89,895 research outputs found

    Contextual mobile adaptation

    Get PDF
    Ubiquitous computing (ubicomp) involves systems that attempt to fit in with users’ context and interaction. Researchers agree that system adaptation is a key issue in ubicomp because it can be hard to predict changes in contexts, needs and uses. Even with the best planning, it is impossible to foresee all uses of software at the design stage. In order for software to continue to be helpful and appropriate it should, ideally, be as dynamic as the environment in which it operates. Changes in user requirements, contexts of use and system resources mean software should also adapt to better support these changes. An area in which adaptation is clearly lacking is in ubicomp systems, especially those designed for mobile devices. By improving techniques and infrastructure to support adaptation it is possible for ubicomp systems to not only sense and adapt to the environments they are running in, but also retrieve and install new functionality so as to better support the dynamic context and needs of users in such environments. Dynamic adaptation of software refers to the act of changing the structure of some part of a software system as it executes, without stopping or restarting it. One of the core goals of this thesis is to discover if such adaptation is feasible, useful and appropriate in the mobile environment, and how designers can create more adaptive and flexible ubicomp systems and associated user experiences. Through a detailed study of existing literature and experience of several early systems, this thesis presents design issues and requirements for adaptive ubicomp systems. This thesis presents the Domino framework, and demonstrates that a mobile collaborative software adaptation framework is achievable. This system can recommend future adaptations based on a history of use. The framework demonstrates that wireless network connections between mobile devices can be used to transport usage logs and software components, with such connections made either in chance encounters or in designed multi–user interactions. Another aim of the thesis is to discover if users can comprehend and smoothly interact with systems that are adapting. To evaluate Domino, a multiplayer game called Castles has been developed, in which game buildings are in fact software modules that are recommended and transferred between players. This evaluation showed that people are comfortable receiving semi–automated software recommendations; these complement traditional recommendation methods such as word of mouth and online forums, with the system’s support freeing users to discuss more in–depth aspects of the system, such as tactics and strategies for use, rather than forcing them to discover, acquire and integrate software by themselves

    Mobile forms of communication and the transformation of relations between the public and private spheres

    Get PDF
    Stress is placed upon contextual issues and for this reason we will theoretically consider aspects of the modern society that are working in conjunction with the mobile phone to alter the public/private dichotomy. The article focuses upon the themes of: emergent practices, community, authority, domestication and etiquette, and notions of space. Rather than focusing solely on perceived change we shall also consider continuities and adaptation in social action, drawing on a range of ethnographic research

    Enhancing Planning-Based Adaptation Middleware with Support for Dependability: a Case Study

    Get PDF
    Recent evolutions of mobile devices have opened up for new opportunities for building advanced mobile applications. In particular, these applications are capable of discovering and exploiting software and hardware resources that are made available in their environment. A possible approach for supporting these ubiquitous interactions consists in adapting the mobile application to reflect the functionalities that are provided by the environment. However, these approaches often fail in offering a sufficient degree of resilience to potential device, network, and software failures, which are particularly frequent in ubiquitous environments. Therefore, the contribution of this paper is to integrate the dependability concern in the process of mobile applications adaptation. In particular, we propose to reflect dependability mechanisms as alternative configurations for a given application. This reflection allows the planning-based adaptation middleware to automatically decide, based on contextual information, to enable the support for dependability or not

    A self-regulated learning approach : a mobile context-aware and adaptive learning schedule (mCALS) tool

    Get PDF
    Self-regulated students are able to create and maximize opportunities they have for studying or learning. We combine this learning approach with our Mobile Context-aware and Adaptive Learning Schedule (mCALS) tool which will create and enhance opportunities for students to study or learn in different locations. The learning schedule is used for two purposes, a) to help students organize their work and facilitate time management, and b) for capturing the users’ activities which can be retrieved and translated as learning contexts later by our tool. These contexts are then used as a basis for selecting appropriate learning materials for the students. Using a learning schedule to capture and retrieve contexts is a novel approach in the context-awareness mobile learning field. In this paper, we present the conceptual model and preliminary architecture of our mCALS tool, as well as our research questions and methodology for evaluating it. The learning materials we intend to use for our tool will be Java for novice programmers. We decided that this would be appropriate because large amounts of time and motivation are necessary to learn an object-oriented programming language such as Java, and we are currently seeking ways to facilitate this for novice programmers

    Context Aware Adaptable Applications - A global approach

    Get PDF
    Actual applications (mostly component based) requirements cannot be expressed without a ubiquitous and mobile part for end-users as well as for M2M applications (Machine to Machine). Such an evolution implies context management in order to evaluate the consequences of the mobility and corresponding mechanisms to adapt or to be adapted to the new environment. Applications are then qualified as context aware applications. This first part of this paper presents an overview of context and its management by application adaptation. This part starts by a definition and proposes a model for the context. It also presents various techniques to adapt applications to the context: from self-adaptation to supervised approached. The second part is an overview of architectures for adaptable applications. It focuses on platforms based solutions and shows information flows between application, platform and context. Finally it makes a synthesis proposition with a platform for adaptable context-aware applications called Kalimucho. Then we present implementations tools for software components and a dataflow models in order to implement the Kalimucho platform

    Automatic Parameter Adaptation for Multi-object Tracking

    Get PDF
    Object tracking quality usually depends on video context (e.g. object occlusion level, object density). In order to decrease this dependency, this paper presents a learning approach to adapt the tracker parameters to the context variations. In an offline phase, satisfactory tracking parameters are learned for video context clusters. In the online control phase, once a context change is detected, the tracking parameters are tuned using the learned values. The experimental results show that the proposed approach outperforms the recent trackers in state of the art. This paper brings two contributions: (1) a classification method of video sequences to learn offline tracking parameters, (2) a new method to tune online tracking parameters using tracking context.Comment: International Conference on Computer Vision Systems (ICVS) (2013

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    VOLARE: Adaptive Web Service Discovery Middleware for Mobile Systems

    Get PDF
    With the recent advent and widespread use of smart mobile devices, the flexibility and versatility offered by Service Oriented Architecture's (SOA) makes it an ideal approach to use in the rapidly changing mobile environment. However, the mobile setting presents a set of new challenges that service discovery methods developed for nonmobile environments cannot address. The requirements a mobile client device will have from a Web service may change due to changes in the context or the resources of the client device. In a similar manner, a mobile device that acts as a Web service provider will have different capabilities depending on its status, which may also change dramatically during runtime. This paper introduces VOLARE, a middleware-based solution that will monitor the resources and context of the device, and adapt service requests accordingly. The same method will be used to adapt the Quality of Service (QoS) levels advertised by service providers, to realistically reflect each provider's capabilities at any given moment. This approach will allow for more resource-efficient and accurate service discovery in mobile systems and will enable more reliable provider functionality in mobile devices
    • 

    corecore