

Contextual Mobile Adaptation

Malcolm Hall

Doctor of Philosophy

Department of Computing Science

Faculty of Information and Mathematical Sciences

University of Glasgow

May 2008

© Malcolm Hall 2008

 1

Abstract

Ubiquitous computing (ubicomp) involves systems that attempt to fit in with users’ context and

interaction. Researchers agree that system adaptation is a key issue in ubicomp because it can be hard to

predict changes in contexts, needs and uses. Even with the best planning, it is impossible to foresee all

uses of software at the design stage. In order for software to continue to be helpful and appropriate it

should, ideally, be as dynamic as the environment in which it operates. Changes in user requirements,

contexts of use and system resources mean software should also adapt to better support these changes. An

area in which adaptation is clearly lacking is in ubicomp systems, especially those designed for mobile

devices. By improving techniques and infrastructure to support adaptation it is possible for ubicomp

systems to not only sense and adapt to the environments they are running in, but also retrieve and install

new functionality so as to better support the dynamic context and needs of users in such environments.

Dynamic adaptation of software refers to the act of changing the structure of some part of a software

system as it executes, without stopping or restarting it. One of the core goals of this thesis is to discover if

such adaptation is feasible, useful and appropriate in the mobile environment, and how designers can

create more adaptive and flexible ubicomp systems and associated user experiences. Through a detailed

study of existing literature and experience of several early systems, this thesis presents design issues and

requirements for adaptive ubicomp systems. This thesis presents the Domino framework, and

demonstrates that a mobile collaborative software adaptation framework is achievable. This system can

recommend future adaptations based on a history of use. The framework demonstrates that wireless

network connections between mobile devices can be used to transport usage logs and software

components, with such connections made either in chance encounters or in designed multi–user

interactions.

Another aim of the thesis is to discover if users can comprehend and smoothly interact with systems that

are adapting. To evaluate Domino, a multiplayer game called Castles has been developed, in which game

buildings are in fact software modules that are recommended and transferred between players. This

evaluation showed that people are comfortable receiving semi–automated software recommendations;

these complement traditional recommendation methods such as word of mouth and online forums, with

the system’s support freeing users to discuss more in–depth aspects of the system, such as tactics and

strategies for use, rather than forcing them to discover, acquire and integrate software by themselves.

 2

Contents

Chapter 1! Introduction...11!

1.1! Research questions..15!

1.2! The Role of Equator..15!

1.3! Approach...16!

1.4! Thesis Walkthrough ..17!

Chapter 2! Context awareness...18!

2.1! Background ...18!

2.2! George Square...23!

2.2.1! Motivation: supporting collaborative ubicomp...24!

2.2.2! System overview ...25!

2.2.3! Recer ...29!

2.2.4! Modular design using Equip ...32!

2.2.5! Flexible content generation ...34!

2.3! Conclusion ..35!

Chapter 3! Seamful Design ...38!

3.1! Background ...38!

3.2! Seamful games ..43!

3.2.1! Treasure...43!

3.2.2! Feeding Yoshi ...50!

3.3! Conclusion ..56!

Chapter 4! Mobile ad hoc peer-to-peer systems ...58!

4.1! Background ...58!

4.1.1! Social proximity applications..59!

4.1.2! Epidemic distribution using mobiles...66!

4.1.3! Emerging commercial ad hoc peer-to-peer systems ...67!

4.2! Far Cry ..69!

4.2.1! StreetHawk..75!

4.3! Efficient distribution of data in mobile, peer-to-peer environments...78!

4.3.1! Peer-to-peer Recer...79!

4.3.2! Samara...81!

4.4! Conclusion ..84!

Chapter 5! Dynamic software adaptation..86!

5.1! Background ...86!

5.1.1! Displaying adaptive content..87!

5.1.2! Displays and user interfaces..88!

5.1.3! Individuals adapting software: Plug-ins and related systems ...91!

5.1.4! People’s patterns of sharing software ...94!

 3

5.1.5! Recombinant computing ...96!

5.1.6! Self-adaptive and Self-healing Software...97!

5.1.7! Mobile Architectural Requirements..99!

5.2! Domino: An adaptation architecture for ubicomp ..101!

5.2.1! Example scenario ..102!

5.2.2! Communication ...103!

5.2.3! Recommendation...104!

5.2.4! Adaptation ...104!

5.2.5! Design Overview...105!

5.2.6! Scope ...105!

5.3! Implementation ...106!

5.3.1! Selecting the device...107!

5.3.2! Selecting the programming platform ..109!

5.3.3! Communication ...111!

5.3.4! Recommendation...117!

5.3.5! Adaptation ...119!

5.3.5.1! Dependency resolution ..123!

5.4! Conclusion ..125!

Chapter 6! Investigation of a Domino application: Castles ..127!

6.1! Why a game?...127!

6.2! Castles ...128!

6.3! Initial implementation...130!

6.3.1! Pilot trial..132!

6.4! Final System..134!

6.5! Final evaluation...139!

6.6! Results...140!

6.7! Security considerations ...145!

6.8! Future work...147!

6.9! Conclusion of investigation ..149!

Chapter 7! Conclusions...151!

7.1! Summary of thesis...151!

7.2! Contributions...152!

7.3! Conclusion ..155!

Appendix A – Online materials ...156!

References ...157!

List of Figures

Figure 1: George Square tourist with the tablet PC and headset. ...26!

Figure 2: The George Square user interface showing user's location (1), photographs (2), locations (3),

photograph links (4) and recommendation lists (5). ..27!

Figure 3: The George Square map showing recommended places, photos and webpages. One’s own

recommendations are shown in full colour while one’s co-visitor’s are shown ‘ghosted’................28!

Figure 4: George Square blog interface. ...29!

Figure 5: The Recer algorithm is used to identify context from the items logged in the user's history

(shown here as a dotted line), such as URLs and locations. The user's context is modelled and

extracted as a set of the most recent items...30!

Figure 6: The Recer algorithm generates recommendations by selecting items from a user’s (user A)

context are identifying them in another’s (user B) history log. Items adjacent in time to these are

then extracted, tallied and ranked as recommendations for user A. ..31!

Figure 7: Diagram of George Square’s Equip-based infrastructure. ..33!

Figure 8: A ‘runner’ playing Can You See Me Now holding a PDA...40!

Figure 9: The online players view of the Can You See Me Now game – the virtual representation of Figure

8..40!

Figure 10: Visualisation of GPS shadows conveying availability [24]...42!

Figure 11: The Treasure user interface displaying a map, coins, mines, the player’s location and a semi-

transparent WiFi signal strength layer. ..44!

Figure 12: The Treasure server user interface for managing the game. ..47!

Figure 13: Player running through trees and bushes whilst playing Treasure at Ubicomp 2004.48!

Figure 14: Playing Treasure at Ubicomp 2004. ..48!

Figure 15: The Feeding Yoshi map screen. Yoshis and plantations are shown as icons and navigation

controls are on the right. Near the bottom is a row containing (from left to right) a button for

selecting icons, pinning an icon onto the map, initiating a swap with another player (greyed out),

and the basket of up to five fruit: in this case two melons...51!

Figure 16: The Yoshi screen shows the Yoshi himself, as well as the five fruits he currently desires (top

right) and a seed of his favourite fruit (top left). After selecting one or more of the fruit in the basket

(bottom right), the Feed button is used to feed the Yoshi and gain points. The left arrow returns to

the map...52!

Figure 17: Fruit swapping screen. You can select items in your basket and items in someone else’s basket

and tap swap...53!

Figure 18: The interface for the iMote-based Jabberwocky device. ...63!

Figure 19: DigiDress user interface...65!

Figure 20: The Zune MP3 player exploits ad hoc WiFi connection to exchange music files.....................68!

Figure 21: Nintendogs running on the portable Nintendo DS...69!

 5

Figure 22: The FarCry user interface. A notification appears when FarCry detects another user nearby,

and then a list of that user’s shared files can be viewed. ...71!

Figure 23: The personal web page of a FarCry user, allowing personalisation and supporting peer-to-peer

audio streaming..72!

Figure 24: A map showing the Times Square area of New York with 3272 WiFi Access Points. Red

markers are secured networks, green are open. ...76!

Figure 25: StreetHawk is an application to allow Windows Mobiles to automatically connect to WiFi

networks with Internet access. ...77!

Figure 26: Samara is an application utilising a fully ad hoc peer-to-peer recommendation system to

recommend places on a map to visit. Locations visited by the current user or other users are shown

as yellow rectangles. Locations recommended to the user currently are highlighted in red.82!

Figure 27: The Guide user interface displaying a nearby location recommendation..................................88!

Figure 28: The Firefox web browser has the ability to add features using extensions.92!

Figure 29: IUseThis.com allows users to discover the software used by other people with similar software

installed to theirs (neighbours)...93!

Figure 30: Wakoopa.com uses tracking software to log the use of applications, then submits this

information to a web site to give recommendations for other applications based on comparisons

with other users. ...94!

Figure 31: The Jigsaw user interface for connecting jigsaw pieces representing sensors, devices and

services in ubiquitous domestic environments. ...97!

Figure 32: The order of events in the Domino architecture. ...105!

Figure 33: Comparison of current wireless technologies for mobile devices. Power statistics are from

[92]. Speed tests are by this author. ...111!

Figure 34: Sample data from the UserPath Recer database table in a Domino application.117!

Figure 35: Default user interface for Domino module management displaying a list with module names

and the .NET DLL container name..120!

Figure 36: A map layer test application with three Domino modules...124!

Figure 37: Domino map layer test application. One device has a map viewer with two layers: pollution

and GPS. Another device has two viewers and at present only the GPS layer................................125!

Figure 38: The pollution layer has been transferred from the PDA on the left to the PDA on the right, and

is displaying in the map viewer containing the GPS layer, which it has been known to be used with.

..125!

Figure 39: The recommendations show in a pop up when user clicks the R button (hidden under pop up).

..131!

Figure 40: Recommendation dialog window in the Castles game. These are the modules a module has

been used in combination with previously...132!

Figure 41: The updated Castles map screen with large intuitive icons and basic stock levels.135!

Figure 42: This screen is shown when the player clicks on the Archery building. From here, archers can

be created or the building can be demolished. ...135!

 6

Figure 43: The Castles building list screen showing star ratings for recommendations of what to build.

The star button runs the algorithm and sorts the list in order of rank. ...136!

Figure 44: The castles building screen, displaying a greyed out building, which is a recommended

Domino module ready to be installed. ...137!

Figure 45: This Castles screen appears after a battle and represents the size of the history path received.

..138!

Figure 46: Hierarchy of the screens in Castles..138!

Figure 47: Example from Castle’s game log of a recommendation event occurring. The Hunter Hut has a

rank of 1209 – the best recommendation for this player. ..139!

Figure 48: After solo play, the four players battling in Castles. ...140!

Figure 49: Graph showing the number of buildings installed per player in the trial of Castles................141!

 7

Acknowledgements

Having been lucky to be part of the Equator group at Glasgow, I have been fortunate to work

collaboratively with a large number of excellent researchers on many exciting projects, and had the

opportunity to present work at conferences throughout the world. Specifically, I would like to thank our

leader and inspiration Dr. Matthew Chalmers, and group members Dr. Marek Bell, Scott Sherwood, Dr.

Barry Brown, Julie Maitland, Dr. Louise Barkhuus, Dr. Alistair Morrison, Paul Tennent, Jose Rojas and

John Ferguson. I would also like to extend my thanks to my Equator friends outside of Glasgow with

whom I have had the pleasure to collaborate on projects and attend workshops.

I would like to thank Prof Stephen Brewster for inviting me to do a summer project that inspired me to

enter academic research.

I would like to thank Dr. Marek Bell, a fellow Ph.D. student who was one year ahead of me and led the

adventure, inspired me to succeed, and was a valued friend.

I would like to thank my supervisors Dr Matthew Chalmers and Mr Phillip Gray for their support and

guidance through the course of this research.

I would like to offer special thanks to Dr Matthew Chalmers, Dr Marek Bell and Eve Hoggan, for their

motivation and proofreading. Without them, this thesis would not have the quality it is—but I take

responsibility for all remaining errors!

Finally, I would like to thank my parents Allan and Irene, and brother Michael, who have always

encouraged and supported me during my work on this thesis.

The work described within this thesis has been funded by EPSRC grant GR/N15986/01 as well as an

EPSRC Doctoral Training Award associated with that grant.

 8

Declaration
The contents of this thesis are the author’s personal work. However, many of the systems discussed

within this thesis have been designed and implemented as part of the Equator group at the University of

Glasgow and have been accomplished, in part, with contributions from others in the Equator IRC.

The author has attempted to make clear when and by whom systems have been designed and

implemented with others. However, the author has been one of the main designers and programmers of

every system developed by the University of Glasgow Equator group. Specifically, the author was the

main designer and programmer of Far Cry, StreetHawk, Domino, and part of a group of designers and

programmers of George Square, Treasure, Feeding Yoshi and Castles. Samara was primarily the work of

Marek Bell but the author modified the implementation of the peer-to-peer recommendation system for

use with Castles. Contributions from others have been made only to system design and implementation –

the work and research related to the thesis itself is entirely the author’s own.

The concept of Seamful Design, discussed in 2.2.5 is primarily that of Matthew Chalmers. The author’s

work did not lead to the idea of Seamful Design; rather the author merely applies it to an adaptive system

and highlights its importance.

 9

List of Publications
In each of the following publications, the author has been either the primary author or a co-author. Each is

related to or has influenced the work in this thesis, and some material from them has been included in this

thesis.

Hall M., Hoggan E., Brewster S., "T-Bars: Towards Tactile User Interfaces for Touchscreen Mobiles",

Proc. Mobile HCI 2008, Amsterdam, Netherlands.

Barkhuus L., Brown B., Bell M., Sherwood S., Hall M. and Chalmers M., Friendship, Awareness and

Repartee: Sharing location on the go, Proc. CHI 2008.

Marek Bell, Malcolm Hall, Matthew Chalmers, Phil Gray and Barry Brown, Domino: Exploring Mobile

Collaborative Software Adaptation, Proc. Pervasive 2006, Dublin, Ireland, pp. 153-168.

Bell, M., Chalmers, M., Barkhuus, L., Hall, M., Sherwood, S., Tennent, P., Brown, B., Rowland, D.,

Benford, S., Capra, M. & Hampshire, A., Interweaving Mobile Games with Everyday Life, Proc. ACM

CHI 2006, Montreal, 2006, pp. 417-426.

Malcolm Hall, Marek Bell & Matthew Chalmers, Domino: Trust Me I’m An Expert, Workshop on

Software Engineering Challenges for Ubiquitous Computing 2006, Lancaster, UK.

Tennent, P., Hall, M., Brown, B., Chalmers, M., and Sherwood, S., Three Applications for Mobile

Epidemic Algorithms, in MobileHCI 2005, Glasgow, UK.

Matthew Chalmers, Marek Bell, Barry Brown, Malcolm Hall, Scott Sherwood & Paul Tennent, Gaming

on the Edge: Using Seams in Ubicomp Games Proc. ACM Advances in Computer Entertainment (ACE)

2005.

Brown, B., Chalmers, M., Bell, M., MacColl, I., Hall, M. & Rudman, P., Sharing the square:

collaborative leisure in the city streets, Proc. Euro. Conf. Computer Supported Collaborative Work

(ECSCW), Paris, 2005.

Matthew Chalmers, Marek Bell, Barry Brown, Malcolm Hall, Scott Sherwood & Paul Tennent, Using

Peer-to-Peer Ad Hoc Networks for Play and Leisure, 3rd UK-UbiNet Workshop, 2005, Bath, UK.

Barkhuus, L., Chalmers, M., Hall, M., Tennent, P., Bell, M., Sherwood, S. & Brown, B., Picking Pockets

on the Lawn: The Development of Tactics and Strategies in a Mobile Game, Proc. Ubiquitous Computing

(Ubicomp), Tokyo, LNCS 3660, pp. 358-374, 2005.

 10

Bell, M., Chalmers, M., Brown, B., MacColl, I., Hall, M. & Rudman, P., Sharing photos and

recommendations in the city streets, Pervasive Workshop on Exploiting Context Histories in Smart

Environments (ECHISE), 2005.

Chalmers, M., Bell, M., Hall, M., Sherwood, S. & Tennent, P., Seamful Games, Adjunct Proc. 6th

International Conference on Ubiquitous Computing, UbiComp 2004, Nottingham, England.

Malcolm Hall, Philip Gray, Mobile Support for Team-Based Field Surveys, Lecture Notes in Computer

Science, Volume 3160, Jan 2004, Pages 431–435.

Brewster, S., Lumsden, J., Bell, M., Hall, M. and Tasker, S., Multimodal ‘eyes-free’ interaction

techniques for wearable devices, Proc. CHI 2003, Florida, USA.

Chapter 1: Introduction

 11

Chapter 1 Introduction

This thesis presents a study of dynamic software adaptation in the field of ubiquitous computing

(ubicomp). There is an increasing consensus among researchers that software adaptation is becoming

increasingly desirable as the use of computers extends beyond work activities, focusing on pre–planned

tasks, into ubicomp where they are used increasingly for leisure and daily domestic life. Here, the variety

and dynamics of people’s activities, contexts and preferences make it especially challenging for the

designer to foresee all possible functions and modules, and their transitions, combinations and uses.

By making systems more adaptive in nature they may, in turn, become more accountable, and behave

fluidly and appropriately in an increasing variety of situations and environments. A simple but well–

known example is of a mobile phone that models its context, reacting when it is in a lecture theatre by

switching to silent mode—so that any incoming calls do not disturb the lecture.

In Mark Weiser’s paper, “The Computer for the 21st Century” [1], he mentions that, perhaps in the

future, the role of portable computers will change. Weiser proposes devices named Pads that “are

intended to be scrap computers (analogous to scrap paper) that can be grabbed and used anywhere; they

have no individualized identity or importance.” In order to support such use, any system running on the

Pad would have to adapt to the current user and situation, dynamically configuring the components

running on the Pad and loading in new ones as necessary to present a customised interface and set of

applications. This could be thought of as a sea of generic, but highly adaptive, Pad devices, whose

individual usefulness or significance is only realised as waves of users discover and interact with them.

In the not too distant past, the vast majority of people did not own personal or mobile computers, and

their use tended to be only in the workplace. Nowadays, it is common for people to own numerous

computers, including digital cameras, mobile phones, PDAs and laptops. As the popularity of these

Chapter 1: Introduction

 12

mobile devices increases, manufacturers are eager to introduce a continuous cascade of new features in an

attempt to further the success of their product. However, in doing so the feature set of the device expands.

These manufacturers are, in effect, invading the markets occupied by other device types, which

themselves have respectively expanding feature sets. For example, many of the new mobile phones being

released in the next few months will have 802.11 wireless capabilities, and there are already 802.11

equipped PDAs that have GSM/GPRS/3G abilities. Furthermore, mobile phones and PDAs can be used

as personal music players, and have models available that have integrated digital cameras, which recently

have become of adequate quality to produce high-resolution prints.

It is hard to predict when, or if, this cross-convergence of markets will unite and to what extent the

different devices, or parts of them, will combine. Furthermore, it is impossible to accurately envision

what such an emerging device will look or feel like. However, as Weiser alludes, it may possibly be a

generic and highly adaptive device powered by a very intelligent adaptive infrastructure, which elegantly

fulfils all the user's requirements and expectations, as well as the constraints and interdependences of the

configuration it is used in.

As might be expected, with all of these added features and cross-convergence of markets, the modern

mobile device is capable of sensing its surroundings more than ever. Where we go, our interests, what we

do, whom we meet in our everyday lives, and much more can be detected by the devices we carry.

Basically, the ‘who, what, where and when’ of computing is becoming exposed to developers and users

of mobile devices. Yet, despite the huge advancements in mobile devices, and the obvious advantages of

the ubicomp concept, adaptive and dynamic systems are practically non-existent. Barkhuus and Dourish

describe both problems and opportunities for adaptation on mobile devices [2]:

Amongst the problems are the difficulties of managing power, locating people, devices and

activities, and managing interactions between mobile devices. Amongst the opportunities is

the ability to adapt to the environment. Recognizing that different places and settings have

different properties and are associated with different activities, researchers have become

interested in how computational devices can respond to aspects of the settings within which

they are used, customizing the interfaces, services, and capabilities that they offer in

response to the different settings of use.

This reinforces the view that, rather than a static design built on presumptions of use by designers,

incremental adaptation and ongoing evolution under the control of users is appropriate [3] [4] [5]. There

is now a wealth of high performance mobile devices on which to run ubicomp systems, and concepts as to

how these systems should behave (incremental adaptation and ongoing evolution), yet there are no

systems currently in existence fulfilling these needs for adaptation of deep software structure during use.

That is, there are no mobile systems that sense a user’s context, and dynamically adapt their features and

functionality, adding or removing computational software modules, in accord with that model of context

and the history of how users' contexts have changed in the past.

Chapter 1: Introduction

 13

The lack of such systems implies that there may be other underlying obstacles present in the development

of software for these mobile devices. As previously mentioned, mobile users can be in a variety of

different situations when using their devices. The fact that designers of mobile systems cannot possibly

foresee every possible situation, environment, or individual user needs further strengthens the argument

that software has to be designed differently, allowing it to adapt to these ever-changing factors. Mobile

devices are so widely used and woven into people’s lives that it is a good starting point for ubicomp

development.

Existing mobile applications in general use are often cut down or limited versions of desktop software.

They are static and inflexible and unaware of the user’s current situation. These mobile device

applications do not offer anything unique over what a desktop PC can already do. For example, on

Windows Mobile there is Pocket Word, Pocket Excel, Calendar and Tasks, all of which are just cut-down

versions of full Windows software. There is a task manager to switch between or quit running

applications. Similarly the iPhone has cut-down versions of iCal, Safari and Mail. All these applications,

running on mobile versions of Windows and OS X, provide at best the same, and at worst reduced,

functionality when compared to their desktop counterparts. None of them take into account users’

locations, surroundings or other context. Instead of making the applications adapt to fit the users’ tasks

and workflow, they rely on the user to alter his or her behaviour around the device and application.

Symbian does not have such applications as the operating system is not based on a desktop operating

system but, as with the others, its interaction methods are still rooted in desktop concepts. Most desktop

applications are designed for use in static environments. If mobile device applications are to become more

adaptable and dynamic, static desktop designs are not appropriate. The research operating system

TinyOS1 is an open-source operating system designed for wireless embedded sensor networks.

Experimentation with adaptive component-based TinyOS architectures targeted at ubicomp systems are

under development [6], however this work ran only in simulations, ran into the issues of finding

appropriate bindings (i.e. matching dependencies) for new components, and focused more on dynamic

architectures on such highly constrained devices such as sensor networks rather than user-oriented

research.

Another obstacle in the path of context aware, dynamic and adaptive mobile systems development, is the

fact that telecom operators supply the majority of mobile phones, and it is in their interest to restrict the

functionality of their devices to secure additional revenue streams, besides the monthly line rental fees.

For this reason, operator-branded phones are often locked down. The opinion of most operators is that if

users were able to install VOIP applications they could bypass phone call charges, and if people could

share ringtones and games freely the operators would lose out on the additional revenue they gain from

those products. These restrictions imposed by mobile phone operators are a large part of the reason why

mobile application innovation is being constrained.

1 http://www.tinyos.net

Chapter 1: Introduction

 14

An additional important issue is that the most useful information in determining context is often secured

and unavailable for programmers to use, or if it is available, it is presented in a device specific way. For

example, obtaining cell tower identification numbers in a range of mobile phones is a task that can be

very difficult. If this information was accessible, it could give way to many location aware applications.

However, operators commonly wish it to be locked away from the general developer, so that they—the

phone operators—can charge for any location-aware functionality they supply themselves.

A further setback with mobile devices is that they heavily vary in hardware; as a result, it can be difficult

to choose a platform and language that is easy to develop for, even though mobile devices are ubiquitous

enough. Fortunately, solutions to this problem may come in the near future, with the recent announcement

of a new consortium whose goal is to develop open standards for mobile devices, which it is hoped, will

allow developers to work more collaboratively to develop more flexible user experiences. Google Inc., T-

Mobile, HTC, Qualcomm, Motorola and others have collaborated on the development of the Android

platform through the Open Handset Alliance2. As there is no Android device available yet, it is not yet

known if the operators will impose any constraints on the devices to secure revenue as mentioned above.

Lastly, and perhaps most importantly, there are many issues with the tools available to mobile application

developers. There are few guidelines for developing mobile experiences and thus the full potential of the

mobile device has not been explored. Developers resort to porting desktop applications to mobile devices

and most are redundant when the user has a desktop or laptop available. Mobile software or services have

the potential to be far more unique and novel, and to actually complement existing desktop software

rather than deliver simple, weak, awkward to use cut down versions of desktop applications. One example

might be a device that logs context information when the user is mobile, and then automatically

synchronises with the user’s desktop, on which it can be visualised or processed. A mobile device is often

a very personal device, which one carries everywhere. It thus has potentially available a wealth of

information that could be recorded and put to good use. Ongoing use can be logged and combined with

past use in various ways. For example, the use of graphical user interface component can be logged by

recording when the user clicks on the component or when the component is visible. For non-user

interface components alternative ways of logging are possible. For example, for a process that discovers

libraries of shared music on a network it would be possible to log the times at which it discovers a music-

sharing peer device. These kinds of applications could be, potentially, as ground breaking and useful as

the original purpose of mobile phones, making phone calls and sending SMS. The Domino framework of

Chapter 5 is an attempt to address these issues and meet the need for adaptive dynamic solutions. Domino

has been designed to be a flexible framework capable of processing and responding to various different

types of log data. An example system described in Chapter 6, Castles, demonstrates one subset of these

techniques.

