณผ ์‰˜์˜ ๋Œ€๋ณ€ํ˜• ๋ฌธ์ œ๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆ๋˜๋ฉฐ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ํœ˜์–ด์ง„ ์กฐ๋ฆฝ ๊ตฌ์กฐ๋ฌผ์˜ ์ตœ์  ์„ค๊ณ„์— ์ ์šฉ๋œ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ, ์ „๋‹จ ๊ฐ•์„ฑ ๋ฐ ์ถฉ๊ฒฉ ํก์ˆ˜ ํŠน์„ฑ๊ณผ ๊ฐ™์€ ๊ธฐ๊ณ„์  ๋ฌผ์„ฑ์น˜์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ํ™œ์šฉ๋˜๋Š” ์˜ค๊ทธ์ œํ‹ฑ (auxetic) ํŠน์„ฑ์ด ๊ทน๋Œ€ํ™”๋œ ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๋ฉฐ ์ธ์žฅ ๋ฐ ์••์ถ• ๋Œ€๋ณ€ํ˜• ๋ชจ๋‘์—์„œ ์ผ์ •ํ•œ ์Œ์˜ ํฌ์•„์†ก๋น„๋ฅผ ๋‚˜ํƒ€๋ƒ„์„ 3์ฐจ์› ํ”„๋ฆฐํŒ…๊ณผ ๊ด‘ํ•™์  ๋ณ€ํ˜• ์ธก์ • ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ์†Œ์Œ์˜ ์ €๊ฐ์„ ์œ„ํ•ด ํ™œ์šฉ๋˜๋Š” ๊ฐ€์ฒญ ์ €์ฃผํŒŒ์ˆ˜ ์˜์—ญ๋Œ€์—์„œ์˜ ๋ฐด๋“œ๊ฐญ์ด ๊ทน๋Œ€ํ™”๋œ ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค.Abstract 1. Introduction 2. Isogeometric analysis of geometrically exact nonlinear structures 3. Isogeometric confinguration DSA of geometrically exact nonlinear structures 4. Numerical examples 5. Conclusions and future works A. Supplements to the geometrically exact Kirchhoff beam model B. Supplements to the geometrically exact shear-deformable beam model C. Supplements to the geometrically exact shear-deformable shell model D. Supplements to the invariant formulations E. Supplements to the geometric constraints in design optimization F. Supplements to the design of auxetic structures ์ดˆ๋กDocto

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    A sharp interface isogeometric strategy for moving boundary problems

    Get PDF
    The proposed methodology is first utilized to model stationary and propagating cracks. The crack face is enriched with the Heaviside function which captures the displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic displacement functions to reproduce the tip singularity. The enriching degrees of freedom associated with the crack tips are chosen as stress intensity factors (SIFs) such that these quantities can be directly extracted from the solution without a-posteriori integral calculation. As a second application, the Stefan problem is modeled with a hybrid function/derivative enriched interface. Since the interface geometry is explicitly defined, normals and curvatures can be analytically obtained at any point on the interface, allowing for complex boundary conditions dependent on curvature or normal to be naturally imposed. Thus, the enriched approximation naturally captures the interfacial discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson condition during solidification simulation. The shape optimization through configuration of finite-sized heterogeneities is lastly studied. The optimization relies on the recently derived configurational derivative that describes the sensitivity of an arbitrary objective with respect to arbitrary design modifications of a heterogeneity inserted into a domain. The THB-splines, which serve as the underlying approximation, produce sufficiently smooth solution near the boundaries of the heterogeneity for accurate calculation of the configurational derivatives. (Abstract shortened by ProQuest.

    Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture

    Get PDF
    International audienceIn this work, we apply a non-intrusive global/local coupling strategy for the modelling of local phenomena in a NURBS patch. The idea is to consider the NURBS patch to be enriched as the global model. This results in a simple, flexible strategy: first, the global NURBS patch remains unchanged, which completely eliminates the need for costly re-parametrization procedures (even if the local domain is expected to evolve); then, easy merging of a linear NURBS code with any other existing robust codes suitable for the modelling of complex local behaviour is possible. The price to pay is the number of iterations of the non-intrusive solver but we show that this can be strongly reduced by means of acceleration techniques. The main development for NURBS is to be able to handle non-conforming geometries. Only slight changes in the implementation process, including the setting up of suitable quadrature rules for the evaluation of the interface reaction forces, are made in response to this issue. A range of numerical examples in two-dimensional linear elasticity are given to demonstrate the performance of the proposed methodology and its significant potential to treat any case of local enrichment in a NURBS patch simply
    • โ€ฆ
    corecore