11,788 research outputs found

    An analytic framework to assess organizational resilience

    Get PDF
    Background: Resilience Engineering is a paradigm for safety management that focuses on coping with complexity to achieve success, even considering several conflicting goals. Modern socio-technical systems have to be resilient to comply with the variability of everyday activities, the tight-coupled and underspecified nature of work and the nonlinear interactions among agents. At organizational level, resilience can be described as a combination of four cornerstones: monitoring, responding, learning and anticipating. Methods: Starting from these four categories, this paper aims at defining a semi-quantitative analytic framework to measure organizational resilience in complex socio-technical systems, combining the Resilience Analysis Grid (RAG) and the Analytic Hierarchy Process (AHP). Results: This paper presents an approach for defining resilience abilities of an organization, creating a structured domain-dependent framework to define a resilience profile at different levels of abstraction, to identify weaknesses and strengths of the system and thus potential actions to increase system’s adaptive capacity. An illustrative example in an anaesthesia department clarifies the outcomes of the approach. Conclusions: The outcome of the RAG, i.e. a weighted set of probing questions, can be used in different domains, as a support tool in a wider Safety-II oriented managerial action to bring safety management into the core business of the organization

    Is a Seat at the Table Enough? Engaging Teachers and Students in Dataset Specification for ML in Education

    Full text link
    Despite the promises of ML in education, its adoption in the classroom has surfaced numerous issues regarding fairness, accountability, and transparency, as well as concerns about data privacy and student consent. A root cause of these issues is the lack of understanding of the complex dynamics of education, including teacher-student interactions, collaborative learning, and classroom environment. To overcome these challenges and fully utilize the potential of ML in education, software practitioners need to work closely with educators and students to fully understand the context of the data (the backbone of ML applications) and collaboratively define the ML data specifications. To gain a deeper understanding of such a collaborative process, we conduct ten co-design sessions with ML software practitioners, educators, and students. In the sessions, teachers and students work with ML engineers, UX designers, and legal practitioners to define dataset characteristics for a given ML application. We find that stakeholders contextualize data based on their domain and procedural knowledge, proactively design data requirements to mitigate downstream harms and data reliability concerns, and exhibit role-based collaborative strategies and contribution patterns. Further, we find that beyond a seat at the table, meaningful stakeholder participation in ML requires structured supports: defined processes for continuous iteration and co-evaluation, shared contextual data quality standards, and information scaffolds for both technical and non-technical stakeholders to traverse expertise boundaries

    Mini is beautiful:Playing serious mini-games to facilitate collective learning on complex urban processes

    Get PDF
    Spatial planning projects can be conceived as processes of collective learning. Planners have been looking at games and playful approaches to support these processes. Considering that planning projects are long and complex, we propose to not reason for single, full-fledged and all-encompassing games, but instead work with strings of, so-called, serious mini-games that each addresses a specific learning goal, guided by a collective learning model. This paper conceptualizes a toolbox to support the development and contextualization of such strings of serious mini-games
    • 

    corecore