2 http://www.openhandsetalliance.com

Chapter 1: Introduction

 15

1.1 Research questions

The Equator style of work, described in Section 1.2, demonstrates several aspects of system design and

use, ranging from technical design to user experience. Rather than focus on just one of these in a single

thesis statement, the work of this thesis followed several interwoven threads. This thesis aims to identify

key aspects of existing systems and practices that, when combined, can potentially provide the basis for a

more dynamic and adaptive approach to mobile software in ubicomp scenarios. By investigating common

themes in related areas of research, and outcomes of some initial experience projects, this thesis presents

the design and implementation of Domino, a flexible, context-aware, mobile, peer-to-peer application

framework. The research presented in this thesis primarily focuses on a study of using histories or logs of

software module use in a mobile adaptive system as a basis for recommendations of modules for use in

similar contexts. Furthermore, this study concentrates on the specifics of using these history logs as a

means of discovering the most effective technique for linking new software modules to existing sets of

modules. This work can be framed as a series of research questions, as follows:

RQ1 What aspects of existing research and systems can be applied to the design of an

adaptive infrastructure for ubicomp?

RQ2 How can ubicomp researchers design more dynamic and adaptive systems?

RQ3 How do users react to adaptive and dynamic ubicomp systems?

1.2 The Role of Equator

All of the work discussed in this thesis has been conducted as part of Equator, a six-year, ten million

pound Interdisciplinary Research Collaboration that involved eight UK universities. The Equator Group

at the University of Glasgow has been at the forefront of international ubicomp research for the past six

years, creating new ubiquitous devices, establishing distributed software platforms to knit many such

devices together, working with external partners to demonstrate innovative and creative applications of

ubicomp, and studying these and then generalising the lessons learned into new design concepts and

frameworks. Through Equator and related projects we successfully laid the foundations for a new

interdisciplinary approach to ubicomp research that involves taking emerging technologies out of the

laboratory and studying them 'in the wild'. In so doing we have placed the UK in a world-leading position

in this field.

Equator had a large number of resources and researchers, and was a unique environment for a student.

Being part of this project enabled me to take part in the creation of several systems throughout the PhD,

working at a scale and pace that might not have been possible without the support of Equator.

Furthermore, Equator has been responsible for numerous trials of these systems covering technical,

architectural, interaction and user issues. In common with Equator, neither Artificial Intelligence (AI) nor

Intelligent User Interfaces have been the approach used in this work. In Equator’s sociotechnical

Chapter 1: Introduction

 16

approach, people are part of the systems being designed and studied, as opposed to AI’s tendency to focus

on computers acting more autonomously.

The approach used in this PhD research is based on the Equator approach, and took advantage of

Equator’s iterative and reflective research process. Each system built and trialled during the project

produced many findings that were fed into the design of the next system. Domino and Castles are

therefore based on many findings from earlier Equator systems. For instance, the much simpler model of

data distribution used successfully in FarCry (Chapter 4) influenced the adaptation feature of Domino.

Similarly the history based recommendation technique applied to content in George Square (Chapter 2),

was used for software component recommendations in Domino. All systems developed as part of this

thesis are part of the Equator project:

• George Square – a tourist co-visiting system, demonstrating history based contextual

recommendations of content and a modular architecture (2.2).

• Treasure – a location based game applying Seamful Design to WiFi and GPS (3.2.1).

• Feeding Yoshi – a game used to research how mobile games can be played over a relatively long

period of time fitting with the everyday life of the user, which applied a Seamful Design to the

use of ad hoc WiFi networks (3.2.2).

• FarCry – an application demonstrating how peer-to-peer WiFi connections can support epidemic

distribution of media files (4.2).

• Domino – the backbone system of this thesis, an architecture for the design of highly adaptive

ubicomp systems (5.2).

• Castles – a game demonstrating one possible use of Domino that was trialled to ascertain users

reactions to such a system (Chapter 6).

Throughout this thesis, the part the author played in each of the collaborative work of creating these

systems will be made clear.

1.3 Approach

RQ1 will be addressed through a literature review, detailed analysis of systems and user studies in the

areas of context awareness, seamful design, mobile peer-to-peer applications and adaptive systems

(Chapters 2–5). An answer to RQ2 given in this thesis will be based on the design and implementation of

Domino, an adaptive infrastructure for ubicomp presented in the second half of Chapter 5 and was

specifically designed in response to the findings from studies of the systems investigated to address RQ1

(as discussed in the earlier chapters). RQ3 will be addressed through the implementation and findings

from a user trial of a Domino-based adaptive dynamic ubicomp system, Castles, where users found

recommendations and associated system adaptation generally useful, and yet were also subjects of

individual interpretation and social discussion.

Chapter 1: Introduction

 17

1.4 Thesis Walkthrough

Four themes were identified as relevant to the design of adaptive ubicomp systems: context awareness,

Seamful Design, mobile peer-to-peer systems and adaptation. These form four chapters containing both

background research in the area, and the selected systems listed above. Findings from these chapters build

the rationale for the Domino adaptation architecture, presented at the end of the adaptation themed

chapter. Following this is an investigation into the Domino-based adaptive ubicomp system, Castles.

Chapter 2 examines existing literature in the area of context awareness and explains how it is the first step

towards adaptive ubicomp systems. The George Square system is presented, and features history-based,

contextual recommendations of places and photos to tourists using a mobile application.

Chapter 3 examines Seamful Design and presents two systems, Treasure and Feeding Yoshi. The Seamful

approach is proven to be successful in allowing users to understand complex technologies in meaningful

ways, and suggests a similar technique may be successful in the design of an adaptive ubicomp

architecture, which is likely to be highly complex.

Chapter 4 has a review of existing literature in the field of mobile, peer-to-peer systems. The FarCry,

peer-to-peer Recer and Samara systems are presented in order to demonstrate that mobile peer-to-peer

applications can exploit social proximity between co-located people and high bandwidth, ad hoc wireless

connections, and to suggest that adaptive ubicomp systems could exploit these attributes too.

Chapter 5 examines existing literature in the field of adaptation. An architecture for a mobile software

recommendation and adaptation framework is presented,that encompasses all positive features of the

mobile systems identified in the background litereature and the author’s early systems.

Chapter 6 presents the implementation of an application based on the Domino platform and an

investigation of its use. A multiplayer mobile strategy game, Castles, is presented along with an

evaluation that covers technical aspects as well as user experience. Also the chapter presents the findings

from the development of Domino, its outcomes and future directions.

Finally, Chapter 7 concludes by reviewing the thesis and its contributions which address the research

questions raised in the introduction.

Chapter 2: Context awareness

 18

Chapter 2 Context awareness

Context awareness is a key issue relating to how systems can become more adaptive. This chapter

discusses background work in the field of context awareness research and then focuses on a context aware

system built during this PhD.

2.1 Background

The aim of this thesis is to address the issue of how to make ubicomp systems more dynamic and

adaptable, which is widely regarded as a necessary step towards the ideals of ubicomp. A greater variety

of contextual information, representing more of the user’s activity, can be obtained from a mobile device

than a desktop computer. The ability to sense the surrounding environment opens up possibilities for

allowing software to adapt so as to behave better under constantly changing circumstances and thus

become much more useful. Certain types of contextual information can be logged and distributed between

large groups of people to allow more powerful adaptation techniques, for example generating

recommendations based on comparisons between people. Therefore, this section reviews some of the

literature in context-aware systems.

Dey, Abowd and Salber define context as [7]:

Chapter 2: Context awareness

 19

Any information that can be used to characterize the situation of entities that are

considered relevant to the interaction between a user and an application, including the user

and the application themselves

Thus context can be regarded as the situation or environment, both physical and social, in which a

computational system is present. Context-aware systems are designed to allow constituent devices to

acquire and utilise information about the context, for example the place, time, or people nearby. Dey and

Abowd also give a definition of a context-aware system [8]:

A system is context-aware if it uses context to provide relevant information and/or services

to the user, where relevancy depends on the user’s task.

Dey and Abowd [8] conducted a survey of existing literature on context-aware systems and attempted to

make clearer definitions of context, as well as re-examining the categories that are most vital to context-

aware systems. They started by reiterating why context awareness is of fundamental importance to mobile

systems:

The increase in mobility creates situations where the user’s context, such as the location of

a user and the people and objects around her, is more dynamic. Both handheld and

ubiquitous computing have given users the expectation that they can access information

services whenever and wherever they are. With a wide range of possible user situations, we

need to have a way for the services to adapt appropriately, in order to support the human-

computing interaction.

Schilit et al. reiterated the value of context in mobile computing and suggested a new class of software

that adapts to changes in environment [9]:

One challenge of mobile distributed computing is to exploit the changing environment with

a new class of applications that are aware of the context in which they are run. Such

context-aware software adapts according to the location of use, the collection of nearby

people, hosts, and accessible devices, as well as to changes to such things over time. A

system with these capabilities can examine the computing environment and react to

changes to the environment.

Schilit et al. begin to consider the types of contextual information that might be useful in driving

potentially useful adaptations. Dey and Abowd identify what they believe are normally the four most

important items of context [8]:

Chapter 2: Context awareness

 20

There are certain types of context that are, in practice, more important than others. These

are location, identity, activity and time.

Hull et al. [10] identified that a further crucial item of context was to sense the presence of other people

using the same system. Hummingbird was a small device equipped with a short-range radio transceiver,

through which it broadcast its identity and received information about other Hummingbirds in the vicinity

[11]. Another system, Jabberwocky was designed to extend the ‘familiar stranger’ relationship between

strangers in public places by providing unobtrusive awareness notifications [12]. Other such awareness

systems are examined in Section 4.1.1, which discusses software designed to exploit proximity between

co-located users.

Hull et al. discuss the importance of context-awareness in wearable computers; clothes augmented with

small computers and various sensors. Wearable computers are typically designed to support the natural

workflow of the user conducting their task; that is, wearers typically do not need to interrupt their normal

tasks to make use of the wearable computers abilities, or even interact with it. In this way, wearable

computers have the potential to support users moving around as they normally would. It appears that the

more potential for system mobility, the more crucial appropriate adaptation behaviour is [10]:

Situation awareness is particularly valuable for wearable devices. Desktop computers live

in a very static environment. Even notebooks mostly only make the trek to office to home

and back. However, wearable computers will (potentially) go everywhere with their

owners, into a wide variety of situations in which appropriate behaviour for a given

situation might be essential.

Hull et al. suggest mobile devices, especially wearables, have a unique opportunity for capturing an

extremely rich level of context. It is both appropriate and necessary for mobile devices to be continually

sensing their environment and reacting to it.

Pascoe points out that context-aware systems should not make the mistake of concentrating solely on

observing the external environment [13]:

Context-awareness is the ability of a program or device to sense various states of its

environment and itself.

Pascoe also reiterates the sentiments of Hull et al. on the potential value of context information to mobile

devices [13]:

Chapter 2: Context awareness

 21

The intimate association of user and computer in a wearable system leads to the computing

resources being accessed in a diverse array of situations, unlike a static desk-bound

computer. It is this multitude of dynamic contextual factors that allows context-awareness

to be exploited particularly well in wearable computers.

Pascoe defines a set of core generic capabilities suggested as vital to context-aware systems [13]:

1. Contextual sensing: the ability of a system to detect various environmental states

and to feed information about the current state or changes to it back to the user.

2. Contextual adaptation: the ability of a system to tailor itself to the current

situation.

3. Contextual resource discovery: the ability of a system to detect and to take

advantage of the resources it discovers in its environment (e.g. peer devices).

4. Contextual augmentation: the augmentation of additional information to elements

in the environment. For example, this might be embodied in a tour system which

provides additional information on interesting buildings or statues in the

environment.

These four generic context-aware capabilities are highly relevant to the work in this thesis and are

discussed throughout. Context sensing, resource discovery and contextual augmentation are a major part

of many of the systems implemented as part of the research described in this thesis such as George

Square, Treasure and Feeding Yoshi. In addition to those three systems, the Domino adaptation

architecture covered in 5.2 also exploits the use of contextual adaptation to support the development of

more adaptive ubicomp systems.

Pascoe believes contextual adaptation to be of core importance:

Applications can leverage this contextual knowledge by adapting their behaviour to

integrate more seamlessly with the user’s environment. Rather than providing a uniform

service regardless of the user’s circumstances, the context-aware computer can tailor itself

to the current situation. For example, adapting behaviour for a particular user.

The user experience in a context-aware, mobile system is directly linked to the adaptation of the

underlying computer system. Mobile devices can, and should, adapt to both the current situation and the

current user. Whilst Pascoe implemented a trial system—which uses some context features such as

contextual sensing—for supporting ecologists conducting fieldwork and found that ‘the context-aware

features were attributed as a critical part of the system’s success’, it proved too challenging to implement

contextual adaptation in the first iteration. Pascoe explains:

Chapter 2: Context awareness

 22

Contextual adaptation was not used at all in the current prototype. This capability could

provide the fieldworker with assistance by automating actions in certain contexts.

Pascoe believes contextual adaptation can be of great value but did not have time to implement it in his

prototype because of difficulty. This may explain why such adaptive systems have not been developed so

far, and provides motivation for the design of useful architectures or toolkits to provide this functionality.

After examining the literature, it is apparent that Weiser's famous vision of ubicomp must rely on context

awareness [1]:

Hundreds of computers in a room could seem intimidating at first, just as hundreds of volts

coursing through wires in the walls did at one time. But like the wires in the walls, these

hundreds of computers will come to be invisible to common awareness. People will simply

use them unconsciously to accomplish everyday tasks.

It is clear that if mobile devices are to achieve Weiser’s vision for ubicomp—fading into the walls, the

background, until needed—then it is crucial that they become more adaptive and flexible than they

currently are, so as to be able to respond appropriately, and only when needed.

If mobile systems that take full advantage of contextual awareness are to be powerful or even popular,

system design must drive adaptation down to their core level. The literature mentions that factors such as

sensing, adaptation, nearby resource discovery, location, identity and time are important and must be

included in a successful system that takes full advantage of contextual awareness. This thesis continues to

examine other literature that suggests what the features of a particularly adaptive architecture would be.

Some of the earliest system design work of the research described in this thesis is a system that took a

first step in expanding the usual model of context used in ubicomp by applying the historical view of

context to a collaborative ubicomp system, thus revealing important architectural requirements for later

work in this thesis: George Square, Section 2.2.

There is clearly a large volume of research into context and context-aware systems. However, it is

important to note that there remains an apparent tension between two views of context. On the one hand,

Dey and Abowd and Schilit view context as a flow of static elements which, when referred to in the past,

maintain the same definition. Chalmers [14] has an alternative view that when contextual information is

recorded and logged, the overall contextual interpretation changes with time because an essential and

important part of the significance of current events is their relationship to past events. In this view,

context is dynamic and historical rather than static in meaning.

Later work in this thesis, Section 2.2, utilises this second view of contextual information. By comparing

currently sensed context with the history of the system’s context information, this dynamic view is can be

made manifest in a system implementation. The George Square system, produced as part of the work for

this thesis, makes good use of the four context types identified by Dey and Abowd (location, identity,

Chapter 2: Context awareness

 23

activity and time), whilst leveraging Chalmers’s dynamic and historical view of context. In the George

Square co-visiting system, historical context comparisons are used to automatically recommend relevant

media content to tourists in a way that adapts to their movements.

An important but unexplored aspect of an application’s context is the other software running or available

at the time. If a system is to make the correct decisions and adaptations for its current environment then it

must monitor not only the external environment but also itself; it must be aware of its current state and its

history of use. By logging what software is being used with what other software and when, a good

foundation is created for building systems to recommend new and potentially useful software to other

users previously unaware of its existence.

Although the benefits of context-awareness have been written about and highly researched, there are few

systems that are context aware and flexible at a deep structural level. There is a consensus in the literature

that context-awareness is a significant aspect of mobile and ubiquitous computing systems, and has the

potential to be a valuable source of information for suggesting adaptations in software. It was shown that

context information from both the running system and the environment it is operating in may be useful.

Most importantly for this thesis, an adaptive system based on context-awareness must monitor the

external environment and also its internal structure. The Domino system introduced in Chapter 5 is one of

the first examples of such a system.

2.2 George Square

The George Square system, named after the location it was trialled in, was a system that allowed city

visitors to share their experiences with other visitors across the Internet. George Square is an example of

‘collaborative ubicomp’—a system that supports users working together at a distance, sharing their

interactions and information as one or more of them moves and changes context. Using a flexible peer-to-

peer architecture, it supports the sharing of voice, photos, location and history between visitors. Through

the use of a modular structure, the system allows for the dynamic and flexible reorganisation of system

components. The project investigated the design of collaborative ubicomp systems that are flexible

enough to work in unpredictable outdoor environments, yet rich enough to support successful and

enjoyable collaboration.

Collaborative ubicomp systems have the potential to support valuable shared experiences between users,

however this requires more complex infrastructures than are traditionally found in ubicomp systems.

Distributed systems involving wirelessly connected devices and sensors present a range of technical and

usability problems, which have been investigated in early mobile computing. However, less attention has

been devoted to distributions of people and rich interaction between them through the medium of a

ubicomp system.

Chapter 2: Context awareness

 24

George Square provides collaborative resources to users to support their interaction during their tourist

visit. Distant visitors, each using a tablet or desktop PC, are connected together. Mobile users are

assumed to use tablet PCs. Each mobile user’s location is tracked using GPS and displayed on a shared

map, whilst each non-mobile user can move an avatar around the map by clicking. Users can share

photographs taken with attached web cameras, and can also talk to each other using a headset. Each user

has access to a web browser to look up web pages of information during the visit. Each user’s activity is

recorded and compared to logs of past users. This drives a subsystem that recommends places to visit,

web pages and photos.

George Square has a sophisticated modular peer-to-peer architecture that uses a distributed tuple space to

supported dynamic reconfiguration as it runs. Multiple processes share sensor data, user activities and

historical data in a location–transparent way through a distributed tuple-space, allowing the system to be

reconfigured to new contexts dynamically. This architecture is suited to collaborative ubicomp using

multiple mobile devices, as well as supporting more advanced information models that traditionally used

in ubicomp, although it did have some limitations as described below.

Primarily, Matthew Chalmers, Barry Brown, Ian MacColl and Marek Bell designed George Square at

Glasgow University. Ian MacColl and Marek Bell implemented the majority of the code for the system

and I was involved at a later stage in preparing the system for trial. That required the implementation of a

better map and improvements to various other parts of the user interface.

2.2.1 Motivation: supporting collaborative ubicomp

Collaboration is an implicit part of most ubicomp systems, in that multiple users often co-ordinate their

activity around a system even if that system is designed for a single user’s explicit interaction. Face-to-

face collaboration has been an important topic since the early days of ubicomp, for example in the

DigitalDesk research where users shared a single display surface and discussed and arranged documents

[15]. However there are also opportunities for exploring how ubicomp could better support collaboration

between users at a distance, and how technologies could support collaboration involving contexts that

span objects distant and near. Location awareness is one part of this, but more broadly the general context

of users can be shared.

George Square was designed to overcome limitations of its predecessor—the Lighthouse shared museum-

visiting system [16]. That system had similarities in its motivation for supporting collaboration. The

Lighthouse allowed multiple users, each in a different location, to share a museum visit weaving together

online information with a physical museum experience. A visitor in the museum held a PDA whilst

tracked by an ultrasonic positioning system, and collaborated with online visitors who were navigating a

web-based or VR-based version of the same museum. The system supported collaboration around both

physical exhibits and digital information in the form of web pages, images and videos. The experience

was synchronous in that users were paired up and carried out their visit at the same time.

Chapter 2: Context awareness

 25

The user trials of the Lighthouse explored how visitors could weave together digital information with the

more traditional exhibits available in the museum. Users talked and interacted amongst exhibits in the

museum that had both a physical presence in the museum and an online presence in the system in such a

smooth way that led to the concept of ‘hybrid objects’. This synergy in the interaction was a key finding,

and highlighted the successful collaboration around both places and digital information.

While successful in its aim of creating a shared visit among visitors using different resources in different

places, the Lighthouse system’s design lacked flexibility. The system supported only voice

communication and location sharing between users; there was little sharing of contextual information

beyond that. The system was fixed to one exhibition room, and was reliant on fixed infrastructure, for

example the ultrasonic positioning system, and thus lacked scalability.

Another significant problem with the Lighthouse was that it required a considerable and extensive amount

of content to be authored about the location it was to run at. The visitors were unable to produce their

own content, instead consuming only existing static pre-authored content. Straightforward rules triggered

actions based on current activity, such as displaying a web page when a user came near an exhibit.

However, collaborative ubicomp systems can be more powerful if they also make use of past journeys,

experiences and activities. This requires complex context logging of patterns of use and information

models. For example, systems might build up and share histories of activity data, and relate ongoing

activity to that history. Thus dynamic content generation can be driven by usage within the community of

users. This is a more adaptive model of information presentation, generating and collecting based on

previous and current activity, supporting uniquely tailored experiences, and is exactly what George

Square was designed to explore.

2.2.2 System overview

George Square allows tourists to share their visiting experience with other people near by or remote. The

tourist is given a mobile hardware based setup consisting of a WiFi Tablet PC that has a stylus for touch

screen input and has a USB ‘stalk’ web cam and a Compact Flash GPS attached (

Figure 1). He or she also wears headphones that are connected to the Tablet PC that has a microphone

built in. Remote users’ hardware requirements are reduced since there is not any mobility requirement for

them, so they could use the same tablet system but could alternatively be at a typical home desktop PC,

with mouse and keyboard, webcam and headset.

Chapter 2: Context awareness

 26

Figure 1: George Square tourist with the tablet PC and headset.

The system provides several features involving location, information, communication and media to assist

the user through the city. These features are designed to enrich the visit and enable the visitor to closely

share his or her experience with others travelling with them or with remote users.

The George Square user interface (Figure 2) looks the same for both the visitor mobile in the square and

remote ’online visitors’. It displays a large map with icons representing locations of interest, web pages,

and photographs. GPS is used to show an icon representing the mobile visitor’s physical location in the

square and provides navigation support. It is also possible for users to override GPS and move their icons

by tapping the map. Mobile visitors might do this when GPS is showing the wrong location, which

frequently happens when buildings obscure the sky. Remote users have location markers too, and they

simulate movement also by clicking the map. Maps are automatically downloaded over the Internet from

a map server, allowing the system to be run anywhere with map data available.

Chapter 2: Context awareness

 27

Figure 2: The George Square user interface showing user's location (1), photographs (2),

locations (3), photograph links (4) and recommendation lists (5).

The “Take Photo” button allows visitors to take photographs using the attached USB camera, and the

photographs are automatically geo-referenced using the GPS. A thumbnail of the photo appears in the

corresponding location on the map. Clicking on the thumbnail on the map opens the full-size image.

Photographs are shared with co-visitors, so that those in remote locations are able to view and discuss the

images as they appear. The ‘filmstrip’ in the top right of the interface shows the last three images taken

by and all visitors, which conveniently let visitors, see the images taken by others. It animates left to right

as new photos appear, and clicking the images opens the full-size image.

Another major part of the system is recommendations. George Square contains a variety of information:

locations which might be worth visiting, web pages that may be relevant to items nearby, and

photographs for pictures taken by previous visitors. A content filtering algorithm, Recer [17], is used to

filter the information so only the most relevant to the user’s current context is displayed in the form of

recommendations. The recommendations are for web pages, photos and locations, and appear as icons on

the map (Figure 3) and in a list at the bottom of the interface. Clicking a recommendation will,

respectively, open the relevant web page or photograph, or highlight the location on the map. One type of

contextual information used by Recer is location. The location of the user’s icon, generated either by

clicking the map or from GPS, allows Recer to recommend nearby points of interest, and thus as he or she

walks around icons will appear on the map close to where he or she is. In addition to one’s own

Chapter 2: Context awareness

 28

recommendations, one sees the recommendations currently being shown to other visitors as ghosted icons

on the map and in the list. In George Square’s predecessor, Lighthouse, it was found that by displaying

what others see supports a smoother discussion and understanding between concurrent users of such

systems. For example, in George Square, it is typical for one user to suggest something like, “let’s try my

third recommendation” and by glancing at the other’s list, one can easily follow what is being referred to.

Figure 3: The George Square map showing recommended places, photos and webpages. One’s

own recommendations are shown in full colour while one’s co-visitor’s are shown ‘ghosted’.

Logging plays an important role in George Square because the recommendations mentioned above are

not pre-authored: they are generated from the logs of previous users’ activities. The path the visitor walks,

the webpages viewed and photographs taken are all logged by the system. Recommendations for a user

currently visiting are generated from the histories that all the previous users of the system built up during

their visits to the area. This dynamic generation of content allows the recommendations to remain

relevant, and adapt as the city or events in the city change.

Visitors can talk to each other in real time using their headset. We used a VOIP application that utilises

the WiFi connection. VOIP has a relatively low bandwidth requirement (<15K/s) and so even though the

lowest WiFi spec of 802.11b was used, call quality was excellent even at maximum range.

Chapter 2: Context awareness

 29

Figure 4: George Square blog interface.

The database logs generated from earlier visiting are used to generate a post-visit ‘travel weblog’ — a

web page displaying a summary of each visit (Figure 4). The pages are available on the Internet to the

visitor at any time. The pages display a temporally–ordered list of all the photos, web pages and places

that he/she visited, and offer a similar map to the one used during the visit. The path he/she walked is

summarised by a spatial representation: a red line.

2.2.3 Recer

Recommendations for web pages, photos and locations were generated in George Square using Recer

[18]. Recer is a simple yet powerful collaborative filtering algorithm designed to be very flexible in the

type of data it uses. It works by monitoring and logging the user’s actions and almost any kind of event

can be recorded. Some possibilities include, for example, accessing a file, visiting a URL for a web page

in a web browser, sending an instant message, or the title of the application brought to the front of a GUI.

Each action is logged as a plain text entry in a database, a user id, and a timestamp for when it occurred,

Chapter 2: Context awareness

 30

and the table is indexed by time. Later versions of Recer added another plain text entry for the type of

action, for efficiency. Over time, the entries create a chronological representation of the user’s activity,

which may be thought of as one unique history among the unlimited number of possible variations among

users’ logs. The recommendation algorithm works by comparing groups of recent entries in one’s log,

with all past windows of time within the database of logs.

Recommendations for a user can be based on history from that single user, however in this situation, no

novel recommendations will be generated. The real power of the recommendation algorithm is when the

histories of all users are combined, and the recent entries of a single user are compared to the histories of

all others. In this situation, interesting and novel recommendations can be made to the user, and the steps

taken to achieve this are explained next.

Figure 5: The Recer algorithm is used to identify context from the items logged in the user's

history (shown here as a dotted line), such as URLs and locations. The user's context is modelled

and extracted as a set of the most recent items.

Firstly, the recommendation algorithm requires the extraction of the most recent subset of entries from the

user’s own history. Recently logged entries are assumed to be those relevant to the user’s current activity;

this forms the user’s context (Figure 5). Next, each individual item in the context is taken, and in turn, the

combined histories of all users are searched for instances of the individual item. Many matches may be

found but, for each matching item, the time of its logging is examined and two further timestamps are

calculated representing a short time in the future and the past of when the item was logged; this forms a

selection window. The items found within each such window are extracted and grouped with the results

from other windows, then ranked in order of number of occurrences (Figure 6). The items ranked highest

are the final recommendations.

Matching in this context-specific way distinguishes the collaborative filtering algorithm from most others,

which tend to match people on the basis of all the data logged for each user rather than attempting to

concentrate on specific windows of history data that are most likely to relevant.

Chapter 2: Context awareness

 31

Figure 6: The Recer algorithm generates recommendations by selecting items from a user’s (user

A) context are identifying them in another’s (user B) history log. Items adjacent in time to these

are then extracted, tallied and ranked as recommendations for user A.

Versions of the Recer algorithm were implemented by Matthew Chalmers in Java, Aran Lunzer in Visual

Basic, and by Marek Bell in C# and PHP (to allow it to be used on websites). The Java and PHP versions

run only on desktop (or laptop) machines running Windows, Linux or OS X. However, the C# version is

implemented in the .NET Compact Framework and can run on both mobile devices with Windows

Mobile and desktop Windows machines. When running on desktop machines, Recer can use Oracle,

Microsoft SQL Server, Postgres or mySQL as its database back end, and on mobiles it was designed for

Microsoft SQL Server CE. However in testing, this mobile version did not perform adequately and the

bottleneck was found to be in the database and communication between it and the application, rather than

solely because of the constrained resources on the device.

To overcome this, the author created an optimised implementation of Recer for a mobile device using the

SQLite database that overcame the deficiencies and performed well, and was used in the projects

described later in this thesis. The length of the context, size of the windows and number of

recommendations returned can be set using the API in order to adjust the algorithm for a range of

circumstances. However, the default API values of five minutes for context and two-minute windows

(one minute on either side of a located item) generally provide good results, and these values have been

used in the user trials of all the systems implemented so far.

In Recer, like all collaborative filtering algorithms, the quality of the recommendations depends on the

quality of information logged from other users. Recer depends on the history information from other

users, and in order to improve relevance and reduce randomness, a method of spreading this information

in an epidemic manner within a peer-to-peer community with no reliance on central servers. Peer-to-peer

Recer is described in Section 4.3.1 and a system utilising it to recommend places for tourists to go,

Samara, is described in Section 4.3.2.

Chapter 2: Context awareness

 32

2.2.4 Modular design using Equip

The implementation challenges for George Square were typical of collaborative mobile systems, in that

the system needed a dynamically changing set of devices to work together as peers, without continuous

reliance on a central server, while supporting users and devices joining or leaving at any time.

George Square used a modified version of the Equip distributed tuple space to support the storage and

sharing of data within the mobile environment it ran in [19]. Equip features a peer-to-peer communication

model between networks of sensors and devices via stores (or ‘dataspaces’) of records (or ‘tuples’). Equip

allows applications to subscribe to a dataspace and be notified of specified events, similar to the popular

Elvin system [20]. Applications place events into a dataspace, which Equip uses to trigger methods in

other applications that have subscribed as listeners to those events. Thus, if one peer has subscribed to

receive another’s GPS events, it will be continually notified as the other peer generates and stores GPS

data as its user moves around. Equip is essentially a transport mechanism, which supports transferring

data between both system components and remote devices.

Previous Equip-based systems, for example the Lighthouse system described earlier in Section 2.2.1, used

a single dataspace running on a single server. However, dataspaces can potentially be distributed across

different machines, with events triggered between devices across networks. Utilising a peer-to-peer

architecture, each individual Equip space can be used on any device without reliance on a central server.

The event–based architecture allows devices and users to leave or join an existing network of users at any

time, with dynamic and automatic reconfiguration. Special processes called PeerProbes selectively listen

for events and data in other dataspaces connected over the network. When events are discovered they are

copied into the local Equip dataspace and this effectively produces a distributed tuple space peer-to-peer

system.

During the implementation of George Square, three different classes of component for processing and

displaying events were created: probes, gizmos and services. Communication between them was

moderated through Equip. A probe is like an input sensor, for example the GPS or camera. A gizmo is

able to register an interest in probe events and extract the information, for example output it to the screen.

Hence, a ‘photo gizmo’ can extract photographs that a ‘camera probe’ had put into the dataspace, and

display them on the user interface, for example on George Square’s map.

Since all network communication takes place through Equip, including the discovery of peers, the

architecture is modular and services can run in a peer–to–peer configuration on any device or set of

devices. However, in some cases it may only be suitable to run a certain service on one particular device.

For example, a computationally expensive service requiring more resources only a powerful device can

offer, such as an extremely large database store. In George Square, the database service that logs history

events to a database and ran the Recer algorithm generating recommendations ran on a single machine.

Since services operate through the distributed dataspace, machines can change service roles while the

system is running, allowing for dynamic reconfiguration of any setup at runtime.

Chapter 2: Context awareness

 33

Figure 7: Diagram of George Square’s Equip-based infrastructure.

As shown in Figure 7, in George Square a set of probes on each user’s machine collected sensor data,

such as GPS and photographs from the camera, and placed these items into the local dataspace. The

PeerProbes would copy these events across the network to other machines. The gizmos running on each

machine were then triggered by this information and would display this information to the local user, for

example, GPS co-ordinates of his or her own location and other users’ positions displayed on a map.

Lastly, the system used three services that carried out further processing on system events. The

FocusAdapter service took GPS events and matched GPS co-ordinates to FocusPoints: discretely named

polygonal extents on the map. The FocusAdapter thus mapped from continuous coordinates to discrete

logical locations (sometimes termed ‘semantic locations’), and then injected FocusEvents back into Equip

where they triggered a second service, RecerService. RecerService listened for FocusEvents, which were

Chapter 2: Context awareness

 34

then added to users recent history, and used to generate recommendations from the database of all past

histories.

In George Square, Recer was used to deliver photograph, location and web recommendations to tourists

visiting the Square. As explained above, the Recer collaborative filtering algorithm works by matching a

user’s recent activity with similar past periods of activity, and then draws recommendations from these

periods. In George Square, a RecerService was responsible for recommending to each visitor a number of

web pages, places and photographs, drawn from a database of past visits. Another service, RecerDB,

running on each client device was responsible for logging user activity as they explored the area, logging

the photographs, locations and web pages each visitor investigated. RecerDB then sent this information to

the RecerService, which stored it in its database as required. To preserve the serverless architecture, all

Recer services can in actuality run on each local machine, with the database duplicated on each device.

Thus, if users moved away from the network and other devices, recommendations could still be delivered

to them using the pre-cached information on their device. Recer was previously discussed in Section 2.2.3

where an improved, decentralised version of the recommendation algorithm is used in Samara.

2.2.5 Flexible content generation

The Lighthouse and GUIDE systems both depended on static, pre-authored content. The Lighthouse

museum co-visiting system, mentioned earlier (Section 2.2.1), relied on a large amount of digital content

to be entered into the system, to be viewed on a PDA by the user in the museum, and in the web browser

of the remote visitor. Textual information had to be searched for, video clips had to be recorded, and

photographs taken. The production and entry of this information was found to be one of the most time-

consuming parts of building the system. Also, the static nature of the system’s content limited its

mobility. Mobile systems can, by definition, roam to any location, and it is impractical to produce content

for every possible location. Static content systems require an initial committed effort from developers and

may require continued maintenance whilst the system is deployed.

Avoidance of reliance on location-specific, pre-authored content can be achieved through the selection of

self-generating content type architectures, and George Square utilised this extremely flexible approach.

In a self-generating content system information is entirely generated by the client applications

themselves. This information may then be shared to the community, either after being uploaded to a

server that peers then read from, or spread directly through the community utilising peer-to-peer, ad hoc

connections. For George Square, recommendations are generated from logs of the system itself simply

being used and, as the community of users increases, the amount of logged data, and therefore quality of

the recommendations, grows. A key feature of a self-generating content system is that it is not necessary

for any data to be entered before the system is first run, as it will build the data up as the system is used.

Self-generating content systems are probably the most appropriate for use in peer-to-peer mobile systems

Chapter 2: Context awareness

 35

as they can be configured to require absolutely no support, and connections to, any devices or servers

outside the community.

A side effect of utilising user-generated content is the lack of recommended content for the initial use of

the system. To overcome this ‘boot-strapping’ problem in George Square, the first use of the system was

made by professionals from the near by tourist information office. They used the system as normal and

not in a special content authoring mode, the only thing lacking was recommendations. Thus, the George

Square system allows both user-generated content and official content to be automatically gathered

without requiring input from a designer or specific content author.

Another issue is that the amount of user created content can be unmanageable, and when spread peer-to-

peer it is outside local control. This might not be desirable in certain circumstances such as critical

applications. An advantage of the recommendation system is it can alleviate this issue, as lower quality

content should be viewed less and resulting in lower rankings.

Self-generating systems relieve the entire weight of authoring content from the developer. They can also

provide substantial value to the end-user community as self-generated data can be continually updated at

no further cost thus providing a system that always stays relevant.

2.3 Conclusion

This chapter has investigated existing context awareness research relevant to the work in this thesis. In

particular, it is clear that context awareness is of critical importance to the type of mobile systems

proposed throughout this thesis.

It is apparent that making a system aware of its context—the external environment around it, such as

peers and other devices; as well as any internal context such as files or software configuration on the

device itself—may greatly increase its functionality, usability and appropriate behaviour. Systems such as

Jabberwocky—with its ability to highlight ‘familiar stranger’ relationships—and George Square would

simply not be possible if they were not able to continually sense, interpret and make use of contextual

information.

The George Square system proved an excellent test bed to examine how an advanced context aware

system may operate. The findings from the George Square system are concrete demonstrations of an

answer to RQ1. George Square demonstrated how the past could be used as a resource to generate

relevant information from recommendations, based on comparing the current user’s context to the

histories of past activity and context generated by previous users. Furthermore, by sensing an adequate

amount of context, George Square is able to appropriately filter the data that is delivered to the user,

avoiding information overload. George Square also made use of contextual information to connect or

Chapter 2: Context awareness

 36

associate complex or heterogeneous types of data; in this case, matching online content to the contextual

information on specific places in the city.

Adaptation was also explored in George Square, both in terms of the content authored in the course of

system use—or, more precisely, associations created in the course of system use among items of mostly

pre–existing publicly available content—and a reconfigurable modular architecture. However, the

architecture of the George Square software infrastructure was limited by its reliance on central servers.

From its trials, several key design features for mobile, context aware, adaptive systems may be

highlighted. Firstly, it is clear that authoring content to drive a large mobile system can be costly. For

example, the Lighthouse system relied on a wealth of content that had to be selected and edited by

museum experts, and meticulously input into databases and files in the system. Whilst the Lighthouse

system was available in only one museum room, George Square can be run anywhere, and thus the

information it may deliver is far greater. Despite this, George Square requires virtually no cost in order to

deliver its content. By utilising adaptive dynamic content George Square supports the gathering of

information by users’ own use of the system. Through sensing a user’s actions and their context, George

Square is able to autonomously generate content that it can later deliver to others. Thus, one key design

feature that should be adhered to when creating mobile, context-aware adaptive systems may be:

• Avoid reliance on content (and associations among it) pre-authored by system designers by

using content and associations that adapt dynamically with use.

Secondly, George Square highlights the importance of the peer-to-peer community mobile systems can

operate within. If George Square devices and users were isolated from one another the system would

quickly stagnate; it would be unable to generate recommendations for anything other than that for items

that the current user had already viewed, or actions that they have already conducted. It is only by sharing

information between a community of users that many mobile systems can gain a critical mass of data to

make them useful and interesting. As this collection and sharing of information is so vital, it is apt to

make use of not only information that is currently available (such as the current peers in range), but also

to record and store past information, and to deliver it to others for consumption. This was indeed the case

in George Square, were historical logs of data formed a critical part of each devices core. The realisation

of the importance of collecting and sharing data leads to another vital design feature of such systems:

• Information should be shared among and stored by multiple peers, to offer efficiency and

robustness.

Finally, as stated George Square suffered several disadvantages due to relying on a centralised

architecture. As users moved around during their normal use of the system the 802.11 connections relied

upon to make the connection to the central server would often break or suffer from interference. When

this occurred the system would be unable to continue generate novel recommendations or receive updates

about other users locations and photographs until the connection to the server was available once more.

Chapter 2: Context awareness

 37

This greatly limited the mobility of users who, after realising the disadvantages of being disconnected,

were hesitant to leave the relatively small area in which they knew they were likely to achieve a reliable

connection. Thus, a final design recommendation can be made:

• Centralised peer-to-peer architectures should be avoided whenever possible, primarily for

reasons of efficiency and robustness.

As will be discussed in Chapter 4, decentralisation can be achieved by employing a greater use of peer-to-

peer and MANET techniques. Furthermore, negative affects experienced due to limits in 802.11

connections and other necessary mobile infrastructure can be alleviated through the appropriate

application of seamful design. This is discussed in detail in the following chapter.

Chapter 3: Seamful Design

 38

Chapter 3 Seamful Design

This chapter describes a new area of research in ubicomp called Seamful Design. Its origins are in the

work of Mark Weiser, a key figure in the creation of the idea of ubiquitous computing. The Equator group

at the University of Glasgow has explored this new research area during the time of this PhD. This

chapter presents the background work involving Seamful Design, and two systems designed to

demonstrate the design technique. The chapter demonstrates how applying the concept of Seamful Design

to an adaptive system can have very positive benefits.

3.1 Background

As envisioned by Mark Weiser, a design goal of ubicomp is invisibility [21]:

A good tool is an invisible tool. By invisible, I mean that the tool does not intrude on your

consciousness; you focus on the task, not the tool.

Tools in ubicomp can be multiple heterogeneous devices varying in sensing and output techniques.

Weiser believed focus should be on the overall result of interaction, rather than the individual tools used

to achieve it.

The need for tool invisibility does not necessarily translate into seamless integration between tools, which

Weiser saw as a misguided concept. For example Mainwaring et al. state:

Chapter 3: Seamful Design

 39

Ubiquitous computing (ubicomp) is a vision of infrastructure. Indeed, it is a vision of

multiple infrastructures – some new, some existing; some virtual, some physical; some

technical, some social – all coming together in a seamless way.

Weiser suggested a drawback of making things seamless is sacrificing their individual character and

direction, in order to promote smooth compatibility. This loss of richness in the integrated tools led him

to an alternate view, a seamful approach with “beautiful seams”. Inspired by this, seams are defined by

Chalmers [22] as:

a break, gap or ‘loss in translation’ in a number of tools or media, designed for use

together as a uniformly and unproblematically experienced whole. Seams often appear

when we use different digital systems together, or use a digital system along with the other

older media that make up our everyday environment.

Seamfully integrated tools would retain their individual characteristics. We would let the tools be

‘themselves’, making their features apparent in our overall interaction with them. Weiser continued:

The unit of design should be social people, in their environment, plus your device

This is embraced by current ubicomp systems, in that devices sense and model the context of people and

objects in the environment. Taking into account the physical characteristics of devices that build up the

system led Chalmers to suggest a novel realisation [23]:

Letting a ubicomp system be itself means accepting all its physical and computational

characteristics—that may either be weaknesses or strengths. A user’s activity is influenced

by what they perceive and understand of sensors, transducers and other I/O devices, and

the system’s internal models and infrastructure.

Taking mobile phones as an example, signal strength to the cell tower is an inherent property of the

infrastructure that makes up the overall system, and is sensed and shown on the phone’s user interface. Its

display has many uses, for example to know when and where calls or data connections are possible,

perhaps mediating frustration, but if interruptions do occur it provides a mechanism for comprehending

why—which may provide some alleviation of frustration, as noted by Chalmers et al. [23]:

This is an elegant ambient or peripheral presentation of potentially useful information that

is characteristic of the phone as a physical sensor and the phone network as a cell

structure.

Chapter 3: Seamful Design

 40

Digital systems all have limitations, for example GPS depends on a clear view of the sky and works best

in countries closer to the equator where satellite coverage is optimal. Digital cameras are limited by

resolution and the light sensitivity of their imaging sensor. This is particularly relevant in the mobile

environment, as mobile devices frequently utilise many sensors, and often rely on wireless

communications, either in peer-to-peer or infrastructure mode connectivity. This leads to a vulnerability

particular to mobile systems, and can increase chance of failures and the breakdown of the ideal of

seamlessness. Users may become frustrated or confused if a suitable level of information about the

underlying technology is not exposed.

These physical limits of technology usually lead to defensive design tactics:

As designers, we can be defensive or negative about such seams in devices and

infrastructure, and try to design them out.

Chalmers explains this approach is not always practical, affordable or possible — systems are always

limited in certain aspects by the fact the resources available to build them are finite. The reality is that

seamless perfection is rarely if ever attained in practice.

A complementary outlook on the characteristics of digital tools and media involves embracing their limits

and variations, and taking a pragmatic or even positive view rather than succumbing to their negative

limitations.

Figure 8: A ‘runner’ playing Can You

See Me Now holding a PDA.

Figure 9: The online players view of the Can

You See Me Now game – the virtual

representation of Figure 8.

An example of how a ubicomp infrastructure limitation can be used positively by users was observed

during trials of the location-aware multi-player game Can You See Me Now [24]. The game consists of

two types of player: runners (Figure 8), who are physically present on the streets of a city and carry PDAs

Chapter 3: Seamful Design

 41

with GPS, and online players using a web interface to control an avatar in a virtual model of the city

(Figure 9). The game is similar to tag: the runners must chase and capture the online players by moving

their slow-moving avatars around the map. The runners’ real GPS locations are used to project avatars

into the virtual model being viewed by the web players.

A limitation in this game was the accuracy of the GPS. Whilst variation in GPS accuracy is often thought

to a problem, the runners in Can You See Me Now found ways to accommodate or even take advantage of

it [24]:

Over the course of the two days play the runners became increasingly aware of the effects

of GPS inaccuracy and also where on the city streets it was most likely to be experienced.

By the second day’s play, they had begun to exploit this knowledge as part of their tactics…

At the end of the first day’s play, the runners had learned the areas where GPS worked well. That

evening, they developed a strategy: to wait for online players to enter them, or even to trick them into

entering them. Runners could hide nearby, in areas of little or no GPS accuracy, and then move quickly

out to catch players. This led to more successful catches in the areas where GPS worked well. It is an

interesting aspect of mobile systems that often users employ unexpected methods when using them, and

this case is no exception. Whilst knowledge of the GPS infrastructure and its failings was advantageous to

the runners in Can You See Me Now, lack of this knowledge set online players at a significant

disadvantage – as is evident from the drop in success rates from the first day to the second. Flintham et al.

pose an interesting question [24]:

As we have seen, this ended up placing online players at a disadvantage as runners in the

street exploited this difference. This raises the question as to whether the technology should

have made them more aware of the characteristics of GPS?

If the online players had knowledge of GPS inaccuracies, it is likely they would have been able to better

predict how the runners’ avatars might move, as well as identifying likely areas on the map which had

almost no GPS coverage and so were possible ‘hiding spots’ for runners.

Chapter 3: Seamful Design

 42

Figure 10: Visualisation of GPS shadows conveying availability [24].

It has been found that GPS coverage can change throughout the day, due to the shadows cast by buildings

moving due to satellite movements (Figure 10) and the authors of the game experimented with how this

information could be visualised and exploited:

The purpose of these visualizations is to help deal with uncertainty by revealing the gaps

and breaks – or the ‘seams’ – in game play and to make them available as resources that

the runners and players might exploit to make sense of the technical circumstances

effecting interaction.

The concept of deliberately revealing information about physical and software infrastructure is a powerful

one, particularly in the mobile environment, that can be exploited to allow users to overcome or take

advantage of problems or failings when they occur. Similar benefits, realised by Gaver et al., were found

when approaching ambiguity from a similar angle [25]:

Ambiguity can be frustrating, to be sure. But it can also be intriguing, mysterious, and

delightful. By impelling people to interpret situations for themselves, it encourages them to

start grappling conceptually with systems and their contexts, and thus to establish deeper

and more personal relations with the meanings offered by those systems.

Although Gaver et al. are concerned with ambiguity, they make an important point related to seamful

design—that systems can be designed to actively encourage users to better understand the concepts and

infrastructure behind them and thus, in turn, to better understand how they come together to provide a

working system. Flintham et al. and Gaver et al. theorise that users can be trusted to understand and

appropriate information about infrastructure to allow them to overcome breakdowns in novel or known

ways.

Chapter 3: Seamful Design

 43

In summary, seamful design is about exploiting characteristics that are apparent in use and interaction,

and which contribute to users’ practical understanding and use of a system as they experience it in their

everyday lives. Users and designers can understand the system better and therefore find ways to use it that

fit with or exploit how it really works.

3.2 Seamful games

To reiterate, Seamful Design is concerned with exploiting characteristics of the underlying software and

hardware infrastructure that are not made readily apparent by the designer to the user in traditional

systems. This can permit users greater practical understanding of the system and enrich their interaction

with a system as they experience it in their everyday lives. By employing seamful design, designers can

recognise seams in software and hardware, and expose them where appropriate to help users better

understand a system’s behaviour and thus better integrate a system into their lives and everyday

behaviour.

At Glasgow, we have developed systems and infrastructure to explore this concept, initially concentrating

on 802.11 networks and the seams inherent in wireless technologies. For our first explorations, a multiple

access point WiFi network was set up around the university campus, and a specialised WiFi driver that

exposed more information and more control in Windows mobile devices than available by default was

developed along with GPS and mapping software. Taken together, these tools formed a Seamful Design

test-bed on which multiple systems could be implemented and tested.

This section describes two games, developed at Glasgow, that exploit Seamful Design concepts and

ideology. The first, Treasure, reveals the underlying WiFi infrastructure to the players through an

enjoyable short game in a fixed geographic area. The second, Feeding Yoshi, differs in several ways. It is

designed to fit into users’ everyday lives and be played at many different times and for periods of play.

Thus, it is played over a long time—weeks or months—and can be played anywhere. Thus Feeding Yoshi

additionally supported an exploration of how to tackle issues such as varying location and time

constraints in people’s daily lives, and an investigation of how this impacts on the feel of play.

3.2.1 Treasure

Marek Bell, Matthew Chalmers and I designed the idea and game concept behind Treasure. Marek Bell

and I did the overwhelming majority of the implementation, although several undergraduate students did

contribute small pieces of code to the game client as part of a summer research project. In contrast to the

use of seams by users in Can You See Me Now, inadvertently made available by CYSMN’s system

designers, Treasure involved the deliberate use of seams by system designers. We designed the system so

as to help make seams into a resource for users.

Chapter 3: Seamful Design

 44

Treasure was primarily designed to explore seams in WiFi infrastructure, although GPS was also

explored. WiFi seams may include, for example, patchy distribution of access points over a geographic

area and highly variable signal strength even when inside WiFi network coverage. The aim of Treasure

was to expose these limitations of the technology as a feature of the game, to examine if players could

understand them and learn to take advantage of them as part of the fun of the game. In this section the

game will be described, then the technology used and details of the implementation will be discussed.

Finally, a report on the user trial is delivered.

The aim of the game is to collect coins scattered over an urban area and then get them in to the treasure

chest (technically, a server) in order to score points. This concept of having apparently physically located

objects viewable on digital devices is common to mobile games, and appears in games such as Six in the

City [26], Benford et al.’s Unearthing Virtual History system [27], PacManhattan
3
 and Newt Games’

Mogi Mogi
4. Indeed, it is an example of mixed reality, which is common in many ubicomp systems, and

is often referred to as ‘augmented reality’. A similar concept is a hobby called Geocaching
5, an outdoor

treasure-hunting game in which the participants use GPS or other navigational techniques to hide and

seek containers (called ‘geocaches’ or ‘caches’) anywhere in the world.

Figure 11: The Treasure user interface displaying a map, coins, mines, the player’s location and a

semi-transparent WiFi signal strength layer.

3 http://www.pacmanhattan.com
4 http://www.mogimogi.com
5 http://www.geocaching.com

Chapter 3: Seamful Design

 45

In Treasure, two teams of players compete against each other outdoors. Although Treasure can support

any number of players in each team, the trials typically used two players in each team. The game is

played for a set period of time (20 minutes in the trials), and a clock counts down on the client display to

let users know how long they have remaining. The team with the most coins in their treasure chest at the

end wins the game. The players carry a PDA that displays a map showing the location of the coins and

players (Figure 11). The server randomly creates new coins at random locations within the geographic

game area and these coins periodically appear on the map. Players must then physically move to the

location of these coins to collect them. When a coin is nearby, i.e. within the five-metre circle

surrounding the player’s avatar, the Pickup button allows the coin to be collected. Coins are dropped

periodically in all parts of the arena and a player can pick up coins at any time, as long as he or she is

within sufficient range of them.

During the game, a player’s location is retrieved using a GPS device attached to the PDA, and the

coordinates derived from this are used to display their avatar on the map. The game map seen in the user

interface has been geo-referenced so players’ locations appear as close to their true physical locations as

possible. Limitations in the accuracy of GPS often mean the location of the avatar is not exact. However,

when the sky is clear and the GPS unit has a good fix, it is often accurate to within a few metres, and the

avatar on the user’s display allows for the clear and smooth interpretation of walking or running

according to the user’s movements.

Wireless network connectivity is a major feature of the game play in Treasure. Players’ devices can only

receive coin updates when they are connected to the wireless network and have a good signal, as this

allows the server’s broadcast packets including the coin updates and player positions to be received.

Thus, users are only notified of new coins, and see the map updated with coins and player positions, when

they have a reliable connection to the server in this manner. After coins are picked up they need to be

carried back to a location in which there is wireless coverage. At this point the user can click the upload

button to send their coins to their treasure chest and gain points. For this to happen reliably the users must

again have a strong WiFi connection so that the upload packets reach the WiFi node, and subsequently

the server. If the WiFi signal is not available, or is weak, there is a high change the upload packets may be

dropped, for example, not reaching the server and being lost instead. Thus, users quickly become acutely

aware that they must have a good WiFi signal to reliably upload coins, as a failed upload due to weak

signal strength can result in a loss of many coins, and hence points. Also, they need to be aware when

player locations are being updated live, to watch out for pickpockets. Thus, to play the game successfully,

players must learn the advantages of being both in network coverage and being outside network coverage,

and manage their time appropriately in each. By taking part in the game players come to learn the

wireless network layout in the area, its characteristics, and discover how it can be both advantageous and

problematic.

As the game is played, players’ PDAs display a map of coins and the positions of other players, and this

becomes overlaid with a semi-transparent coloured grid representing the signal strength coverage in the

Chapter 3: Seamful Design

 46

area as the users move around and sample it. This sampling is done automatically and continuously, so

the overlay showing signal strength is created without the user having to perform any particular task,

other than moving through the game area. When players leave the network area to collect coins, they lose

connectivity to the server and updates on the progress of the game. When they return to the network, their

PDAs start receiving updates again.

As stated, the chances of a successful coin upload increase with the strength of the wireless network at

that location. The current signal strength of the wireless network is shown in the upper right corner of the

screen as small bars; when there are few bars and they are red the signal is low; when there are many bars

and they are green it is high. By moving in and out of areas of network coverage players also survey the

wireless network they are playing in, building up a collective map of signal strength. The fluctuations in

signal strength are logged and visualised on the map using semi-transparent coloured grid of squares

representing the signal strength coverage. A high level of signal strength is shown by green squares, a

moderate level by yellow, low by red, and zero by a light grey.

Scattered amongst the gaps in the field of coins are dangerous mine objects. These mines are randomly

placed by the server and shown as black icons on the map interface. If a player hits or walks over a mine,

he or she loses all the coins on the PDA, and the interface is disabled for 20 seconds, displaying a black

countdown screen. Thus, players often have to negotiate a path around mines to reach the coins they wish

to collect.

Players in the same team can upload coins simultaneously and gain double points for their coins. For

example, if two players each have four coins and upload them simultaneously they will gain 80 points

each rather than 40. To achieve this they have to press the Upload button at almost the same time

(technically, within three seconds of each other). Players in opposing teams can also interact by pick

pocketing one another. In order to make a successful pickpocket, the player must move within 5 metres of

their opponent while both are within wireless network coverage and click the Pickpocket button. He or

she then receives all the coins that the other player is currently carrying (but not the coins that have

already been uploaded). If the player wants to prevent pick pocketing, he/she can raise a shield by

clicking Shield that lasts one minute but is able to be recharged. Alternatively, players can move outside

of network coverage to avoid pickpocket attempts, as they are safe whilst their device is not in contact

with the server.

The game was managed via a user interface for the game server (Figure 12). This displayed the map and

allowed a game operator to mark the area where coins should be dropped and control the frequency of

drops. Additionally, it allowed the game to be started and stopped, and messages could be sent to users

about game events such as where to meet up the other players when the game is over.

Chapter 3: Seamful Design

 47

Figure 12: The Treasure server user interface for managing the game.

The Treasure game was the first system in which seamful design was applied. In the game players learn

about WiFi infrastructure, and are given the opportunity to understand its characteristics. Players had to

seek out areas with strong WiFi signals to ensure their upload of coins was successful. They also

exploited low coverage areas by using them as places to hide from pick pockets. By simply participating

in the game, players learn about the WiFi capabilities and characteristics in the area.

Chapter 3: Seamful Design

 48

Figure 13: Player running through trees and bushes whilst playing Treasure at Ubicomp 2004.

Figure 14: Playing Treasure at Ubicomp 2004.

In addition to our own trials at Glasgow University, Treasure was demonstrated at Ubicomp 2004,

MobileHCI 2004 and WMCSA 2004, with large numbers of participants showing that it was, overall,

successful in both game enjoyment and as a demonstration of a new ubicomp design approach.

The following year the findings of an extended user trial of Treasure were published at Ubicomp 2005 in

[28]. Players reported that the game was a very fun experience, exemplified by the fact many of the

players were extremely active during the game; running for long periods of time as they collected coins

Chapter 3: Seamful Design

 49

and chased other players in attempts to pick-pocket them (Figure 14). In the course of multiple games, it

was possible to discover how game play changed as players’ experience of the game and knowledge of

the surrounding WiFi access points in the area influenced their tactics and strategies from one game to the

next. Mobile multi-user systems can be hard to record and evaluate in detail, and multiple plays can

increase evaluation cost and workload, although in this case it was worthwhile. By looking at video of

users’ behaviour, as well as detailed logs of system data, we obtained insights into the emergence and

success of different strategies, and how features of the system and the setting were used in players’

interaction with each other. As their understanding of the game grew, they used game features in different

proportions, combinations and patterns. These changes in their game play did not always result in scoring

more points, but they did generally lead to more excitement and engagement in the game. It is important

to note that players’ development of game play did not stem solely from the space the game was played

in, the system design alone, or the space and the system together. Instead, players’ use was a mix of old

and new media developed through a historical and social process. Over time, people affected and were

affected by each other, and system and space served as resources as well as constraints on interaction.

This finding suggested that system designers might do more to support the development of tactics and

strategies by recording data on system use and reusing it within the user experience—extending the use of

historical data beyond that of George Square. Overall, the game was successful in as a research vehicle—

it successfully displayed that variations in ubicomp infrastructure were presented and used in ways that

were crucial to user activity and enjoyment. It adds to the evidence that ubicomp technical infrastructure

can be considered as a resource for users’ interaction—with the system and with each other, thus

interacting in a seamful way.

Another interesting feature of Treasure is that it highlighted the benefits of the design of ‘games with by-

products’. As a result of a game being played, a WiFi coverage map similar to those often required by

WiFi network administrators was created as a beneficial side effect. Although that was not the main aim

of the system, the map created can have other potential uses. Another game, ESP [29], was a web–based

multiplayer game in which remote players were paired up, and typed in words to describe photos they

saw. The beneficial by-product here was image labelling by humans, which could be used to subsequently

power an image search engine. In this way, traditionally monotonous tasks, which currently only humans

can do efficiently and quickly (such as identifying images or negotiating obstacles to cover a geographic

area), can be achieved using people’s motivation for fun and entertainment. The ESP authors believed

that if the game was played as much as other popular online games, most of the images on the web could

be labelled “in a few months” making this approach potentially very powerful indeed.

During the early development of Treasure we encountered issues with WiFi connectivity on the devices

being used. These stemmed from the fact that players were constantly moving around, disconnecting and

reconnecting to the network. It was discovered the wireless driver on these devices was not able to

reliably join networks, even when in regions of high signal level, and frequently would prompt the user

with interface messages about connectivity problems, or offers to connect to other networks. It was clear

Chapter 3: Seamful Design

 50

something was wrong in its connection algorithm, or that it was simply not designed for use in this way.

A further problem was that the default driver does not update its internal representation of signal strength

or expose it programmatically frequently enough to give adequate feedback to players.

By creating and utilising our own driver for Treasure, players experienced no problems leaving and re-

entering network coverage. The driver allowed the game to be programmed to automatically scan for

network coverage, detect the network used for the game and instantly connect, configure and,

importantly, stick to a particular network for as long as it was available.

The implementation of the driver used for Treasure was developed by myself, and was of significant

importance in this game and many other future projects. The code required to implement it is at a low-

level and is complex, using undocumented methods and APIs. Furthermore, it was designed in such a

way as to be compatible with as many devices as possible. WiFi scanning software is a useful utility, and

at the time there was no existing software on Windows Mobile which worked in a device independent

way. WiFiFoFum
6, a publicly released application subsequently developed using this driver allowed WiFi

scanning and surveying using GPS on virtually any Windows Mobile device with almost any 802.11

hardware (both internal and external). The software is one of the most popular Windows Mobile

applications, has had over 600,000 downloads and has an active community of users.

The driver used for Treasure was further developed and augmented subsequently. It was not capable of

intelligently selecting which network to join or of discovering peers. To fulfil this missing functionality

this core driver was augmented with extra functionality described in the following section and tested in

another mobile game, Feeding Yoshi.

3.2.2 Feeding Yoshi

Feeding Yoshi was the second system, after Treasure, in the Seamful Games project in Equator at the

University of Glasgow, however this time there were two other Universities involved as partners. At

Glasgow it involved Matthew Chalmers, Marek Bell, Louise Barkhuus, Scott Sherwood, Paul Tennent,

Barry Brown and myself. Duncan Rowland of the University of Lincoln, and Steve Benford and Alastair

Hampshire of the University of Nottingham were also involved. Chalmers led the project but everyone

was involved in the design. Sherwood, Bell and myself built the system, and then along with Barkhuus

and Brown we trialled it, with Barkhuus primarily doing the analysis. The main paper on the system and

trial of Feeding Yoshi was published at CHI in [22] and presented by me.

Feeding Yoshi is an example of seamful design because the characteristics of the technologies used in the

game, such as the coverage and security of WiFi networks, are deliberately exposed as key features of the

interface and user experience. Feeding Yoshi differs from our previous seamfully designed game,

6 http://www.aspecto-software.com/rw/applications/wififofum

Chapter 3: Seamful Design

 51

Treasure, in that it is played over a long time and a wide area. In the main user study, the game was

simultaneously played in the cities of Glasgow, Derby and Nottingham (and surrounding areas) for one

week. The results showed the ways in which the players embedded system use into the patterns of their

daily lives, and we observed the impact of varying location on the feel of play.

Figure 15: The Feeding Yoshi map screen. Yoshis and plantations are shown as icons and

navigation controls are on the right. Near the bottom is a row containing (from left to right) a

button for selecting icons, pinning an icon onto the map, initiating a swap with another player

(greyed out), and the basket of up to five fruit: in this case two melons.

The aim of Feeding Yoshi is for each team of players to collect as many points as possible, by feeding

Yoshis the fruits they desire. Yoshis are creatures that players find scattered around the city and which are

constantly hungry for five fruits, of seven varieties. In order to collect fruit, players must first collect

seeds from the Yoshis themselves and each Yoshi always has a seed for the fruit it most often enjoys.

These seeds can then be sown at plantations that can be found scattered around the city, just as Yoshis

are. Once a seed is sown, the plantation will begin to generate fruit, which can then be picked and used to

feed Yoshis. Feeding a Yoshi one of his desired fruit scores 10 points, but feeding several fruit

simultaneously gives more points, for example, feeding all five desired fruit at once scores 150 points.

Feeding the Yoshi a fruit it does not want results in the player losing ten points.

Chapter 3: Seamful Design

 52

Figure 16: The Yoshi screen shows the Yoshi himself, as well as the five fruits he currently

desires (top right) and a seed of his favourite fruit (top left). After selecting one or more of the

fruit in the basket (bottom right), the Feed button is used to feed the Yoshi and gain points. The

left arrow returns to the map.

As a player moves through the city, nearby plantations and Yoshis appear as names in a pull down menu

and as icons on a map (Figure 15). An audio alert is also made when a plantation or Yoshi is detected so

that the player does not have to continually visually attend to the PDA screen.

On first being detected, a Yoshi or plantation appears in the centre of the currently displayed area of the

map, although a player can ‘pin’ a Yoshi or plantation icon in a better place. Once a few have been

pinned then others organise themselves automatically using a spring model with the time taken to travel

between access points as the weights. On the right hand side of the map are buttons for switching to a list

view rather than the map, panning, zooming and selecting a Yoshi to be highlighted on the map as a

‘favourite’. Along the bottom of this screen, and also shown in the other two screens in the game, is the

player’s ‘basket’ that provides space for a limited number of fruits and seeds to be carried. Clicking on a

Yoshi brings up a screen showing the Yoshi, a seed for his favourite fruit, and the five fruit he currently

wishes to eat (Figure 16). Similarly, clicking on a plantation leads to another screen with either a tree

empty of fruit, i.e. an unseeded plantation, or a tree with fruit ready to be picked, i.e. a seeded plantation.

Seeding is achieved by dragging a seed from the basket onto the plantation.

Chapter 3: Seamful Design

 53

Figure 17: Fruit swapping screen. You can select items in your basket and items in someone

else’s basket and tap swap.

When two players approach one another, they see each other’s icons on their maps. Selecting a nearby

player’s icon triggers an opportunity to swap fruit and seeds (Figure 17). This is useful if the Yoshis in

the areas that a player knows want fruit that do not grow there. By swapping with teammates with access

to other areas, they may gain more points. Swapping is also intended to encourage simultaneous play and

to make it more fun to play together. Lastly, the game provides a webpage with a scoreboard showing

each player’s score so far, as well as the total score for each team. Players use this webpage to update

their scores as described below.

The game runs on 802.11 equipped PDAs. For our trials we used a mixture of HP iPAQ 2750s and 4150s,

which have built-in 802.11 and which, due to their small form factor, were relatively easy for users to

carry with them throughout the week. Each PDA was additionally fitted with an SD card to allow us to

store the substantial amount of log data we gathered as our users played the game.

The Yoshis and plantations that are detected while playing the game are actually wireless access points.

As a player moves around in the city, their PDA continually scans for the presence of wireless networks.

Secured wireless networks become Yoshis and open networks become plantations. While it would be an

easy and in some ways a graceful solution to communicate with the Feeding Yoshi game server via the

open access points that are discovered (e.g. to automatically upload scores), it is a matter of debate as to

whether using open networks in this way is legal in some countries, including the US and UK (even

though opening networks up to neighbours and passers-by may be a common and deliberate practice

[30]). In order not to encourage our players to potentially break the law, Feeding Yoshi does not transmit

Chapter 3: Seamful Design

 54

any data over the open networks that it discovers. It only detects their existence and identity. Instead,

players have to manually upload their scores at the game website using a ‘score voucher code’ that is

generated by the PDA. This uses the PDA’s MAC address as a unique key for this player to encrypt their

current score and the current time in order to prevent cheating. When a code is entered on the website,

decryption is attempted using the MAC address of every PDA in the game. The player’s identity is made

apparent, as only one MAC address is likely to provide a logical score. This workaround allowed us to

keep the scores relatively up-to-date, which in turn helped to keep the game competitive between the

different teams. Indeed, players reported that they often felt a strong urge to play immediately after

checking the leader board and seeing their score was close to another team or player’s score.

Swapping fruit between players is achieved through 802.11 peer-to-peer ad hoc networks set up between

the PDAs. As mentioned in Section 2.2.4, George Square used Equip for discovery of peers and the

services and data they had available. Whilst Equip ran adequately on the laptops and tablet PCs used in

that system, it would have been too heavyweight, in terms of processing power and storage requirements,

to run as a continuous process on a PDA or phone. Therefore, it was not suitable for general-purpose use

on mobile devices, and instead Marek Bell developed a lightweight peer discovery system called Self

Discovering Spaces (SDS) for future systems. SDS was put to first use in Feeding Yoshi, and operates as

follows. Firstly, a modified wireless driver from Treasure, created by the author, is used to scan and

connect to available ad hoc networks. Each mobile peer in the system will attempt to connect to the same

ad hoc network, with the same SSID. Once connected to the network, the SDS running on each device

continually broadcasts the service’s existence, in this case the Feeding Yoshi game, using a UDP

broadcast. Simultaneously, it will listen for broadcasts from others’ PDAs on the same network. This is

similar to the manner in which the ZeroConf service discovery7 operates, but is achieved in a more

lightweight fashion, which is more suitable for a device that may frequently be connecting to different ad

hoc WiFi networks. When another Yoshi game is detected and one of the players wishes to initiate

trading, SDS on that player’s PDA stops scanning and sends a message requesting the other PDA to cease

scanning too. This is vital as continual scanning is a relatively heavyweight network task for 802.11 on

PDAs and has been found by the author to interrupt or slow the network traffic being transmitted between

the devices. Finally, the exchange itself is done through traditional TCP socket connections.

Due to the situated nature of the game and our interest in observing how players responded to the

contingencies of the technology and of the everyday world in which they were playing, we adopted an

approach of ethnographic study. We collected data through interviews with each player, video clips of

game play, a game diary that each player kept, and from system logs.

An initial pilot study was conducted with a game played over five days, between three teams of four

people and with each team based in a different town or city. Our observations of these pilot games

strongly suggested that the nature of the local environment (city, suburban or rural) had a great impact on

the game play itself, since wireless access points varied not only between urban and suburban areas but

7 http://www.zeroconf.org

Chapter 3: Seamful Design

 55

also within different suburban areas. The study was used to fine-tune the technical issues of the game, and

to make sure that it would be possible to play the game at these different locations. Finally, the game

duration was extended to one week, so as to give players the opportunity of playing both at the weekend

and during the working week, and in the different contexts associated with those times.

In the main trial, four teams played over a week in three different urban areas in the UK. There were two

teams in Glasgow, and one in each of Derby and Nottingham. It was important for us to have

differentiated milieu in order to investigate the impact of location on the experience. Glasgow is a densely

populated large city, whereas Nottingham is a medium–sized city in which most of the game area was a

mix between city and suburban, and Derby is a small city mostly of suburban character. In addition some

participants travelled to other areas during the game, especially over the weekend. This meant that either

they played in a completely different location or that they did not play these two days.

Generally the players found the basic mechanism of the game fun and engaging—that is, exploring the

physical world to find Yoshis and plantations, sowing seeds, harvesting fruit and feeding Yoshis. A key

factor in successfully playing Feeding Yoshi was the amount of time players invested in the game, and

depending on the strategy they chose it affected their patterns of everyday life differently. The patterns of

use and social interaction around the game were specific to the different players, locations and resources

available for play. The quality of play, in terms of collaboration and scoring, depended strongly on the

ability of team members to find ways to fit game play into their everyday lives. Play varied with, for

example, people’s work constraints, routes and modes of transport used in commuting, the character of

home neighbourhoods, and choices and expectations as to who to spend leisure time with, and what to do

where. These issues, and other trial findings are examined in detail in the paper presented at CHI [22].

There are two aspects of the Feeding Yoshi trial more relevant to the theme of this thesis. The first is the

seamful design of the game, and the second is the spontaneous interactions between players using ad hoc

connections between mobile devices.

Feeding Yoshi players learned to interpret urban environments in ways that would help them play the

game, on the basis of their ongoing understanding of the game’s technical characteristics, players’

practices and the game’s wider context. Inherent in the design process was an interest in using the

existing ubicomp infrastructure as a resource for design and use, in a seamful way. The existing

environment was part of the design context, and of the wider context of use. As Weiser put it, “the unit of

design should be social people, in their environment, plus your device”. Yoshi provides an example of

how this can be approached, in that many of players’ actions and strategies were specific to the

characteristics of the wireless access points and PDAs’ networking, used and interpreted on the basis of

their experience and understanding of this wider context. Indirectly, players were learning about wireless

networks’ range, distribution and access control mechanisms, accommodating and appropriating from the

perspective of the game rather than from formal education. Players also became aware of some technical

features of the devices used. In one case, a player became aware—and angry about—the fact that his

Chapter 3: Seamful Design

 56

PDA’s 802.11 antenna had a significantly lower sensitivity than his team–mates’, even though they were

using the same model of PDA. Although this variation had been recognised during development, it was

not expected that this variation would be the cause of such annoyance to players. The manufacturer may

see smoothing this variation out as in their control and in their interests. In the future it may be interesting

to consider new game designs that take advantage of this variation, introducing both advantages and

disadvantages for devices that can ‘see’ further. For example, one disadvantage might be that they can

also be seen from further away.

As mentioned, Feeding Yoshi utilised ad hoc peer-to-peer connections for players to exchange fruit

between their devices. This feature was designed for players to play in groups and strategise the fruit and

seeds they carry, as there is a limit of five per player. By chance, two members from opposing teams

came across each other during play in a Glasgow. They did not know each other, but had both gone to the

city centre to play since there were some excellent playing spots around a shopping centre. The woman

from Glasgow1 who met a man from Glasgow2 describes the situation:

I was playing away and then this box popped up saying ‘Norman would like to trade’ and I

thought ‘I don’t have a Norman on my team!’ Then I saw this guy with a PDA and he was

looking around, and then we caught up with each other and we thought ‘hmmm… not the

same team’. But he walked over and he said that he was from [the other Glasgow team]

and could he trade? And well, I was in my prime playing spot so I had all the fruit I needed,

so I just thought, okay I would trade with him.

Technically, the fact that this happened this is a very successful achievement. As will be seen in the

following chapter, these ad hoc connections between co-located users can be utilised for many interesting

applications. However, implementing them is very challenging, requiring custom wireless drivers to

overcome limitations of their design. The wireless driver built for Yoshi was an improvement of the one

used in Treasure, modified to connect to ad hoc networks automatically and enabling the discovery of

distributed applications using SDS. The trial proved the driver worked successfully in real spontaneous

circumstances, and had great potential for being used as the transport mechanism in sharing information

for adaptive systems. This driver forms the basis of the discovery systems developed in the following

chapters, and its implementation is presented in detail in Section 5.3.3 in its final design iteration.

A public version of Feeding Yoshi was available at www.yoshigame.com and there was also a public

version of the scoreboard. It received press coverage on some gadget blogs and there were 1000

downloads.

3.3 Conclusion

Seamful design goes back to the roots of ubicomp as a principle or ideal, but these systems show its first

full application to ubicomp system design. The games were used as an initial vehicle to explore seamful

Chapter 3: Seamful Design

 57

design, and showed that ubicomp systems design could make infrastructure into a resource for users in

ways that let them use or appropriate the system to suit their own contexts, for example, building up

strategies and tactics, and to fitting them into their everyday lives. Histories of use were again found to be

a useful resource in this task, in the WiFi maps of Treasure. To some extent these maps are examples of

content being created by users, reflecting the benefits of user-generated content shown in George Square

in Section 2.2. Again, these are principles to be taken forward into later work described in this thesis and

help to form a solution to RQ1.

Chapter 4: Mobile ad hoc peer-to-peer systems

 58

Chapter 4 Mobile ad hoc peer-to-
peer systems

This chapter introduces mobile ad hoc peer-to-peer systems with a discussion on background work in the

research area. It is shown that these kinds of systems have features that are applicable to the design of

dynamic ubicomp systems. For example these systems can allow systems to share information

opportunistically between the devices carried by people as they meet. Also, the information can lead to

dynamic changes such as recommendations for content like information or media, places to go. Another

type of information is to do with the awareness of other people in the vicinity, sharing their interests and

behaviours. Following the presentation of background work in this field, the next systems created as part

of this PhD are discussed. These include FarCry, a technical demonstration of how to achieve epidemic

spreading of media between mobile devices using spontaneous ad hoc networks, and peer-to-peer Recer,

a decentralised history-based recommendation architecture in which the history data is distributed

amongst mobile devices over ad hoc networks.

4.1 Background

An interesting behaviour becoming increasingly common is the beaming of games, pictures and phone

numbers between peoples’ mobile phones. Both Infra Red (IR) and Bluetooth are technologies built into

most phones that support this instant beaming technique that it is very quick and easy. Compared to IR,

Bluetooth does not have the line-of-sight restriction and the range of approximately 10m (100m for class

Chapter 4: Mobile ad hoc peer-to-peer systems

 59

1) covers well the immediate environment of people [31]. Using either of these technologies can simplify

activities for the receiver. For example in the case of file exchange, it is not necessary to type URLs to

visit file-sharing websites; he/she just receives the data directly from the other person’s phone ‘there and

then’. Another main advantage is that it is free — commercial network operators cannot charge for

sending data in this way since it does not traverse their networks. Although this has not been proven, it is

possible that users actually prefer to share private data in this way. Since it is a direct transfer, there is no

concern that anyone on the Internet might intercept the information, so there are fewer obligations to

secure files by encryption before transfer. However it is still possible to intercept short-range wireless

transmissions, so if deemed necessary the wireless communication can be secured. For example, the

Bluetooth specification offers secure communications between two devices and the LoKey [32] system

utilises the closed SMS network to exchange encryption keys to secure ad hoc WiFi connections. It would

appear that some users think it is more personal to exchange things in this way and they are appropriating

the technology built into the phone in a unique way. We note that sharing data between phones using ad

hoc connections is the creation of mobile peer-to-peer systems.

This section first examines social proximity applications (SPA) that utilise the every day meetings

between humans to drive the sharing of information between the mobile devices they carry. The second

section discusses systems that exploit this novel sharing technique to distribute information epidemically.

4.1.1 Social proximity applications

Everyday meetings between humans involve many intricate protocols. Interactions occur at many

different levels, ranging from negotiating how to pass someone on the street, acknowledging familiar

strangers with a friendly hello nod, a one on one meeting with a colleague, to a presenting to a lecture

theatre filled with hundreds of people. As people’s mobile devices are becoming equipped with wireless

networking capabilities, their devices now also have opportunities to meet. These meetings between

devices involve similar complex protocols including peer discovery, negotiating an ad hoc connection,

and efficient information transfer. This means people cannot only share their physical appearance and

presence with others, but also exchange digital information that may include multimedia and

recommendations. Meetings between people offer the insight into how best to implement the interactions

between devices. Now that these benefits have been realised many researchers are developing

applications to make use of this novel communications link.

The ability for wireless networking technologies to perform in ad hoc mode is well suited to supporting

face-to-face interactions between mobile devices. An ad hoc network is “a transitory association of

mobile nodes which do not depend upon any fixed support infrastructure. Connection and disconnection

is controlled by the distance among nodes and by willingness to collaborate in the formation of cohesive,

albeit transitory community.” [33] Since the range of wireless devices tends to be rather limited, and it

may be beneficial for your device to contact someone just outside your range, technologies are being built

to create bridged ad hoc networks where information can travel between people to reach a destination. A

Chapter 4: Mobile ad hoc peer-to-peer systems

 60

mobile ad hoc network (MANET) is a self-configuring network of mobile routers (and associated hosts)

connected by wireless links—the union of which form an arbitrary topology. The routers, in this case

people, are free to move randomly and organize themselves arbitrarily; thus, the network's wireless

topology may change rapidly and unpredictably. MANETs tend to involve routing data over a live mesh

network, however another approach could involve a store and forward type configuration where people

can store messages, then pass them on later once they have travelled to a new place. Beaufour [34]

propose a system to dissipate data across disconnected static nodes over a wide area by leveraging the

movement of mobile individuals equipped with smart tags. Umbrella.net [35] is another such system but

with the novelty that the hardware is integrated into an umbrella and the network of umbrella nodes is

only formed when it is raining.

Soundpryer [36] is a wireless ad hoc mobile peer to peer car stereo application which allows people to

tune into a music broadcast from someone else’s car stereo which is near by. It allows people to take an

aesthetic interest in surrounding traffic by sharing music, in a normally anonymous situation. A similar

system, BlueTuna [37] is an application for personal audio devices allowing the ‘tuning’ into the music

playing on other peoples devices at locations where people regularly congregate, for example bus stops.

Proem [38] another example, is an open computing platform targeted at mobile ad hoc information

systems. Built by the University of Oregon, it provides support for developing and deploying

collaborative peer-to-peer applications for mobile ad hoc networks and personal area networks (PAN). It

is a collection of tools, API and runtime for developing and deploying applications and works on a really

low level. A specific transport protocol has been specified. It uses XML for representation of messages

and can then be implemented on top of TCP/IP, UDP or HTTP for instance.

Traditionally, the term ‘peer-to-peer’ describes direct communication between hosts on a large network

topology, for example, the Internet. As long as any host is connected, no matter where it is

geographically, it can send and receive data from any other host on the Internet (Firewall and NAT

permitting). In contrast, the term ‘mobile ad hoc peer-to-peer’ means the network topology is created only

for the peer-to-peer communication to take place, for example, between a minimum of two mobile

devices that have short range wireless radios. Only the devices within wireless range of one another are

able to communicate at any given time, however the overall number of devices which may come into

range in the future is a much larger set. As the mobile devices move around, ad hoc connections are

created spontaneously, creating a highly dynamic set of small independent network topologies.

We note that for reasons of brevity the term ‘peer-to-peer’ is often used in this thesis as a shorthand for

‘mobile ad hoc peer-to-peer’. When the more traditional meaning is intended, this will be mentioned in

the text.

The author is largely in agreement with Korteum et al. when they expressed strong opinions on the ad hoc

peer-to-peer topology a mobile system should employ [38]:

Chapter 4: Mobile ad hoc peer-to-peer systems

 61

In some sense, an ad hoc mobile information system is the ultimate peer-to-peer system. It

is self-organizing, fully decentralized, and highly dynamic. However, current peer-to-peer

systems are designed for stationary hosts connected to an Internet-like infrastructure.

Korteum et al. claim that mobile ad hoc information systems are, by definition, fully decentralized,

negating the use of hybrid and centralised peer-to-peer topologies. This highlights the importance of that

particular topology as a target in design. Korteum et al. list the advantages a peer-to-peer system inherits

by utilising a mobile ad hoc network topology in a pure peer-to-peer environment [38]:

• Self-organizing: as side effect of the movement of devices in physical space, the topology

of a mobile peer-to-peer system constantly adjusts itself by discovering new

communication links.

• Decentralized: each peer in a mobile peer-to-peer system is equally important and no

central node exists.

• Highly dynamic: Since communication end-points can move frequently and

independently of one another, mobile peer-to-peer systems are highly dynamic.

The benefits of using a decentralized architecture are seen later in this thesis, firstly in Samara, a mobile

ad hoc peer-to-peer recommendation system (Section 4.3.2), designed to overcomes the limitations of the

centralised recommendation system design used in George Square.

In the previous year the potential for ad hoc networking applications has begun to be realised and

consequently a few tools and applications have been developed which take advantage of this

communications technique between co-located users. The kind of software that does exactly this is called

a social proximity application (SPA). Persson classified SPAs into four distinct types [39]:

1. Proximity messaging

2. Providing awareness

3. Intelligence in the exchange of data

4. Supporting identity expression

The following literature reviews are of systems that fit into each of Persson’s classifications.

The first type of SPA involves proximity messaging, the first example of this was not from a piece of

purpose developed software, but actually from a novel appropriation of the use of the Bluetooth feature

for transmitting your name and number to a nearby phone - essentially a business card exchange. People

found that by changing the information in the business card from their name and number to a note or

advert for example; they could use this as a medium for sending messages to strangers - a behaviour now

Chapter 4: Mobile ad hoc peer-to-peer systems

 62

known as ‘Bluejacking’. Mobiluck8 is an application developed for this specific purpose that simplifies

the detection of all nearby Bluetooth enabled phones and send messages and photos for free to friends or

strangers with no need for their phone numbers.

One such system is the Hummingbird [11], a small device equipped with a short-range radio transceiver,

through which it broadcasts its identity and receives information about other Hummingbirds in the

vicinity. The devices are functionally self-contained, i.e. independent of surrounding infrastructure. The

overall objective is to support awareness of “who’s around” within an established group of people.

Whenever two or more Hummingbirds are close enough to communicate (maximum range 100m), the

devices emit an audio notification and display the identity of the other device. In this way, it is possible

for users to know which other Hummingbird users are in proximity. In studies of user experiences it was

found that the Hummingbird is particularly useful in situations where a group of users are outside their

normal environment, for example, when travelling [40] [41]. Although Hummingbirds lack the ability to

mediate communication, the experiments showed it is be worthwhile to at least have the knowledge that

other users are in close vicinity.

More recently, in research concerning awareness provision, the Familiar Stranger Project9 at Intel

Research suggested that trends in mobile phone usage were dividing co-located strangers within a

community. For example, when in strange or uncomfortable situations, it is common for people to reach

for their mobile phones as opposed to communicating with others around them, resulting in a decline in

social interaction [12]. The Familiar Stranger was a social phenomenon first addressed by the

psychologist Stanley Milgram in 1972 [42]. Familiar Strangers are individuals that we regularly observe

but do not interact with. Paulos and Goodman at Intel investigated “digital scents” and “digital tagging”

and consequently developed the system Jabberwocky designed to support awareness of unacquainted

users [12]:

8 www.mobiluck.com
9 http://berkeley.intel-research.net/paulos/research/familiarstranger/index.htm

Chapter 4: Mobile ad hoc peer-to-peer systems

 63

As two people approach one another, each person’s individually carried Jabberwocky

transparently detects and records the other’s unique identity. Over time each Jabberwocky

accumulates a log of unique entries of people that have been previously encountered.

Similarly, a person is able to “digitally tag” a place (i.e. park, plaza, bus stop) or object

(i.e. bench, bridge, parking meter) by attaching a fixed Jabberwocky to it. The combination

of fixed and mobile Jabberwockies is the essence of the Familiar Stranger system.

Figure 18: The interface for the iMote-based Jabberwocky device.

The system was implemented first on Bluetooth phones and then a custom hardware version followed,

which was built using low powered embedded iMote10 devices, and was small enough to be clipped on a

belt or used as a key ring. The iMote interface (Figure 18) is split into three regions of coloured LEDs and

has 2 buttons. The number of lit red LEDs represents the ‘degree of familiarity’ that corresponds to the

overall number of Familiar Strangers who have been in the user’s current area, whilst flashing red

conveys the number currently nearby. Specific groupings of crowds, such as bus stops or

neighbourhoods, can be tagged using the Blue and Green buttons and the presence of those groups is

shown in the corresponding coloured LED areas. Jabberwocky was designed to extend the Familiar

Stranger relationship while respecting the delicate, yet important, feelings between strangers in public

places.

Road Rager [43] utilised proximity messaging in a WiFi peer-to-peer system to implement the

communication mechanism in a multiplayer game. Part of the Backseat Playground Project11, Road Rager

is a game for child car passengers to play whilst travelling in the backseat. They carry PDAs disguised as

wands and augmented with rows of LEDs. During traffic encounters, when kids in other cars are in range,

the LEDs light up to alert the player that others are nearby and to give some basic directional information

about where he or she may be located. Various types of attack can be launched against the peers by

10 www.intel.com/research/exploratory/motes.htm
11 http://www.tii.se/mobility/BSP/docs/project.htm

Chapter 4: Mobile ad hoc peer-to-peer systems

 64

making gestures with the wand and typical interactions last only seven seconds but can consist of several

data transfers. One second after a connection is made the player has already been notified and responded

by making an attack gesture. After another six seconds, he sees the attack has succeeded and begins to

discuss his next attack move with another traveller in the same vehicle. In many mobile peer-to-peer

applications, such rapid interaction between peer devices is likely to be necessary, and it is clear that

WiFi over MANETs performs extremely well in this scenario to support smooth interaction of this type.

Back Seat Gaming[44] was a similar game as part of the same project but the targets to attack with the

wand were geo-stationary objects at the side of the road, and the game was single-player so there were

not such tough communication requirements.

In the third type of SPA, some sort of intelligence is embedded in the exchange of data between

collocated users, with the purpose of giving recommendations or supporting collaborative work. Dating

applications are the most simple and common examples of systems involving intelligent data exchange

between co-located users. In these applications, the user completes a personal profile questionnaire,

which is then compared with the personal profiles of other users in the vicinity. If there is a ‘match’ found

between users, they are notified of the result and are often sent a picture of their counterpart (e.g.

proxidating.com, dreamlove.it and bedd.com).

Similarly, WALID [45] is another system that makes use of this type of SPA enabling intelligent data

exchange between co-located users. However, its purpose is completely different to that of the dating

applications mentioned previously. WALID allows users to define various lists of tasks or errands that

they personally would like to be completed. Whenever two WALID devices meet, their software

compares the lists and suggests a trade of tasks between the users if there is a match.

As the dating applications and WALID illustrate, there can be many different purposes for this type of

SPA. Social Net [46] is yet another example of the third type of SPA but this time with the purpose of

providing information about a user’s social network, more specifically, a new kind of network, a social

network based on proximity. By collecting time logs of co-present users and then comparing these time

log, common acquaintances of the newly acquainted users can be established.

The fourth type of SPA allows users to create a more or less sophisticated identity expression, to be

broadcast to proximate users in order to facilitate socialising. NewsPilot [47] [11], developed as part of

the MobiNews Project at the Viktoria Institute, allowed journalists in a broadcasting house to jot down

the stories they were working on at the moment, which would then be shared with co-located fellow

journalists, supporting collaboration. However, in an extension of this work, the system was changed to

use ad hoc wireless connections between co-located PDAs.

An even simpler form of identity expression is to simply set the Bluetooth device name of the phone,

which can be seen when other phones perform a scan. There is a significant culture of naming phones and

Chapter 4: Mobile ad hoc peer-to-peer systems

 65

other devices in the UK [48]. A study by Kindberg et al. [49] found that these naming practices reflect the

social, physical and intentional context of the phone’s owner.

Hocman [50] is a system designed to support identity expression and information sharing between

motorcyclists when they are out driving. As they pass each other they get a brief glimpse at the other

rider’s bike and style, and in the same brief moment their PDAs exchange information including text and

pictures, for example where the biker prefers to ride or equipment they own, to be viewed later. A sound

in the rider’s ear notifies them that an exchange occurred. This scenario presented implementation

challenges for the communications between bikers’ devices including exchanging information in a very

short time frame. Since motorbikes are likely to be travelling at high speeds, this presented a technical

challenge in this research revolving around the issue of enabling successful data transfer when the

connection time available is extremely short. Systems like Hocman and Road Rager would not be

possible without extremely fast and reliable peer discovery, and this is clearly one of the most important

features the underlying communication technology must support. WiFi offers high-speed data rates and

also works when travelling at high speeds, however it has some limitations such as unreliable

connections, and complicated set up. These limitations have subsequently been addressed in the Treasure,

Yoshi and Far Cry systems developed as part of this thesis, through implementation iterations of a

sophisticated WiFi driver and peer discovery component, explained in each of the systems’ sections.

DigiDress aka Nokia Sensor (Figure 19) is an application which allowed mobile phone users to create

digital identity expressions, that could be seen by other phone users within Bluetooth range [39].

Figure 19: DigiDress user interface.

During the 89-day trial period, 618 users installed DigiDress on their phones, the majority of installations

involving a phone-to-phone distribution style. DigiDress was one of the first applications to exemplify the

term ‘viral’ distribution where, when an application is installed, it can then be duplicated to nearby

devices immediately and very easily, taking advantage of the simplicity of ad hoc wireless technologies.

The developers commented that this kind of distribution was critical to their trial, in that the simplicity of

allowing people to share the application promoted its uptake. The average use span was 25 days. Some

identity expressions created were serious, others playful, and some revealing more than others. Factors

influencing the identity expression included strategies for personal impression management, privacy

concerns, and social feedback. The application was used with both acquainted and unacquainted people,

Chapter 4: Mobile ad hoc peer-to-peer systems

 66

and viewing the identity expression of people nearby was one major motivation for continued use. Direct

communication features such as Bluetooth messages were not commonly adopted. In several instances,

DigiDress acted as a facilitator for social interaction, such as verbal chats, between previously

unacquainted users.

4.1.2 Epidemic distribution using mobiles

Social ad hoc networks provide a novel platform for data distribution. For example as a person travels

from home to work their device can carry data. Data could also be spread through connections between

multiple people in a crowded street, with eventually everyone receiving it. This flooding-based approach,

like diffusion, has a strong similarity with epidemic spreading of diseases.

The Cityware Project12 presents a novel view of ‘The City as a System’. In the keynote of the 2006

Workshop on Software Engineering Challenges for Ubiquitous Computing, Kindberg suggested the

London Underground subway network of trains could be thought of as a computer network with a huge

amount of bandwidth. He suggested that since thousands of people travel by train and carry devices such

as Apple iPods with gigabytes of storage, this ‘system’ could be regarded as a high bandwidth data

network where the mobility of people is a metaphor for the transmission of data. As part of the Cityware

Project, Bluetooth scanners were deployed across the city of Bath, UK to examine mobility patterns of

people (by detecting their phones), and how they are affected by the way the city is structured [48], and

an understanding of how people use space [51]. These models of people’s movement could possibly be

exploited to enhance the epidemic transmission of information between people’s mobile devices.

Mobile ad hoc routing protocols allow devices to communicate without any pre-existing network

infrastructure. However, Vahdat explains why existing protocols cannot be applied when social proximity

is the target use [52]:

 The majority of existing ad hoc routing protocols, while robust to rapidly changing

network topology, assume the presence of a connected path from source to destination.

This assumption is not valid given power limitations, the advent of short-range wireless networks, and the

wide physical conditions over which ad hoc networks must be deployed; in some scenarios it is likely that

this assumption is invalid. In this case, one develops techniques to deliver messages. Vahdat and Becker

introduced the concept [52]:

Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts

ensure eventual message delivery… in the case where there is never a connected path from

source to destination or when a network partition exists at the time a message is originated.

12 http://www.cityware.org.uk

Chapter 4: Mobile ad hoc peer-to-peer systems

 67

The FarCry system presented later in this chapter offers a technique to spread media files epidemically

between mobile devices, refined in later systems including Domino in Section 5.2.

4.1.3 Emerging commercial ad hoc peer-to-peer systems

As short-range wireless technologies such as WiFi and Bluetooth are becoming increasingly popular in all

kinds of mobile devices, the commercial opportunities for proximity-based systems are beginning to be

realised. Unsolicited Bluetooth messaging or ‘Bluejacking’13 was recognised as a potential marketing

platform in 2003, where messages containing deals offered by nearby shops could be sent from a base

station to people walking past [53]. Bluetooth is particularly useful in this scenario because nearly all

phones can receive Bluetooth messages as part of their standard set up, and no additional software is

required. Although WiFi offers larger range and is also becoming just as popular as Bluetooth, it requires

configuration by the user, for example the device must be connected to a network, and software must be

running on both devices for messages to be transmitted and received. However, marketing software to

take advantage of people’s mobility to spread promotions and discounts between users has been

attempted [54]. Proximity based messaging is clearly a very powerful commercial platform, however its

failure thus far to become more than a simple marketing technique could be because when digital content

is being transferred outside of the control of a centralised system, there is the technical problem of how

people can pay for or authorise the content they receive.

Melodeo, Inc is a company taking advantage of people’s beaming behaviour to increase the sales of

music. Melodeo Mobile Music Solution is a new peer-to-peer music-sharing platform where mobile

phone users will be able to securely send full tracks that they have purchased, from one mobile phone to

another mobile phone via Bluetooth. The receiver can play the track back in any player that supports the

DRM used in the track for a limited time, however they purchase the full-length version of the track by

downloading the Melodeo Mobile Music Solution. This software resides directly on the user’s phone,

allowing consumers to quickly and easily shop, preview, purchase/download over the air, and play and

store full-length music tracks. Melodeo’s software is compatible with many different phones and they

have partnerships with many handset manufacturers, mobile operators, and major record labels.

The Microsoft Zune14 is a portable MP3 music player that has built in WiFi (Figure 20). Zunes feature the

ability to set up ad hoc (Zune to Zune) connections. Nearby Zune devices can be searched for. Then songs

or albums can be exchanged however there is a limitation of 3-days or 3-plays, essentially it is a like a

trial. Songs are transferred including their meta-data so album art persists between exchanges. After the 3

days or 3 plays are up, the song gets deleted from the Zune on the next sync, unless the song has been

purchased. Photos can also be exchanged between Zunes and there is no limitation on viewing them.

13 http://www.bluejackq.com
14 http://www.zune.net

Chapter 4: Mobile ad hoc peer-to-peer systems

 68

Figure 20: The Zune MP3 player exploits ad hoc WiFi connection to exchange music files.

One thing limiting the popularity of the Zune is the issue that enforcing DRM has proven to be quite

restricting in ad hoc environment, since the licensing server might not be contactable. In October 2006,

due to customer demand, major record labels agreed to sell DRM free music15. This certainly lifts one

technical restriction of distributing by ad hoc networks, but the problem remains of how the music is

eventually paid for by the receiver. This issue is relevant to the technique used for distributing software in

this thesis, as some ad hoc distributed software might be required to be licensed and paid for. If an elegant

solution to this problem can be developed it is possible that peer-to-peer beaming is going to become as

popular as peer-to-peer file sharing on the Internet. One possible solution might be commission based, for

example the more you distribute files, the more share of royalties you might receive.

Microsoft has included peer-to-peer sharing capabilities in the newest version of their operating system

Windows Vista. The P2P Meeting Place16 feature can automatically create ad hoc meeting networks and

thus enable two or more users to connect directly with one another to share files, applications, nearby

projectors, or an Internet connection, and it also supports instant messaging. Some example scenarios of

use people watching a presentation can follow the slides on their own laptop instead of the projector.

There is also the ability to work on documents together – you can edit the shared file and the modified

version will be saved to the remote user’s machine. These new automated meeting networks between

laptop users will hopefully provide more opportunities for social proximity recommendation applications

to exist.

15 http://en.wikipedia.org/wiki/Digital_rights_management
16 http://www.microsoft.com/windowsxp/p2p/default.mspx

Chapter 4: Mobile ad hoc peer-to-peer systems

 69

Figure 21: Nintendogs running on the portable Nintendo DS.

Nintendo released a game for their Nintendo DS portable games machine, called Nintendogs17 (Figure

21). The DS features WiFi networking and although a few multiplayer games have been released,

Nintendogs was the first to make unplanned interactions with strangers a feature of the game, which they

named “passer-by mode”. The player chooses between three versions of the game, each with different

dogs, and trains the dogs using their voice. Once trained, the dogs will not respond to commands from

anyone else. The player can walk around with the game set to passer-by mode and the game detects other

DS systems also running the game. Players can send voice messages and presents can be exchanged

automatically. It’s interesting that in order to make progress in the game and discover new items, players

actually have to go out and physically find others also playing the game. One player, whose dog is named

Drinky, posted the following message in a gaming forum18 conveying their fun experience with the game:

“I had another passer-by contact today, so I’m going to try this a lot more often from now

on. I put the DS in passer-by mode before I left the house for work, and on my journey to

work, Chiharu’s Labrador Retriever, Inui, visited. He was a cute little fellow, wearing a

pair of sunglasses. He brought me a present too! A pulling rope toy. I’ll let Drinky play

with it later. In return, I gave a Mushroom toy. Chiharu is a pro-trainer though, so she

probably already has one... oh, and she left me a voice message "Please be nice to Inui."

4.2 Far Cry

This section presents a framework for the pervasive sharing of data using peer-to-peer connections over

wireless networks. FarCry uses the mobility of users to carry files between separated networks and

groups of users. Through a mix of ad hoc and infrastructure–based wireless networking, files are

17 www.nintendogs.com
18 www.neogaf.com/forum/showthread.php?p=1287925

Chapter 4: Mobile ad hoc peer-to-peer systems

 70

transferred between users without their direct involvement. As users move to different locations—

meeting other individual users and communities of users—files are transmitted on to others, spreading

and sharing information. Three applications using FarCry were developed. Each exploits the physically

proximate nature of social gatherings, like the social proximity applications mentioned earlier. FarCry,

and the applications built using it, leverage the fact that people with similar interests tend to spend time

together. For example, as people group together in business meetings and cafés, this can be taken as an

indication of similar interests, for example, they may work in the same field or enjoy the same food. The

MediaNet application built using FarCry affords sharing of media files between strangers or friends.

Another application, MeetingNet, shares business documents between work colleagues in meetings. The

final application, NewsNet, shares RSS feeds between mobile users. NewsNet also develops the use of

pre-emptive caching: collecting information from others not for oneself, but for the anticipated sharing

with others at a later date.

FarCry is a .NET Compact Framework assembly—a library of code that can be easily by used by other

.NET applications that run on mobile devices, or PCs. While it currently works over WiFi, its

functionality is simple enough to be used over any TCP/IP network, such as a connection set up over

Bluetooth or infrared. An important distinction from previous systems is that FarCry’s functioning does

not interfere or disrupt the normal use of communication hardware or network transmissions. That is,

users are able to continue to use their devices for common network tasks—such as checking email or

browsing the Internet—whilst FarCry operates simultaneously and transparently. This is possible because

FarCry operates on infrastructure networks, such as a user’s own wireless network, and will create its

own network if necessary. Thus, whilst users are near infrastructure connections, such as a WiFi hotspot,

the user can connect and use it as normal. However, when away from infrastructure nodes, FarCry will

fall back to using ad hoc connections to communicate with peers. This allows FarCry to always be able to

discover peers and supports the normal use of the communication hardware by the user.

FarCry allows applications to select files to be shared, and to specify which files can be received from

other FarCry–enabled devices, and it provides an interface for dealing with the user-initiated spreading of

files between devices. When running, FarCry spawns a background task that searches for other FarCry

peers. If the device is currently on a wireless network, a search is made for other peers using a lightweight

service discovery robust to changes at the physical network layer; the Self Discovering Spaces component

implemented in Feeding Yoshi in Section 3.2.2. Using SDS, all FarCry clients broadcast their existence

over UDP to the subnet; allowing listeners to become detect them. If no infrastructure networks are

available, or the client is unable to obtain a connection, FarCry will create an ad hoc network to which

other clients can connect. This ad hoc network has a fixed SSID of which all FarCry clients are aware.

FarCry continues to scan for this ad hoc network even while connected to infrastructure networks,

changing to the ad hoc network if necessary. When FarCry uses its own ad hoc network, IP addresses for

devices are obtained using a similar approach to ZeroConf19. To switch between ad hoc and infrastructure

mode, and to join WiFi networks, FarCry utilises the wireless driver created by the author. An early

19 http://www.zeroconf.org

Chapter 4: Mobile ad hoc peer-to-peer systems

 71

version of this driver was employed in Feeding Yoshi. However, the driver in FarCry is an improvement

over that in Feeding Yoshi because the ability to switch between infrastructure and ad hoc networks in

order to discover peers has been added; the driver in Yoshi was only capable of utilising ad hoc

connections. Furthermore, when playing the game, the driver from Yoshi requires full access to the WiFi

device. The improved driver from FarCry, however, only takes full control of the hardware when it

detects the device is in an idle state. This means that when in operation the user’s own network

connections are not affected.

Figure 22: The FarCry user interface. A notification appears when FarCry detects another user

nearby, and then a list of that user’s shared files can be viewed.

When FarCry devices discover each other and are connected to a sharing session, a file exchange system

is set up using a simple personal web server running on both devices. Each downloader client

automatically connects to the other’s web server, downloads a list of all available files from other peers,

and transfers files (subject to an application–defined filter). Files that are stored on both devices have

their timestamps compared, with the newest file propagated in order to overwrite the older version.

FarCry also supports an interactive mode where users are notified that a peer is nearby and can browse

the shared files and select ones for download (Figure 22). Shared files can alternatively be viewed

through a user customisable personal webpage, where a user name and avatar can be displayed (Figure

23) inspired by the identity expression SPA type. FarCry keeps a record of transferred files, so as to avoid

duplicate transfers. As a protection against viruses, the FarCry assembly will only exchange documents or

media, and will not exchange program code (identified by file extension). However, as will be discussed

subsequently, distributing software modules in this way is a main theme of this thesis, presented in

Chapter 5.

Chapter 4: Mobile ad hoc peer-to-peer systems

 72

Figure 23: The personal web page of a FarCry user, allowing personalisation and supporting peer-

to-peer audio streaming.

From an epidemic algorithm viewpoint, FarCry works on a device-by-device and file-by-file basis.

Devices are ‘susceptible’ when they have not seen a particular file. When devices have files they become

‘infectious’, in that they can spread a file to other devices. Lastly, when a user or application deletes a file

the device is ‘removed’ or immune—it can no longer be infected with that file.

Chapter 4: Mobile ad hoc peer-to-peer systems

 73

As stated, one of the first applications built to demonstrate FarCry was MediaNet, a media sharing system

designed to disseminate media files through a network of friends. Although controversial, media sharing

is a popular pursuit. Some estimates put the amount of Internet traffic consumed by media sharing as high

as 60% [55].

The FarCry framework depends on location, and thus facilitates sharing amongst people who meet

regularly: generally friends, colleagues, and ‘familiar strangers’ [12]. MediaNet allows users to view,

stream or download available files from any peers present nearby—excluding those files protected by

digital rights management. Media can be automatically swapped, supporting the unobtrusive sharing of

media between those in the same social grouping. This exploits the fact that social groupings of people

are often co-located, and also often share tastes in music, film etc. Automatic swapping allows individuals

to browse new acquisitions at leisure, but an alternative mode allows users to be alerted when other users

come into view, and to browse their files while still connected.

Since these exchanges are triggered simply by network range, files are exchanged not only between

friends, but also between strangers who are physically proximate. One proposed situation for this kind of

sharing is for the cultural tourists studied with regard the George Square system: such tourists would tend

to congregate in museums and related places, where sharing of media relevant to them as a social

grouping could happen. The system also allows cross–pollination between distinct social groups, for

example, people who go to the same social settings (such as the same bar) would exchange files more

often than those who do not—although one might consider the bar visitors as being of a loosely tied

social group. The nature of MediaNet might also allow the transfer of files between two individuals who

have similar tastes but who do not know each other, and have not been in close proximate range where a

direct transfer could occur. If a friend of both spends time with one on a certain day, and meets the other

the next day, then the files that both may be interested in can become shared between these two strangers

who have never met despite sharing the same friend or colleague.

In addition to supporting the complete transfer of a file to another device, MediaNet also allows

streaming, meaning those using devices with lower storage capacities, such as flash–based PDAs, can

also be supported. This part of the application is particularly suited to commuting, where users maintain

proximity with strangers for long periods of time. MediaNet stores a history of streamed files, allowing

the user to browse this later, locating and downloading them from the Internet when more time or storage

is available.

The second example application demonstrates the use of FarCry in a workplace environment. MeetingNet

coordinates a network connection between all the WiFi enabled devices present at a meeting. Within the

meeting a folder on users’ machines is dynamically set up and all files in that folder shared between

participants. Users can then distribute electronic files to all attendees, such as to pass PowerPoint files

around. Attendees simply place the files into the folder (either in advance) or during the meeting, and

files will be exchanged between all the participants.

Chapter 4: Mobile ad hoc peer-to-peer systems

 74

Technically, this system is very similar to MediaNet, differing only in details of its interface. One added

complication over MediaNet comes from the private nature of the files likely to be exchanged. In our

current application, MeetingNet is only practical for use with non–confidential files. Since files are

automatically shared, it is possible that those who are within the vicinity but not actually at the meeting

can share files. A planned extension to this system involved the use of a password to initiate sharing

amongst meeting participants. All participants would all have to enter the same code to share the files.

The second area of functionality provided by the MeetingNet application is that of instant messaging. It is

frequently useful to carry on interaction silently with one’s peers during a meeting without speaking out

and disturbing the flow of the meeting (so called ‘backchannel’ communication). However, colleagues

may not all be subscribers to the same messaging service. Again, the geographical boundaries of FarCry’s

local networking are turned to positive use, by restricting the messaging system to those within range of

the network, and running the MeetingNet application—in practice, those present at the meeting. Of

course, both these features can be replicated using other tools, if a suitable network is set up. However,

the automation of FarCry aims to make this process straightforward.

NewsNet leverages FarCry to make use of a recent popular technology—Really Simple Syndication

(RSS). Unlike MediaNet and MeetingNet, NewsNet depends on the user having had a connection to the

Internet at some point in the past. It examines a user’s bookmarks for those based on RSS feeds, and then

caches time-stamped versions of those pages. When the user meets or passes another NewsNet user,

FarCry coordinates a network connection, and each device compares its list of feeds with the others. If

any match is found then the older page is updated with the additional articles from the newer.

In this manner, a user is able to receive news updates without actually connecting to the Internet. Like

MediaNet, NewsNet exploits social grouping, depending on the premise that friends share similar

interests, thus have a better chance of matching feeds than complete strangers. In this way, NewsNet

allows users who are outside Internet range to be updated with new feeds from others passing by who

have recently accessed the Internet. NewsNet could be extended to predict which feeds other users may

request and cache these, even if the current user is not currently subscribed to them. This is a form of

‘pre-emptive caching’ of news for other users. The highly ranked feeds vary with social interaction; for

example, a group of technologists is likely to have several technology sites in their rankings, while a

group of musicians may have more musically relevant sites stored. These kinds of recommendations are

the topic of the peer-to-peer Recer system detailed in Section 4.3.1.

If a user wishes, he or she may browse the news feeds available on another device visible over a FarCry

network. As with the practice of iTunes20–based ‘musical voyeurism’, NewsNet allows a ‘news

voyeurism’, rather like reading a newspaper over someone’s shoulder. In certain situations, such as

20 http://www.apple.com/itunes – iTunes supports browsing music libraries on the local network.

Chapter 4: Mobile ad hoc peer-to-peer systems

 75

commuter environments, this may prove an enlightening diversion, while its use among friends may lead

to the same kinds of judgements described in [56].

Of the three systems described, NewsNet is the one most likely to benefit from the serendipitous meeting

of strangers. While specialist news feeds are likely to be confined to those with similar interests, those of

more general interest, such as local news, may have wider appeal. Additionally the size of the files used

by NewsNet is likely to be considerably smaller than those of MediaNet, so downloading content from

passing strangers is more plausible.

In our experiments with FarCry, it was found that files were reliably exchanged at a distance of around

100 metres. This may be too far to effectively support the sort of social situations that FarCry is designed

for. Certainly for MeetingNet, the WiFi network extends far outside one meeting room to encompass

adjacent rooms. Shorter-range wireless technologies could be used to define social groups, for example

Bluetooth, and then the higher bandwidth WiFi network connection could be powered on and used for

data transfers. Alternatively, activation of FarCry’s transfers could be set to only occur when a high WiFi

signal strength is detected, thus shortening the effective range by ignoring low signal strengths that

correlate to large distances.

It is important to note that FarCry is still a potentially useful technology even if there is no clustering of

interests, so that exchanges take place solely between strangers. In this case FarCry works at the level of a

sharing ‘zeitgeist’ files—files that are popular in a particular area or organisation. This would mean that,

for example, in MeetingNet, files from all meetings are exchanged and with MediaNet a geographical

area’s files are exchanged.

FarCry takes advantage of the mobile and social nature of individuals, providing a framework for mobile

data sharing. Set-up overhead and bandwidth restrictions do not adversely affect the system, thanks to a

dependency on social gathering as a means of determining compatibility. Sharing of information using

FarCry exploits social proximity and face-to-face, rather than attempting to overcome distance, as most

Internet–based applications do. In this way, FarCry has the potential to be integrated into existing social

networks, such as groups of friends, in turn spurring further use.

4.2.1 StreetHawk

During development of FarCry it was discovered that it might be advantageous for peer-to-peer ad hoc

systems to sometimes connect to infrastructure networks to gain Internet connectivity at times when no ad

hoc peers are in range. To explore this, StreetHawk was developed to test opportunistically connecting to

high-bandwidth infrastructure WiFi networks, with zero user interaction. The WiFi specification supports

roaming between access points of the same network [50] but there is no seamless support when the

network changes. Connecting to WiFi networks can often be troublesome for users as many issues such

as interference, low signal, even hardware incompatibilities, can lead to much more user interaction and

Chapter 4: Mobile ad hoc peer-to-peer systems

 76

technical troubleshooting than should normally be necessary. WiFi is often preferred for connecting to the

Internet when mobile because of high cost and low bandwidth of cellular technologies. The aim of

StreetHawk was to investigate the use of systems that can opportunistically connect to the Internet, as

users are mobile, in a city for example, without any required user interaction. Then if successful, mobile

systems could be designed to exploit both infrastructure and ad hoc modes, for example systems that

share data epidemically as best they can over any network medium available—like FarCry and Domino in

this thesis.

In Manhattan, New York, the Times Square area has 3272 WiFi Access Points (Figure 24), and as many

as 50 available to be connected to at any location. This is an extreme example, but a similar abundance

WiFi networks can be found in most major cities in the developed world, and it is growing by the year.

Figure 24: A map showing the Times Square area of New York with 3272 WiFi Access Points21.

Red markers are secured networks, green are open.

StreetHawk will automatically step through available unsecured network names (SSID) and in turn,

connect and check if there is web access by requesting a known web page (Figure 25). A known page is

required because fact alone that a request has been fulfilled and a page has been returned is not

conclusive, because the page request might be redirected to another, for example a hot spot log in page,

so the page returned must be checked to be a match to a known one. StreetHawk expects a page with one

21 Source: http://www.navizon.com

Chapter 4: Mobile ad hoc peer-to-peer systems

 77

word as the contents. It only tries networks that are in infrastructure mode because ad hoc networks rarely

have Internet connections. When a new SSID is detected it will try to associate (connect), and if it fails it

will retry this SSID when the signal is stronger. If association is successful, it will then try to obtain an IP

address from a DHCP server, usually the access point (or wireless router) itself. If an IP address is not

allocated, it will try this SSID again the next time only when the signal is stronger, because in the authors

tests, low signal is the main cause of this failing. Once it does obtain an IP address it will try to request

the Google.com index page. If the request succeeds and Google responds, the SSID is added to the

Internet list. Otherwise if an IP was obtained but it could not get the Google page, it will not try this SSID

again.

Figure 25: StreetHawk is an application to allow Windows Mobiles to automatically connect to

WiFi networks with Internet access.

Thus there are 3 steps when connecting to a wireless network:

1. Setting the SSID

2. Associate with an access point

3. Receive an IP address from a DHCP server

Depending on signal strength, StreetHawk can connect to the Internet through an open WiFi network in

approximately 20 seconds. Since implementation, some legal and ethical issues have come to light, about

whether using Internet connections on open WiFi networks should be done, and this issue should be

examined before utilising this approach.

Chapter 4: Mobile ad hoc peer-to-peer systems

 78

The software was released to the public as an application for Windows Mobile Pocket PC devices22 and

has been very popular. Streethawk can seek out a WiFi Internet connection wherever it is available,

however an issue remains of how to detect when the user is active, and would not appreciate the network

settings being altered.

StreetHawk successfully demonstrates a novel ‘WiFi network roaming’ technique to automatically

connect to unsecured WiFi networks that have available Internet access. This technique is relevant to

many research areas that require automatic WiFi connectivity, for example handover between cellular and

VOIP telephone calls, and with the inclusion of ad hoc networks. It can be used to discover peers to share

data with on either network type—this is the discovery technique used by the adaptation architecture

Domino, presented in Section 5.2 and StreetHawk’s modifications to the wireless driver are utilised.

4.3 Efficient distribution of data in mobile, peer-to-peer
environments

The brief investigations conducted with FarCry led to a realisation that an intelligent method for a

system-controlled epidemic spreading technique and a method for both identifying and culling irrelevant

or old data was required. Such culling of data is necessary to prevent devices filling up their storage

whilst maintaining a healthy flow of data through a peer community. Culling old data is particularly

important in a mobile environment since storage on mobiles is scarce compared to desktop PCs.

Similarly, processing power on the average mobile device is also far lower than on desktop machines so,

if the stored data is to be analysed or searched, then a large amount of redundant or irrelevant stored

information can have a significant impact on an application’s performance. Therefore, due to both

processing power and storage capacity it is critical to ensure that only relevant data is maintained. This

requirement led to an aim to investigate possible solutions to this problem and, following our experience

in the area of mobile recommendations in George Square, it was decided that the source data for those

recommendations should be used as the bulk data to be spread epidemically between devices.

One of the main limitations of the George Square system is that the recommendation system relied on a

central server, through which all devices would submit event logs and request recommendations. There

are many advantages of decentralising the recommendation system and allowing the system to run on

multiple mobile devices with no reliance on a server. The first and most obvious reason is that the server

may become unavailable on occasion, either because of a hardware or software failure, or because it has

become unreachable due to intermediate network problems (which is a very likely scenario when using

mobile devices, because of the high volatility of their wireless network connections). Additionally, as

demonstrated by background work concerning Social Proximity Applications, it has been shown that

there are many advantages to relying on the movement of, and proximity between people as the transfer

mechanism through which data is spread from device to device. Furthermore, an ad hoc connection

22 http://www.aspecto-software.com/Streethawk/index.htm

Chapter 4: Mobile ad hoc peer-to-peer systems

 79

between devices is usually much higher bandwidth and at zero cost than infrastructure connections (WiFi

hotspots or GPRS), allowing for a far greater amount of data to be transmitted. Thus, a peer-to-peer

version of Recer was developed to investigate the control of epidemic distribution of history logs, used

for producing recommendations with no reliance on a central server.

Following this implementation of Recer, Marek Bell developed a prototype application Samara (short for

System for Ad hoc MetAdata RecommendAtions), a tourist guide involving multiple mobile devices, that

recommends potentially interesting places to visit on a map, based on where others have been.

4.3.1 Peer-to-peer Recer

The Recer collaborative filtering algorithm, introduced in Section 2.2.3 was used in the George Square

system to generate recommendations of places, web pages and photos. There was a substantial limitation

that only one copy of the database, containing the logs used to generate recommendations, existed on a

server. Thus, Recer was utilising a centralised architecture that proved too restrictive for use on mobile

devices. As mobile clients moved in and out of network connectivity the server would switch between

being available and unavailable, with recommendations either being delivered to the user or being absent

respectively. By decentralising the database and distributing history logs efficiently, a peer-to-peer

version of Recer was created. The initial distribution algorithm used to control the spread of the data in

the distributed database environment is the design of Marek Bell. Both Bell and the author participated

equally in all aspects of the implementation.

The history information Recer records is relatively small, as each individually logged action is typically

under 100 bytes, which results in approximately 10,000 entries per megabyte of history data. Even though

individual entries are compact, the entries are spread epidemically and the number of entries on any one

device can multiply quickly, which leads to storage space becoming an issue. Thus, a level of control is

required to ensure that devices do not crash or fail due to available storage being completely consumed by

Recer. In a mobile peer-to-peer environment, the length of a peer encounter may not be predetermined.

As users continually move around—meeting and parting from one another as they conduct their daily

business—encounters may last only a short period of time, and often the wireless connections between

their devices break off suddenly as the peers move out of range of one another. Therefore, it is critical

that the information transferred in the short period available is that which is most likely to be of value to

the recipient.

When a peer conducts its first exchange, it has no previous experience about which data may be of most

relevance. Thus, in this initial case, the histories transferred between peers can be random or simply

starting from the most recently collected data and working backwards through time. As mentioned, the

wireless connection can be unreliable, and due to this the decision was made in Recer to transfer the

history information in small segments of 100 entries at a time. This is a compromise between the

performance gains of a bulk transfer and the subsequent database insert, whilst still preventing data loss

Chapter 4: Mobile ad hoc peer-to-peer systems

 80

of large amounts of data if a connection is broken. No more than 100 history entries will be lost if any

single connection is broken, which is a relatively small number as an overall transfer could potentially

contain tens of thousands of entries. To further assist in preventing data loss the transfer mechanism is

implemented using separate threads to conduct the actual network transfer and to store and process that

data. This often allows a secondary thread to extract any successfully transmitted histories regardless of

where the transmission breaks. For example, if the connection is lost whilst entry 51 of a 100-entry

segment is being transmitted then the secondary thread will be able to recover the 50 completely received

entries. This robust protocol ensures a high successful transfer rate even in the extremely transient and

unreliable peer-to-peer network environment.

As a consequence of peers receiving other peers’ histories, they have the ability to not only share copies

of their own histories but also those of others from which they have downloaded information, increasing

the speed of epidemic spreading. For example, a client may download sections of history that belong to

user A and sections that belong to B during a single encounter with device A. This can occur if device A

had previously downloaded path data during an encounter with device B. Thus a single encounter with

one peer can provide a wide variety of data from many users.

After history data has been received from an exchange event, and inserted into the database, it can be

used when generating recommendations using Recer’s usual technique described in Section 2.2.3. The

recommendations generated might not be solely textual information, which is stored in the field within

the logged event; they may be a reference (or URL) to a filename or some larger piece of data. Thus the

recommendations might refer to the actual data that is to be shared within the peer community. For

example, a music sharing peer-to-peer application may use the Recer algorithm in order to epidemically

spread the Recer histories of MP3s song names played. However, this underlying metadata is shared only

to allow for the identification of data that the peer is sharing which is most likely to be of interest.

Following the creation of a set of recommendations that point to files or data, these items can

subsequently be actively searched for within the peer community if they are not immediately available

from the device that initially caused the recommendation to be generated. For example, in the case of the

music sharing application, if device A receives a history of songs played from peer B, which causes a

recommendation for a particular song to be generated, then A may immediately request the song from B.

If B has a copy of the song it will provide it for A. Note that, as devices carry history data from many

peers rather than just their own history logs, it is not unusual for a device to cause a recommendation for a

file it itself does not have to be generated. If this is the case and B does not have the song, then A will

make a note of the recommendation and actively seek it out in encounters with other peer devices. When

the item that has been recommended is discovered on a peer device it can either be automatically

downloaded or may be presented to the user, who can then decide to accept or reject the recommendation

for the file download to their device. Thus, this technique of recommending shared peer data not only

filters the data to select that likely to be of most relevance but also supports both system-controlled and

user-controlled epidemic spreading of data.

Chapter 4: Mobile ad hoc peer-to-peer systems

 81

After a number of histories have been downloaded, the system periodically analyses them during times

when the device and applications are idle. It attempts to determine which histories will generate the

recommendations of the highest interest in the future. Each of the downloaded histories on a device are

compared to the user’s own history, and an average per-item similarity rating is calculated. The final

rating gives the average similarity on a per-item basis rather than over entire histories, this is important

because a history average would not give a meaningful ranking unless compared to a history of similar

length. Only segments of history that are downloaded during peer encounters, thus it is unlikely that the

two histories would have exactly the same number of entries. Therefore, a ranking calculated over an

entire history would have a bias that simply favoured longer paths.

The similarity rating is subsequently employed in another feature of peer-to-peer Recer, its ability to

prioritise the transfer of histories from which recommendations more relevant to the user are likely to

come from. After similarity rankings have been calculated for histories, all subsequent history exchanges

during peer encounters rely on them to give the highest ranked histories priority; that is, to prioritise those

histories from which the most useful recommendations are most likely to be generated. Once histories

have been compared, when a peer is subsequently encountered, it is queried for the list of users for which

it carries history data. This is compared to the rankings list and if there are any matches then segments of

history from the highest ranked user are requested first. If the length of the connection is long enough to

allow the entirety of the history data stored on the peer device to be downloaded then the rankings list is

again consulted and the next highest matching history requested. If there are no further matches then

history data is again requested at random. Gathering data from these histories first helps ensure that the

short encounters in a pure peer-to-peer environment are less likely to be irrelevant, the data that is likely

to result in the most beneficial recommendations to the user is given highest priority.

The list of similarity rankings is also used to provide a method for culling irrelevant data in the interest of

conserving storage space on the device. When storage space is full, or when it is approaching an allowed

limit set by the user, the ranking list is consulted and the lowest ranked histories are deleted. This is

regarded as relatively safe as this data is considered the least relevant to the user: least likely to lead to

any recommendations in the immediate future. If, after deleting these histories, there is still not the

sufficient level of required storage space, the oldest segments of history logs are removed, without

removing the entire history. This produces a healthy routine of deleting old and irrelevant path data whilst

renewing it with new data downloaded from peers. The overall outcome is a recommendation system that

is kept up-to-date and continues to provide novel recommendations.

4.3.2 Samara

Samara is a prototype application, designed to test peer-to-peer Recer by recommending sight seeing

locations to tourists exploring a city. The application uses GPS to log the user’s movements, and

recommendations for places to go appear as rectangles on a map (Figure 26). Marek Bell created samara,

Chapter 4: Mobile ad hoc peer-to-peer systems

 82

but this author implemented the WiFi discovery and peer-to-peer Recer components, and the outcomes of

testing those are relevant to this thesis, as they used in later systems.

Figure 26: Samara is an application utilising a fully ad hoc peer-to-peer recommendation system

to recommend places on a map to visit. Locations visited by the current user or other users are

shown as yellow rectangles. Locations recommended to the user currently are highlighted in red.

The tourist carries a PDA equipped with GPS while walking throughout the city. Data from the GPS unit

is delivered as a stream of text in the standard NMEA format, and the latitude and longitude delivered

approximately once per second. A significant problem is working out how to interpret locations and areas

people consider interesting, from this raw NMEA stream of coordinates.

Internet services exist that can provide a postcode for a supplied latitude and longitude. If a postcode were

to be retrieved from a web service that provided this conversion, a business directory look-up service

could then be used to supply a list of businesses at the current postcode. This method allows for

intelligent guesses to be made about the name of a building the user had entered. However, since the aim

is to produce an application for a pure peer-to-peer environment, it was required to remove all reliance on

external third-party centralised services. Furthermore, this method relies on a static database of officially

recorded buildings. It would, therefore, fail to recognise personal or locally known locations such as a

common meeting place, or locations in the countryside. Such areas may be of great importance for

someone who uses such a location to picnic, walk their pet or simply admire the view. Thus postcodes,

addresses, and even listed place names sometimes are not useful to identify locations people visit.

Chapter 4: Mobile ad hoc peer-to-peer systems

 83

To overcome the limitations outlined, a self-generating content structure for defining the places people

visit was implemented. This worked by logging the GPS coordinates of a user, trying to identify locations

of importance, and marking a surrounding region whenever the system detected the user was at a location

that seemed to be important to them. Thus, it is the user’s own actions that are relied upon to identify the

locations that are of value to them; there is no reliance on officially recorded names for these locations.

Identifying important locations is a significant research problem, and Samara utilised two published

techniques that allow for both outdoor and indoor locations (at building granularity) to be detected [57].

The first technique is designed for indoor locations of interest and involves recording the time and

locations where a GPS fix is lost due to loss of signal from satellites due to obscuring of line of sight to

the sky. A GPS fix is a useful measurement because essentially it is a boolean value, providing a

simplified starting point for a building identification algorithm. If the signal is not regained within a

certain timeframe, for example five minutes, then it is suitable to assume the loss of signal is that the user

entered a building. As in [58], a threshold of at least three instances of such maintained loss of signal is

required around the same location within a period of two weeks before the location is accepted as one of

interest, and marked as such by the system. This threshold aids in filtering out accidental losses of signal

due to the user entering narrow street with tall buildings, heavy tree cover, accidental disconnection of the

GPS unit from the PDA or other device failures. In this way, only entrances to buildings that the user

frequently visits, and are therefore likely to be important to them, are recorded as important locations in

the internal database.

The second technique is designed for outdoor locations of interest, and simply involves monitoring the

period of time a user does not move over a certain distance threshold. If approximately the same location

is maintained for a period of time, for example five minutes, then the location is recorded. As in the first

technique, three detections are required within a two-week period for the location to be permanently

entered as important in the location database. This technique allows, for example, the detection of

locations such as a pleasant area on a beach or in a park.

When a location of interest is detected it is assigned a globally unique identifier (GUID) logged in the

database on the user’s PDA. If users desire, they can at any time review the locations and assign a more

meaningful name. This can aid others in identifying what may be at the location if they later receive the

entry on their PDAs. In addition to the two automated location detection techniques outlined, one may

also manually enter locations that are of interest by panning the map to the desired location, and using an

interface tool to draw a rectangle around the location. A tool for allowing the user to fake visits to

locations by manually positioning themselves at any location is provided, along with a tool for deleting

locations and visits, in the interest of privacy issues. Rectangles are used to identify locations because of

the simplicity of storing and querying them in traditional databases. If irregular shapes are required, an

improvement would be to use multiple smaller rectangles to make up larger shapes, or a spatial database

such as PostGIS23 could be utilised to provide efficient queries and storage of these location shapes.

23 http://postgis.refractions.net

Chapter 4: Mobile ad hoc peer-to-peer systems

 84

Once locations have been identified and recorded in the database, the system also monitors the user’s

GPS location to detect when the user visits them. The user is marked as having visited them whenever

they are within the boundaries of that location for five minutes or more. The record of the visit is stored

by entering the action of visiting the location into the user’s Recer history log. This allows the application

to identify any locations that are important to the user and creates a record of the user’s visits to them.

Whenever a user’s device encounters a peer, the previously discussed peer-to-peer version of Recer is

responsible for exchanging the most relevant items for generating future recommendations. Thus, new

locations and recommendations to visit these locations spread throughout the peer-to-peer community in a

system-controlled epidemic manner. Recommendations for locations from a community of users supports

learning about new locations, such as restaurants which have just opened, in the user’s own area as well

as providing a vital resource and guide to a tourist in a new city.

Samara demonstrates a novel use of a peer-to-peer epidemic distribution algorithm. It uses

recommendations from a standard collaborative filtering system to drive the spread of data within the

peer-to-peer community, with source data produced by the community, with no reliance on centralised

servers.

4.4 Conclusion

This section has identified literature involving mobile ad hoc systems, and of particular importance are

those systems that take advantage of people’s everyday movement as the transport mechanism for

information in a purely ad hoc mobile scenario - the social proximity application (SPA). To reiterate

Persson [39] classification previously mentioned, SPAs are separated into four distinct types:

1. Proximity messaging

2. Providing awareness

3. Intelligence in the exchange of data

4. Supporting identity expression

The systems mentioned all fit into this classification. For example Persson’s DigiDress was an example

of an SPA that supported identity expression, and the others also fit into the classification. It appears there

is a gap or potential advance on the current state of the art, specifically a new, fifth type of SPA:

• Sharing data to generate intelligent recommendations of software.

This potential advance in SPAs is the topic of work described later in this thesis and is also a concrete

demonstration of an answer to RQ2.

Chapter 4: Mobile ad hoc peer-to-peer systems

 85

This chapter also discussed several experimental systems that contribute to the systems described later in

this thesis. FarCry demonstrated the epidemic spreading of information via peer-to-peer connections over

wireless networks, aided by a custom wireless driver. StreetHawk pushed the limits of making use of

dynamically discovered WiFi networks. The peer-to-peer version of Recer, built on top of the FarCry

platform and tested in Samara, allowed history logs to be distributed and maintained efficiently and a

recommendation service to be built that avoided George Square’s limitations due of centralisation.

Overall, the experience gained from implementing and testing these systems helped to answer RQ1 and

meant we had reliable systems for peer discovery, communication and information sharing—identified in

Section 4.1 as being key requirements of a successful mobile adaptive infrastructure, and used in the

Domino infrastructure described in the next chapter.

Chapter 5: Dynamic software adaptation

 86

Chapter 5 Dynamic software
adaptation

In ubicomp, researchers agree there is a need for systems to become more adaptive and dynamic. First

steps towards achieving this non-trivial ideal can be gained by examining the wider field of adaptation.

Adaptation involving computers is vast area of research with many sub-topics, and this chapter examines

only a subset of the technical aspects, for example flexible software architectures, of the user experience

aspects, for example how people react to change. Following this, an adaptation architecture developed as

part of the work in this thesis, Domino is presented along with its design and implementation as a possible

solution to the requirements of adaptive dynamism in ubicomp systems. Domino’s design encompasses

the findings from the earlier chapters to do with context awareness, Seamful Design and mobile peer-to-

peer systems (Chapters 2,3, and 4).

5.1 Background

The word adaptive can be quite ambiguous in the context of computer systems. The user interface can

adapt to the device its being displayed on, the system can adapt the interface to be more efficient

depending on what users regularly do (often called ‘collaborative adaptation’, i.e. the system and the user

collaborating), systems can adapt to repair themselves when things go wrong or offer additional features

over time, and content displayed can be adapted. The increasingly widespread use of the term makes it

Chapter 5: Dynamic software adaptation

 87

even more difficult to distinguish between meanings. This section examines the background research on

different types of adaptation considered relevant to the design of adaptive ubicomp systems.

5.1.1 Displaying adaptive content

The simplest form of adaptation could be considered to be the presentation of customised content

depending on the context of the user. Content can be regarded as any kind of non-computational media

such as web pages, photos or video. Although the end result might appear quite simplistic, since the

system does not feature any dynamic reconfiguration of functionality, the logging of context and content

authoring topics can be interesting and are relevant to the work in this thesis.

MovieLens Unplugged [59] attempts to learn what movie genres and actors a user enjoys and deliver

appropriate recommendations when the user is actually in the store. One caveat of these systems is that

they require a period where the user must spend time entering a profile of his or her own particular

interests, which the system can draw on to generate custom or adapted content.

The requirement of a lengthy set-up process can negatively influence potential users. This negativity is

increased for mobile devices if or when they are perceived simply as accessories to a main digital hub

(desktop computer). Imagining such devices are capable of delivering only reduced, lower quality

information and functionality to what they are used to elsewhere, many do not anticipate a large return for

their time. Although it is likely that utilising the ideas previously discussed to implement more relevant

and useful mobile applications may gradually alter users’ perceptions of mobile devices, it is currently the

case that many users will simply choose to disregard any mobile application that does require any time-

consuming set-up period.

Another system, Hippie, attempts to customise information delivered to museum visitors, using location

tracking as well as records of prior web browsing. When a museum visitor views a display, Hippie

attempts to present information based on a record of what displays and related information the visitor had

seen before, either in the museum or previously [60].

Schiele et al. describe another museum system [61] which users wear a mobile system with a video

camera attached, and can associate recordings of tour guide descriptions and speeches with particular

exhibits by clicking a button to activate the camera. Subsequent visitors are then delivered these video

presentations through a head-mounted display when they are near the exhibits, and the system recognises,

through the video camera, that the painting currently being viewed is the same as one for which a

recording has previously been made.

Guide [62] [63] [64] was a tourist information system designed to overcome certain limitations of

guidebooks, in that they are general-purpose references and consequently contain a significant amount of

information of little relevance to the interests of a particular individual. Guide ran on a tablet PC and

Chapter 5: Dynamic software adaptation

 88

offered tailoring of information to the interests of the visitor by using context awareness and ‘adaptive

hypermedia’, i.e. dynamic content. Driving the content adaptation was personal context information

consisting of the visitor’s current GPS location and a personal profile. Web pages and photos of nearby

attractions deemed relevant to the user were displayed using a simple algorithm that compares nearby

attractions with the list of previously visited ones (Figure 27).

Figure 27: The Guide user interface displaying a nearby location recommendation.

Guide had two limitations on its use. Similar to the MovieLens system, a user’s profile needed to be filled

in prior to the use of the system. This profile was required to contain personal details such as age and sex,

interests, and a history of landmarks visited previously. The second issue is that all of the content

presented by the system had to be entered by the designers of the system, severely limiting its scalability.

This issue of pre-authored content also arose with regard to the Lighthouse in Section 2.2.1, and was

addressed in the George Square tourist system by supporting user-created content such as web pages and

photographs, woven into the system by analysing histories of user context and activity, presented in

Section 2.2.

5.1.2 Displays and user interfaces

Going beyond the content displayed in an interface, one can consider adapting the interface itself. There

are many issues concerning adapting the graphical user interface (GUI) of one application to work on

many different devices, with different screen sizes and input methods [65]. For example, some work has

responded to the way that GUI components designed for PCs with mice and keyboards are not optimal for

Chapter 5: Dynamic software adaptation

 89

use on finger-based interfaces such as kiosks or phones, where fingers obscure the user’s view and

impede the ability to make accurate selections [66]. When discussing adaptive user interfaces there are

two application areas to examine. Firstly there are traditional applications that may run on a variety of

devices, and there are web applications that may be displayed on a variety of web browsing platforms—

ranging from a mobile phone’s primitive WAP browser to a desktop with a fully featured browser. With

web applications, things are slightly simpler since the web browser can report its screen dimensions and

browser capabilities to the server when it makes the request, and the server can perform a translation such

as XSLT to transform the page into a format suitable for the destination browser. However, working with

traditional applications in a disconnected environment is much more complicated. With the advent of

cross-platform software using virtual machines (VM) such as Java and Microsoft .NET, and these VMs

being implemented on many different types of hardware including phones, this problem has become even

more prevalent. One solution that avoids multiple static versions of the UI is to store abstract descriptions

of the interface as meta-data, and then intelligently render the UI at run time by selecting components and

lay outs specific to the current device. The interface descriptions are commonly defined in XML

documents of which there are many specification languages, for example, User Interface Mark-up

Language24 (UIML), Extensible User-Interface Language25 (XUL), Extensible Interface Mark-up

Language26 (XIML), and the Extensible Application Mark-up Language27 (XAML). XUL is most

popularly known for being the foundation of the Firefox28 web browser and XAML was recently

developed by Microsoft to be used for designing applications built using the Windows Presentation

Foundation29 in .NET Framework 3.

Crow [67] describes a ‘malleable interface’ in which collaboration between the system and the interface

increases the system’s knowledge about the user to aid future communication. Such systems should better

support users’ needs, and may even offer better efficiency in terms of the user’s task:

“A malleable interface is a user interface whose behaviour is easily or transparently

adapted by each individual user to support the tasks it can perform.”

Crow’s implementation is DB_Habits. By observing the users’ behaviour it discovers the tasks they

regularly perform, and then makes the tasks available to the user as new commands. It works by

monitoring the sequences of low level commands and abstracts them into higher level tasks, and adapts

the interface to add GUI controls that provide the tasks as macro functions.

As new versions of software are released their user interfaces tend to become more cluttered, with more

buttons and menus. Although new features normally provide benefits, users tend to only use a small

subset of them [68]. Also, users can often be hindered by the complexity of an interface if frequently used

24 http://www.uiml.org
25 http://www.mozilla.org/projects/xul
26 http://www.ximl.org
27 http://msdn2.microsoft.com/en-us/library/ms752059.aspx
28 http://www.mozilla.com/firefox
29 http://msdn2.microsoft.com/en-us/netframework/aa663321.aspx

Chapter 5: Dynamic software adaptation

 90

items are located amongst unused ones. This suggests a need for an interface that adapts and therefore can

be personalised for each individual user.

The motivation for system adaptation is generally to improve the user experience. However unless it is

implemented in a friendly or appropriate way, it is possible that a system constantly changing behaviour

will cause frustration, and thus degrade the user experience. From a user’s view, adaptation can be

handled in many ways including allowing the user to choose whether to accept any new features, and

allowing to reject them and roll back to a previous state. Also, if the user did prefer a more automated

technique then the system should choose the time of adaptation well, so as to not interfere with what the

user is doing. One might speculate that a training wheels [69] approach could be applied to an adaptive

system. Slowly introducing application features and tools might allow for incremental understanding is

more beneficial than being overloaded with choices and features at the start. If an adaptive system were

constantly changing would there ever be a manual that could describe how to use it? Perhaps a minimal

manual [70] would be effective in this situation, that only holds the basic information a user requires to

get started, and through intuitive adaptations the system is learned through use. Another possibility would

be to display samples of a new software module’s past use to show the current person how it can be used.

If the new module was a UI component a pop up example video might be a good approach.

Findlater & McGrenere [71] made a significant step towards understanding appropriate choices as to the

autonomy and management of adaptation. They defined two main types of personalised interfaces:

adaptive and adaptable. Adaptive interfaces are instigated by the system whereas adaptable interfaces are

user-driven. In order to present an adaptive interface, the system logs which features are used most and

using this information it dynamically changes the interface so they are more easily accessible. If there is a

set of functions from which a higher-level task can be revealed, then a new interface component can be

added to allow this macro-like task to be executed.

Findlater & McGrenere performed a controlled lab experiment comparing the efficiency of static,

adaptive and adaptable menu techniques. The static menu was found to be significantly faster than the

adaptive menu. The adaptable menu was found to be significantly faster than the adaptive menu when the

users had seen and compared the menus, and understood the value of customisation. The majority of

users preferred the adaptable menu overall. Even though more users preferred the adaptable menu to the

adaptive menu, the users who preferred the adaptive expressed strong support for it. Findlater &

McGrenere suggest combining the two in a ‘mixed initiative’ design may be the best way to satisfy a

wide range of users.

Mixed initiative interfaces, where the system and the user both control some of the interaction, are

designed to overcome some of the limitations of fully automated techniques. The Microsoft Paper Clip is

an example of such an interface, and Horvitz reviews key challenges and opportunities for building

mixed-initiative user interfaces that enable users and intelligent agents to collaborate efficiently [72].

Problems with automated interface techniques include “poor guessing about the goals and needs of users,

Chapter 5: Dynamic software adaptation

 91

inadequate consideration of the costs and benefits of automated action, poor timing of action, and

inadequate attention to opportunities that allow a user to guide the invocation of automated services.”

Horvitz also considers decision-making under uncertainty and mentions a technique for examining

probabilities and assessing costs and benefits of actions. Horvitz denotes 12 critical factors for integrating

automated services with direct manipulation interfaces including considering uncertainty about user’s

goals, learning by observation and examining costs and benefits. Birnbaum [73] examines various

techniques of incorporating artificial intelligence capabilities such as reasoning or learning into user

interfaces.

Eager [74] demonstrated a very simple form of adaptation, namely automatic macro generation. Usually

macro recordings need to be started and stopped manually, thus users must decide themselves if a task is

worthy of being recorded, and decide its extent. If the macro system is implemented badly, it may require

more effort to learn and use the macro system than simply repeat the steps of the task manually a few

times. Eager attempts to address this issue by continually monitoring the user’s actions and if it detects a

repetitive activity, the Eager notification, in the form of an avatar, pops up on the screen. Eager then

anticipates what you are going to do: it uses green highlighting to mark what it thinks you are about to do.

For example, Eager will turn a button green if it expects you to click on the button. So, as you perform

your task, you can see whether Eager knows how to perform the task for you. Once you are confident that

Eager knows what to do, you click on it, and it auto-generates a macro that completes the task

automatically. Eager is a ‘programming by demonstration’ system — it is able to detect patterns in a

user's actions, and to write a computer program that automates those actions. It can be considered a smart

macro recorder because it does not have to be turned on it detects repetitive patterns automatically, and it

is able to make generalisations.

Intelligent user interface research has shown it to be advantageous to consider helping users rapidly locate

files in their folder hierarchies. FolderPredictor [75] applies a cost-sensitive prediction algorithm to the

user’s previous file access information to predict the next folder that will be accessed and reduces the

time of locating a file by an average of 50%. FolderPredictor meshes with the existing interface for

opening files on the Windows platform, limiting its obtrusiveness. This is an important feature as the

effectiveness of an intelligent tool can be undermined if it distracts too much or requires too many

resources, to keep the user working efficiently.

5.1.3 Individuals adapting software: Plug-ins and related systems

In the previous section it was mentioned that user interfaces can incorporate techniques allowing them to

be adapted to different displays, and how interfaces can be made more efficient and streamlined to certain

users’ needs. In addition to users having these conveniences in the systems they use, they also often seek

to extend the functionality of the software they use in a more general way. The extended functionality

they seek can often be as subtle as an advert blocker for their web browser, but may be complex, for

example, to build a development environment for an entirely different programming language than the

Chapter 5: Dynamic software adaptation

 92

one an IDE was designed for example, Coda30 is an IDE for JavaScript and web design which is built on

Eclipse, a Java IDE.

There are many software applications that allow individual users to manually add extra functionality

through plug-ins. The Mozilla Firefox web browser supports extensions as shown in Figure 28. One

popular extension for Firefox is an ad blocker that eliminates adverts from web pages. Microsoft’s Visual

Studio development environment similarly allows the use of ‘add-ins’.

Figure 28: The Firefox web browser has the ability to add features using extensions.

Developers sometimes strongly feel the need to extend and adapt existing applications, as it can feel a

waste of effort to re-implement things. The Application Enhancement (APE) toolkit for OS X was created

to allow the creation of plug-ins for applications that were not originally designed to support plug-ins or

have a plug-in architecture. It makes it easy to extend software that was not designed to be extendable.

It is worth noting that once again the choice as to the plug-ins to add or remove, and the workload of

making such adaptations, is essentially left to the user. IUseThis and Wakoopa31 shown in Figure 29 and

Figure 30 are online communities where users can create a profile of the software they use – in Wakoopa

tracking software automates this. Then, recommendations for new software the user might like are made

using comparisons with other users in the community. Also, the entire logs of closely matched users can

be viewed, which is useful for finding highly specific applications used by people of a certain profession.

These services recommend whole applications, not plug-ins, and the process requires the manual

installation of them. In fact, there are little or no tools that automatically support the process of finding,

30 http://www.panic.com/coda
31 http://osx.iusethis.com and http://wakoopa.com

Chapter 5: Dynamic software adaptation

 93

installing and removing software or plug-ins. Also, there is little in the design of plug-in systems that

takes advantage of the way that the process of adapting software may be influenced by social interaction

among individuals, which we turn to in the next section.

Figure 29: IUseThis.com allows users to discover the software used by other people with similar

software installed to theirs (neighbours).

Chapter 5: Dynamic software adaptation

 94

Figure 30: Wakoopa.com uses tracking software to log the use of applications, then submits this

information to a web site to give recommendations for other applications based on comparisons

with other users.

5.1.4 People’s patterns of sharing software

In large organisations, software distribution is generally more centralised with regard to its source and the

choice of what software to use. For example, such organisations tend to automate the installing of the

same software on all machines, or have large servers with the software installed which thin clients can

access. Personal machines are different and also even more businesses are becoming more flexible and

decentralised nowadays, opening up new avenues for sharing software between people.

Mackay [76] performed a landmark early study of how people within an organisation share their

modifications of customizable software, and revealed the social aspects of the apparently asocial practice

of this simple form of software adaptation. An individual would normally customise software for reasons

of personal taste or efficiency. However individuals with perhaps less time or desire to customise will

look to others for customisation ideas and inspirations. This sharing process can have many benefits

including individuals can experience how others work, perhaps learning new techniques or innovations,

and time spent learning how to customise can be reduced so more can be spent getting projects and tasks

done. Mackay discovered that by analysing the spread of UNIX customisation files within an

organisation, the structure of the organisation’s communication networks could be visualised. The highly

skilled software engineers were usually the first to experiment with new customisations and were

proactive in making their files available. Another group were less technically skilled but would modify

Chapter 5: Dynamic software adaptation

 95

those customisations to benefit the actual needs of the third and largest group: colleagues with the least

technical skills. Mackay declares the following requirements concerning the design of customisable

software:

1. The ability to browse through others’ useful ideas,

2. Better mechanisms for sharing customisations,

3. Methods of finding out which customisations are used and effective, and

4. Methods of identifying customisations that are ineffective.

Mackay continues by outlining a design implication from these requirements:

“Reflective software should increase the user’s awareness of how they actually use the

software. Techniques used to instrument software for feedback to user interface researchers

may be useful here.”

Note the use of ‘reflective’ here is different from computational reflection. The term reflective software

here describes an information channel for allowing users to discover their own patterns of use, and as a

beneficial consequence, it allows users to monitor their personal efficiencies. Furthermore, by making

users aware of the features they use most, they can be far more explicit to others about the particular

software they find most useful. To achieve this software would have to be instrumented, and as logging is

likely to be fine-grained, then raw log data would need to be summarised and presented in an easily

understandable format in the user interface. Presenting this underlying system information coherently is

quite a challenging task, and one the seamful design technique presented earlier in Chapter 3 handles –

that is, software designed to expose its underlying infrastructure in a meaningful way, to allow for better

understanding of how works and how one might use it. This is also an issue in the Castles game,

presented later in the thesis in Section 6.3.2, where information about software component usage logs was

transferred between player’s systems, and by displaying when, from who and how many logs were

received, they could make better informed decisions about recommendations which were being generated

from the logs.

The behaviour of sharing more efficient practices is not just useful for customisation files but is important

in all aspects of humans’ interaction with computers and with each other. For example, individuals may

share experiences with using newer more powerful software, or using the best combination of software to

fulfil a task. And when time pressure becomes a factor, people are often eager to ask for advice on the

most efficient way to get something done. It may be useful to consider how computers could provide

automated support for this kind of behaviour. For example, an application could monitor how useful

people find it, and then it could be recommended to others who are in similar circumstances, i.e. who

would probably also benefit from its use or (at least) from knowing about it. In fact, it is conceivable that

software might actually be able to find the people whom it would most benefit.

Chapter 5: Dynamic software adaptation

 96

One of the early landmarks in the study of collaboration in software adaptation centred on the Buttons

system [77], in which modules were shared via email, and could be activated individually within the

Xerox Lisp desktop environment. Users could make small changes to buttons, generally by setting

parameters via pop-up menus, but deeper changes and integration of buttons were feasible only for

experienced programmers. This ‘tailoring culture’ performed by the more experienced users mirrors

MacKay’s findings.

5.1.5 Recombinant computing

Recombinant computing is a design technique that allows communications between computational

entities with limited prior knowledge of one another – to simplify configuration by end users [78] [79].

Speakeasy [80] is an example of such a system which is “designed to support ad hoc, end user

configurations of hardware and software, and provides patterns for data exchange, user control, discovery

of new services and devices, and contextual awareness.” This relies on three key elements: a small set of

fixed domain–independent interfaces that modules can use to initiate communication, mobile code that

allows for dynamic extension of functionality to meet possibly unforeseen requirements, and “user–in–

the–loop” interaction that accepts that users will be the ultimate arbiters who decide when and whether an

interaction among compatible entities occurs. Speakeasy relies on contextual metadata, in the form of

predefined name/value pairs, which is used in describing the semantics of each component to a potential

user. Such descriptions also supported users’ editing of task templates, changing or setting parameters.

Speakeasy focuses on supporting users in handling a relatively small number of components associated

with devices and related services in the local context, filtering on the basis of known locations, owners

and other contextual features, but its “information filtering was only static—components did not update

their contextual information, and the organization of components was not responsive to the user’s current

context”. Edwards et al. [80] stated that “a more dynamic approach to information filtering, in which the

organization presented to the user is tailored to the user’s location, history, and tasks, could prove useful”.

A limitation of Speakeasy is the constraints on the fixed interfaces modules use to communicate.

Jigsaw [3] was another user configurable system similar to SpeakEasy. However, it differed in that it

focused on allowing users to understand the arrangements of connected sensors, devices and services, for

example a doorbell, SMS sender, camera and display. Jigsaw allows users to configure ubiquitous

domestic environments using an editor, based on a jigsaw metaphor, to make connections between

components more intuitive (Figure 31). Connecting jigsaw pieces together works by dragging a particular

piece to a fitting target piece. The components communicate using the Equip shared database, also used in

George Square explained (see 2.2.4). Whilst this approach is less constraining than the mechanism used

in SpeakEasy, a large amount of effort is required to build the Equip wrapper classes responsible for

submitting the events and parameter data objects into the dataspace, and retrieving them back out to be

use in the destination component. Also, Jigsaw’s end–user adaptation relied on a simple set of categories

of transformations between physical effects and digital effects, designed a priori rather than adapting

dynamically with use.

Chapter 5: Dynamic software adaptation

 97

Figure 31: The Jigsaw user interface for connecting jigsaw pieces representing sensors, devices

and services in ubiquitous domestic environments.

Kim et al. [81] designed an even more flexible configuration technique where if a component did not

contain the correct interfaces to allow the main system to use it, it could dynamically build a wrapper

which translates the calls from the system into the form expected by the new component. The motivation

was that black box reuse is difficult to apply in some application developments, and if the component

interfaces are different then component ‘reusers’ require a method for connecting components to support

more seamless reuse. Conventionally, wrapping techniques result in increased size of components as they

are continually wrapped to include new functions. Kim et al.’s technique uses adaptation pattern

components so only one wrapping is necessary.

5.1.6 Self-adaptive and Self-healing Software

Self-adaptive software modifies its own behaviour in response to changes in its operating environment.

The operating environment means anything observable by the software system, such as end-user input,

external hardware devices and sensors, or program instrumentation. Researchers working in this area, like

those in ubicomp, consider that distributed systems need to evolve as human needs change, technology

changes and the application environment changes—although they tend to focus on greater system

autonomy.

Change can either be a modification of a currently available function, or the addition of new ones. These

evolutionary changes can be difficult to accommodate, as they cannot be planned for at the system design

stage. Consequently, we would like systems to be sufficiently flexible to permit arbitrary, incremental

change. Kramer [82] believes “systems should be capable of supporting such change dynamically without

interrupting the processing of those parts of the system which are not, directly affected.” Kramer

Chapter 5: Dynamic software adaptation

 98

describes an approach where dynamic change can be specified, managed and controlled by distinguishing

between functional and structural concerns.

Oriezy et al. [83] propose an Architecture Evolution Manager (AEM) that mediates operations that affect

the architectural model. There is a change specification consisting of basic operations or more

sophisticated change transactions composed of server basic ones. All transactions are atomic in that a

“change transaction includes operations for forcing components into safe or halt states; adding, removing

and replacing components and connectors; and changing the architectural topology.” Restricting the set of

states the system will operate in should allow it to operate more safely in such a dynamic circumstance.

Cheng et al. [84] developed a technique exploiting architecture style for self–repairing systems. They

propose a general meta-model of architecture style using a complex system of types, rules and

constraints. Exception handlers are described in a formal mathematical way, inappropriate for end users.

“Systems may need to adapt, not just because underlying computation base changes, but because user

needs change. This will require ways to link user expectations”. While running, relevant system

properties are logged by “gauges” in the monitoring mechanisms and updated in the Architectural Model.

When the gauge value changes, the constraint evaluator re-evaluates the architectural constraints to check

for violations. In the event of a violation, the constraint evaluator activates a repair handler that freezes

the current state of the architectural model—to prevent subsequent violations from interfering with the

present repair. The repair handler then begins running the repair script. During repair, the transaction

handler listens for model API calls. If an abort signal is sent, the transaction handler rolls back any

changes made to the architectural model, and the error is propagated to a human operator. If no abort

occurs, the repair script completes with a commit operation, and all the Model API calls collected are

passed to the translator for translation into Environment API calls. The translator utilises the Environment

Manager to make the required changes to the Executing System. If there are any exceptions thrown

during the Environment operations the transaction handler is informed and subsequently aborts the repair

transaction. However, if the Environment manager returns a successful status, then the Transaction

Handler commits the repair changes to the model. Whether the repair transaction commits or aborts, the

Repair Handler signals to the Constraint Evaluator to resume system monitoring and resets the

appropriate gauges. At this point, constraints are re-evaluated to determine whether any violations are

now fixed, and the repair cycle completes. If a violation remains then a new violation is detected, the

repair is triggered again and the process repeats.

Supporting the modification of a system’s behaviour while it is running presents many more challenges

than with traditional systems. Runtime extension facilities have become readily available in popular

operating systems (e.g. dynamic link libraries in UNIX and Microsoft Windows) and component object

models (e.g. dynamic object binding services in CORBA and COM). These facilities enable system

evolution without recompilation by allowing new components to be located, loaded, and executed during

runtime [85]. Cervantes and Hall [86] discuss their experience in developing a framework for

constructing adaptive component-based applications. A limitation is that a very specific and inefficient

Chapter 5: Dynamic software adaptation

 99

protocol is required for communication between components, in the form of structured text messages.

Modern programming platforms like .NET and Java can support communication between dynamically

loaded components using reflection, so methods can be called passing parameters as normal.

5.1.7 Mobile Architectural Requirements

A mobile system running on a device requires communication between inter-system components, but

often also, communication with other devices. Mobile systems generally achieve this through a

middleware layer that bridges the gap between application program and platform dependency.

Middleware is defined as follows by Linthicum [87]:

Middleware is an enabling layer of software that resides between the application program

and the networked layer of heterogeneous platforms and protocols. It decouples

applications from any dependencies on the plumbing layer that consists of heterogeneous

operating systems, hardware platforms and communication protocols.

Since many middleware systems have been created to simplify component based and distributed

applications, it may be assumed that existing middleware can be applied to the architecture of particular

concern to this thesis: mobile peer-to-peer adaptive systems. However, traditional middleware

architectures, like CORBA and Java RMI, fail to provide the appropriate support for mobile applications

because they assume applications will run in a static environment [88]. Gaddah & Kunz believe that

middleware based on reflection techniques overcomes the limitations of the traditional technologies but

there are also limitations of the mobile computing environment that also need to be considered.

Gaddah & Kunz identified three common limitations of mobile computing that affect the design of the

middleware infrastructure required for that environment [88]:

1. Mobile devices

2. Network connection

3. Physical host mobility

Mobile devices currently have much more limited processing power than laptops. Also, devices vary from

one to another in term of resource availability. Hence, middleware should be designed to achieve optimal

resource utilization of whatever is available. For the design of the network connection, mobility is a

serious consideration. Mobile devices can move to different areas with no coverage or high interference

that will cause connections to disconnect or slow down. Physical host mobility is important because as

people move around their device might disconnect from one wireless network and search for an

alternative. Or, if no infrastructure networks are available, it might be appropriate to switch to an ad hoc

configuration.

Chapter 5: Dynamic software adaptation

 100

After identifying the limitations, Gaddah & Kunz continue to analyse the requirements for a mobile

middleware design:

1. Dynamic reconfiguration

2. Adaptivity

3. Asynchronous interaction

4. Context-awareness

5. Lightweight middleware

Traditional middleware platforms like CORBA are too heavy to run on devices with limited resources.

By default, they contain a wide range of optional features and all possible functionalities, many of which

will be unused by most applications. In a component based architecture, if the features of the middleware

are also components, then additional functionality maybe added to the lightweight architecture at run

time. Dynamic adaptation is a crucial requirement for a system that should stay configured to fit a user’s

context. As a user changes task, it should be possible for the system to generate or acquire a

recommendation that suggests components be added or replaced. A history–based recommendation

system driving adaptation is investigated further in Section 5.2.

Since communications can break between devices, it is a requirement that they exchange information

asynchronously. Similarly multiple devices may make requests to another device simultaneously, thus a

multi-threaded asynchronous technique for devices to communicate is required, and a further advantage

to this approach is scalability. Section 5.2, on the design of an adaptation architecture for ubicomp, also

covers how context-awareness is an essential feature that any relevant middleware must support that at its

core.

Gaddah & Kunz claim no existing middleware system support all the requirements identified and there is

much room for further research on mobile middleware:

There is an urgent need for new solutions that support particular application requirements

such as dynamic reconfiguration, context-awareness, and adaptation.

This argument justifies the design of Domino, the novel architecture presented in the following section.

Domino is reflection-based and satisfies Gaddah & Kunz’s requirements and it was designed fully for use

in a mobile peer-to-peer system. Although the applications that run on Domino are not necessarily fully

distributed, the mechanism for distributing contextual history logs, and software components, could be

considered middleware in the definition above.

Chapter 5: Dynamic software adaptation

 101

5.2 Domino: An adaptation architecture for ubicomp

This section presents an architectural design directed towards dynamic adaptation so as to fit with users’

constantly changing needs and environments, backed up by findings from prior work, systems and

experiences. The idea, design and implementation of the system were entirely the work of the author.

Domino’s design was inspired from background research on other ubiquitous systems, and from

personally developing the systems and experiences presented earlier in this thesis.

As mentioned previously, there are many definitions of adaptation with respect to computing. In terms of

the architecture presented, the focus here is on the system adapting its structure to better fit with the

dynamically evolving needs of the user. Functionality is added, removed or replaced when necessary, and

can either be automatic or user driven; that is, the mechanisms here can be used in either adaptive or

adaptable systems, to use the distinction of Findlater & McGrenere [71].

Domino’s inspiration is drawn from MacKay’s study described in 5.1.4, which demonstrated people’s

practices of sharing software customisations. People do want to improve their efficiency, learn new

techniques and innovations. However, personal research into achieving this can be hampered by time

constraints, and when this occurs people often look to colleagues or friends for inspiration. Domino could

potentially augment this behaviour by automating the process of sharing recommendations between

friends and colleagues; and improvements could even traverse the social group boundaries in

organisations, as identified by MacKay.

In Chapter 2, successful adaptation was found to only be possible when context is appropriately

considered and utilised. However, simply logging software use is not enough contextual information to

make successful recommendations for adaptations. Dey and Abowd [8] drew attention to four core

context types that they believe are necessary for fully identifying context: location, identity, activity and

time. Chalmers’ view was that overall contextual interpretation of logs of these information types changes

with time because an essential and important part of the significance of current events is their relationship

to past events. The George Square system successfully demonstrated these concepts; history-based

contextual recommendations proved successful in adapting media content and removing the need for pre-

authoring. Domino could use this technique to log the use of software and provide history-based

contextual recommendations for the change in software structure and features. Outcomes of the George

Square system included design guidelines for context aware mobile systems and thus will be abided by

Domino: avoid reliance on content pre-authored content, information shared among and stored by

multiple peers, avoid centralised peer-to-peer architectures.

In Chapter 3, Treasure demonstrated that, by exploiting seamful design, users could better understand

highly technical aspects of infrastructure such as WiFi networks. Similarly, this might be applied to

something as complex and dynamic as an adaptive system—which could be beneficial for user

understanding and acceptance. For example home automation systems that dynamically control lighting

as people enter rooms or sit on chairs have been suspected to cause frustration when they do not work as

Chapter 5: Dynamic software adaptation

 102

expected after the novelty factor has worn off [89]. Domino systems could expose aspects of their

underlying infrastructure, taking advantage of past patterns of use i.e. finding practical significance in

current events though their relationship to past events. For example, when history logs are being

exchanged, applications using Domino could be designed seamfully, aiding user understanding by

detailing what aspects of past use led to particular adaptations were recommended.

Chapter 4 on mobile peer-to-peer systems introduced the concept of Social Proximity Applications

(SPAs) where Persson classified four types: proximity messaging, providing awareness, intelligence of

data exchanges, and supporting identity expression. Domino may be viewed as a new, fifth type of SPA

in which computational software modules are exchanged between users within social proximity:

• Sharing data to generate intelligent recommendations of software.

This type of adaptive SPA could receive new functionality in the form of software components between

collocated users; that is, the exchange of components changes the users’ systems when they meet. Thus

one’s social activity and movement determine how quickly one’s system adapts, and collectively drive

the mechanism offering changes in functionality.

Also in Chapter 4, the FarCry and Samara systems demonstrated that mobile peer-to-peer systems could

exploit the social proximity of co-located users to drive the distribution of media and generate

recommendations of places to go to tourists. Domino could use the same mechanism to distribute the data

to drive recommendations for changes in software functionality, and to spread new software components.

Furthermore, by utilising social proximity, the location of users becomes an inherent aspect of the context

considered by the system, as Dey and Abowd articulated it should. This allows Domino to inherently

achieve the automatic sharing of software improvements with the social groups who are likely to have the

most similar interests, as MacKay’s study found.

Combined, these ideas and experiences offer a potential novel approach to overcome the weaknesses of

current mobile systems, in that they are mainly static, cut-down versions of desktop software, and offer an

opportunity to build successful mobile adaptive systems, which blend with and support users in their

dynamically changing activities and environments, thus fitting with the design ideals of ubicomp systems.

Domino’s primary goal is providing support for the spread of functionality and content throughout a

community of users, in order to improve system usability and content quality for the entire community.

First, an example scenario of its use is shown, and then each part of the design is presented, then an

overview diagram. Finally, a prototype implementation is presented in Section 5.3.

5.2.1 Example scenario

The following scenario represents what Domino aims to achieve:

Chapter 5: Dynamic software adaptation

 103

James is walking down the street and has his mobile device switched on in his pocket. He enjoys dining

out and going to the theatre, and he frequently travels into the city centre by bus to take part in these

activities. On his device is a Domino–powered application consisting of a restaurant guide, a list of

upcoming theatre shows and a map of bus routes. As James walks down the street, his device discovers

another Domino system being carried by someone else nearby. The two systems connect and transfer data

between each other. Later in the evening, as he begins to use his device, he notices that he has a

recommendation for a module that displays bus time schedules. This module is clearly useful to him and

complements his map of bus routes perfectly, and so he installs it and soon makes use of it to plan when

to make his journey home. In summary, while James simply went about his day as normal, his device

discovered another Domino system, shared data with it, generated module recommendations, loaded new

modules, and presented them for James’ approval. Most of this adaptation was done without requiring

James’ explicit interaction, as he only had to handle the choice of which recommendations, if any, to

accept.

5.2.2 Communication

As mentioned, Domino’s design was inspired by mobile peer-to-peer systems—in particular, social

proximity applications. Domino has three aspects to its communication system: nearby user discovery,

exchange of contextual histories including software use, and exchange of software functionality.

Domino runs on mobile devices that can be carried with users throughout their day. A typical device will

be a mobile phone or PDA, and these devices will need to discover nearby devices whenever possible,

using a wireless technology for example Bluetooth or WiFi. If infrastructure wireless networks are

available, for example WiFi hotpots, then devices will connect to those networks so peers can be found. If

there are no infrastructure networks then the devices will be required to communicate device-to-device,

for example using WiFi ad hoc networking. When a Domino peer is discovered, contextual history logs

will be exchanged, for example the logs of software use. Domino devices will carry the logs of multiple

users and, when sharing logs, the logs of all users will be exchanged, i.e. not just those of the user the

request was made to. This part of the design is similar to that of peer-to-peer Recer from 4.3.1. The

Domino communication system will also be responsible for the exchange of software modules. Due to the

inherent unreliability of ad hoc connections, it cannot be guaranteed that the Domino system that was the

source of the recommendation will still be available to service a subsequent module transfer request. This

is one of the reasons why Domino maintains a ‘wanted module list’.

The transfer of history data and modules when Domino clients meet leads to controlled diffusion that is

inspired by the epidemic algorithms of Demers et al. [90], and experimented with in the Far Cry system

described in Section 4.2. Popular modules are quickly spread throughout the community, while modules

that fulfil more specific needs spread more slowly but are likely eventually to locate a receptive audience

because of history-based context matching and the use of ‘wanted lists’ to find required modules.

Chapter 5: Dynamic software adaptation

 104

5.2.3 Recommendation

Domino’s recommendation system design is inspired by the contextual history-based technique in

Chapter 2 and its successful demonstration in George Square. An advantage of Recer is that it is generic

in its storage format and thus many types of contextual information can be stored. Thus if Domino is

required to log other types of contextual information, for example GPS location or the number of peers in

range, then it will be possible. The recommendation part of the system will be required to make requests

to peers for history logs, via the communication system. When requesting a log, for efficiency, Domino

will first check what time-stamp it has received up to already, and then send that as part of the request.

The main functionality of the recommendation system will be to generate recommendations for software

modules. The result should be a ranked list of the software modules most likely to be useful at the current

time. This will be achieved by selecting the most recent log entries representing the current context, for

example, from the last 10 minutes to a day depending on the application, and using that as the context in

the recommendation search.

The final requirement of the recommendation system is logging use of software and other contextual

information to a database. This logging may vary based on implementation, but it must be flexible

enough to support logging of user interface components that the user interacts with, and also non-user

interface modules, such as drivers or background tasks.

5.2.4 Adaptation

Once a module recommendation has occurred, and the communication system has retrieved the module,

control then passes to the adaptation system. A module’s invocation may either be automatic or the user’s

permission will be required. Then it will attempt to dynamically load it into the running configuration.

First, the adaptation system uses reflection to obtain the module’s root class, which implements a simple

interface, the Domino Module Interface (DMI). As well as basic start, stop and pause methods, the DMI

contains methods for querying and modifying the module’s dependencies and dependants, and a method

to expose what types of modules it can support. During development of a module, the programmer must

specify the minimal set of modules it is dependent on for successful execution. Since dependencies are

defined as type name strings, modules can support multiple dependencies according to the class or

interface types its DMI-implementing class inherits from or implements. An example dependency is that

a map layer is dependent on a map viewer to display it.

If dependencies cannot be fulfilled then the module is not started, and if there are any named

dependencies these are added to a ‘wanted list’ in the communication system. If the dependencies are

fulfilled then, subject to any user intervention, the module is started. The final step is that a call is made

into the recommendation system to log the use of the module to the database.

Chapter 5: Dynamic software adaptation

 105

5.2.5 Design Overview

In summary, Domino’s design involves three sections: Communication, Recommendation and

Adaptation. Figure 32 shows the three sections with the inner functions of each, and also the flow of

events leading to an adaptation taking place, beginning with a peer being discovered to the system change

having taken place, and the new state logged to the history database.

Figure 32: The order of events in the Domino architecture.

5.2.6 Scope

Domino is designed to be as general as possible, without sacrificing ease of implementation of modules

by developers. Often adaptive architectures can have inefficient and cumbersome communication

protocols between modules. For example in SpeakEasy, the modules communicated using text messages

of a specific pre-defined protocol [80]. To overcome this weakness, Domino has been designed to support

normal function calls across module boundaries allowing modules to be developed as if they were part of

a normal static application. For example, a map layer could request the map viewer containing it to

redraw by calling its Paint function. However this advantage restricts Domino’s generality in that, when

developing modules, developers will need to know the interfaces of the dependent modules—although the

developer need not know about the modules’ implementations. Ideally, the modules of a dynamic

ubiquitous system should be able to communicate with no prior knowledge of one another, and through

an identified need for combined use, the need for communication has developed, but this surpasses the

scope of the current design. Fortunately, functionality to allow more flexible cross-module

communications could be added by a future module, that other modules could utilise.

Chapter 5: Dynamic software adaptation

 106

Due to the generic nature of the system model, when a module is received there is no predetermined place

for it in the system. In the simplest case, the new module can query the Domino system’s running

modules to find ones that satisfy its dependencies, by analysing their classes and the interfaces they

implement. However, a problem arises when multiple satisfactory modules are found. For example, if

there are two map viewers running (i.e. two instances of the same map viewer class), each of which could

support a new map layer module, which viewer should the new module be connected to? To resolve such

ambiguities, a second use of the history data and the recommendation algorithm is made. By using the

new recommended module as the ‘context’, we can obtain a ranked list of modules previously used in

conjunction with it, to determine which is the most likely target. For example, imagine the case where a

new ‘pollution’ layer module is to be added to a system that has two existing map viewers running, one

with a traffic layer and the other with a restaurant layer. Through using this technique it becomes possible

to determine that the traffic and pollution layers are used in conjunction more often than the pollution and

restaurant layer. Thus, Domino would connect the new pollution layer to the viewer that has the traffic

layer, where it is likely to be of most value. Alternatively, when starting up a new module, one or more of

its dependencies may not be matched. If the required module is available on the system, then a new

instance of it can be started up-generating a new check for dependencies and so forth. However, if the

required module is not available on the system, the adaptation process for the new module is suspended,

and the module is added to the wanted list. The user is informed, and can either drop the recommendation

or wait until the wanted module is discovered.

5.3 Implementation

This section describes in detail one prototype implementation of the Domino adaptation framework that

conforms to the design presented in the previous section. Of course, other implementations are feasible

for other platforms and have more functionality in certain areas. The majority of the chapter is made up of

detailed descriptions of how the individual parts of the Domino framework are implemented and how

they operate. This covers choosing the implementation platform that includes the choice of device,

programming platform, and wireless technology for communications. Following that is the

implementation of each of the three sections of the Domino design. These are the discovery of peers,

Domino modules and the adaptation mechanism, and the logging and recommendation system. How these

parts operate together to support adaptation is then discussed.

Each instance of the implemented Domino system consists of three distinct parts: handling

communication with peers; monitoring, logging and recommending module use; and dynamically

installing, loading and executing new modules. We refer to the items that Domino exchanges with peers

and dynamically loads and installs as modules. A module consists of a group of .NET classes that are

stored in a Dynamic Link Library (DLL) that provides a convenient package for transporting the module

from one system to another. Each Domino system continually monitors and logs what combination of

modules it is running. When one Domino system discovers another, the two begin exchanging logs of

usage history. This exchange allows each system to compare its history with those of others, in order to

Chapter 5: Dynamic software adaptation

 107

create recommendations about which new modules a user may be interested in. Recommended modules

are then transferred in DLL format between the systems. Recommendations that the user accepts are

dynamically installed, loaded and executed by Domino. This constant discovery and installation of new

modules at runtime allows a Domino system to adapt and grow continually around a user’s usage habits.

5.3.1 Selecting the device

The implementation of Domino was targeted at current popular mobile technology in view of the fact that

the overall aim was to develop a fully useable solution on the smallest form factor possible, to be trialled

with many users. The requirements for a suitable device to prototype Domino were:

1. Small form factor

2. Wireless networking

3. Development tools

4. APIs for controlling 802.11

Therefore the choice of devices readily available at the time consisted of Windows Mobiles and Nokia

Smartphones.

There are two types of Windows Mobile device — Smartphone and Pocket PC. The simplest and most

evident difference between the Windows platforms is that Pocket PC devices have a touch screen, where

as Smartphones do not, however both types can have hardware keyboards. Both types of platform can be

either GSM (Global System for Mobile Communications) or CDMA (Code Division Multiple Access)

mobile phones with either GPRS (General Packet Radio Service) or 3G data connections. GSM is the

mobile phone standard in Europe. It is becoming more popular in USA, but CDMA is the standard

currently used by the majority of devices in USA. The operating system is the same, which is based on

Windows CE 5, however the two platform variations differ in their user interface, since Smartphone is

optimised for key input as opposed to touchscreen input. If designed well, for example if all functionality

is exposed through keyboard presses, the same executable can run well on both platforms. Windows

Mobiles typically have a 200Mhz-675Mhz CPU, 64Mb RAM, 64Mb ROM, WiFi and Bluetooth, and

they offer memory expansion via SD memory cards up to a size of 8GB. More recent devices also have

cameras and GPS built in.

Nokia Smartphones run Nokia’s Symbian operating system. At the time of choosing a platform for

Domino, Nokia phones did not have WiFi and only made use of Bluetooth and GPRS. Symbian is a

frequently updated operating system. Usually with every new model of phone, a new version of Symbian

is released; this can make supporting every device troublesome. Symbian phones can run both native and

Java applications, however access to the phone’s actual built in functionality can be quite restricting. For

example any time an application requires the use of the GPRS connection, the operating system prompts

Chapter 5: Dynamic software adaptation

 108

the user and the dialog must be accepted before the application can continue. Recent Nokia devices are

more powerful and have built in WiFi and some include GPS.

The quality of development tools is of high importance when choosing the mobile device platform.

Because mobile devices have limited performance compared to desktop computers, it is not always viable

to build software on a desktop and then run it on the device, as previously undetected run time errors

might develop in the low performance situation. To support this, some platforms offer emulators that

allow the software to run in a limited fashion, however the native wireless functionality of the device is

not offered on emulators. So, for a platform like Domino that requires control of the WiFi feature, a lot of

the development has to be done using the actual device. Therefore it is particularly important that

development tools exist that allow developers to compile code, transfer it to the device, execute the code,

and also support live debugging with break points, all on the real device, with activation from a single key

stroke. This is why Microsoft are currently leading in this field as their Visual Studio IDE supports all of

these requirements. Although Windows Mobile is a proprietary operating system, sufficient APIs and

SDKs are available to give a very high level of control of the device. Furthermore, the wide availability of

Windows Mobile has given rise to a very large development community.

Given that the development tools offered by the Windows Mobile platform met more of the criteria for

this project, compared to the other operating system development tools mentioned, and very small

powerful devices existed incorporating 802.11, which was controllable through software, Windows

Mobile was selected for this implementation of Domino. The HP iPAQ 2750 was chosen as the first

target device, which is a Windows Mobile Pocket PC, with 320x240 resolution touch screen, 675Mhz

CPU, 128Mb RAM, WiFi, Bluetooth, Compact Flash and SD expansion slots, and running Pocket PC

2003. There have been two operating system upgrades since then, Windows Mobile 5, and Windows

Mobile 6, however both were minor upgrades and software designed for earlier systems continues to run

on the new devices.

Since the completion of the Domino implementation, four notable new mobile platforms have become

available. The first is OpenMoko32 that is a fully open source touch screen mobile phone and

development platform. As an open source platform, OpenMoko provides developers with the ability to

examine and control all of the phone functions, which is a huge advantage, however given that

OpenMoko is still a relative newcomer in the field, the development tools are not of high quality yet.

The second new platform launched can be seen in Nokia’s N770 and N800 WiFi tablet devices that run

the open source Maemo Linux distribution. This is another open source operating system with a vibrant

and growing development community, however as with OpenMoko, the development tools are lacking

and have not yet reached the levels of quality of the IDE offered by Microsoft. Additionally, given that

another requirement of Domino is small form factor, the N770 and N800 are not appropriate as they are

quite large (twice the size of many other mobile devices). Lastly, the N770 and N800 do not include any

32 http://www.openmoko.org

Chapter 5: Dynamic software adaptation

 109

phone functionality, as their primary purpose is to provide users with Internet access. This is a major

disadvantage, as users need to carry another device in order to make phone calls when mobile.

The third platform is the recently announced Android platform by Google33. The SDK and emulator are

available to use, but no phone hardware has been released yet. Android is portrayed as an open source

operating system, however not in the sense of Maemo and OpenMoko. Android’s functions are exposed

by an open source JVM and a Java SDK is supplied, but its native functions such as WiFi scanning and

phone functions are private. Google’s aim is to provide a platform where the same JVM can be

implemented across many types of hardware meaning the same applications can run on different devices,

however this might lead to frustration amongst developers. As previously stated, Windows Mobile

devices come in two variants (Pocket PC and Smartphone), and that already provides a fairly complex

development scenario, so if Google plan to support many more variants, the Android software may

become simply too complex to be worthwhile developing for, and thus software may be simplified to

only support one particular type of phone, which negates Google’s stated benefit of the platform.

The fourth and final most interesting new mobile platform is Apple’s iPhone34. The iPhone is the first

mobile phone to run a powerful desktop class operating system, namely Apple’s OS X. It is also the first

fully finger-based (rather than stylus) multi-touch mobile device with WiFi, Bluetooth, GPRS, 8GB

storage, 64Mb Ram, 400Mhz CPU. A unique feature is a dedicated graphics processor. High quality

responsiveness is the main feature that makes using a touch screen a great experience, and the iPhone

reacts instantly to touches, and can even detect two fingers at once, which allows for unique interactions

such as pinching for zooming the interface. The current SDK offered by Apple is only for Internet

browser based applications, however an SDK and IDE for native applications is due in February 2008.

Because it runs the OS X operating system, existing libraries and utilities can be recompiled for the

phone’s ARM processor. The iPhone’s architecture has an impressive memory bandwidth and in tests it

can download over WiFi at 750K/s. In contrast, current Windows Mobile device architectures have a

‘bottle neck’ in their memory bandwidth and download at a significantly lower maximum of 100K/s.

Because of the power of the iPhone and its features, and its potential for utilising existing libraries, it

could become a very prominent platform for researchers in the future.

5.3.2 Selecting the programming platform

When implementing a reusable architecture, the choice of programming platform is crucial, and even

more crucial when the target is a mobile device. On Windows Mobile there are three significant

programming platform choices for implementing Domino. They are Microsoft .NET, Java and native

C++. Each of them has advantages and disadvantages explained below, and the choice for Domino is then

justified.

33 http://code.google.com/android
34 http://www.apple.com/iphone

Chapter 5: Dynamic software adaptation

 110

Native C++ offers the highest performance and most straightforward access to native phone functions

however it is a difficult language to develop in. Writing code can be quite error prone and development

time can be significantly longer than in the other choices. Native C++ applications are developed in

Visual Studio that includes a form designer and debugger, and one button to compile, deploy and execute

the application on the mobile device or emulator. Domino’s adaptation system requires components to be

integrated dynamically, while the system is running. Although this is possible in native C++, it would

require a significant amount of extra effort and therefore longer development time compared to the other

choices.

Java development is possible on Windows Mobile, although the difficulty in choosing a Java Virtual

Machine (JVM) is a significant issue. There is no longer an official JVM by Sun, instead there are several

3rd party JVMs. The best two are IBM’s J9 JVM and NSICOM’s CrEme JVM. There are several other

JVMs on the market, but they all suffer from various problems. Sun’s PersonalJava is no longer

supported, both SuperWaba and EWE are not fully Java compatible, Esmertec’s JBed is on sale to OEMs

only, and Insignia Jeode is out of date35. One advantage of utilising Java is the wealth of libraries

available designed for desktop computing, however porting these to the cut down JVMs for mobiles can

be time consuming if even possible. From experience of building a mobile system on the CrEme platform

[91] there were a few barriers to smooth development. The JVM was only implemented to Java

specification 1.3 and thus was lacking several major features. Performance and memory management was

poor and applications would tend to simply quit without any errors. Access to native phone functions is

possible on the CreMe JVM however this is a very complicated process involving writing extra native

code to bridge between Java and native code in the form of JNI (Java Native Interface) libraries. For these

reasons, Java is a less popular choice for development on Windows Mobile nowadays and is perhaps not

a good choice for building a reusable library like Domino.

Microsoft’s .NET framework is available in a slimmed down version designed for mobile devices named

the Compact Framework. MS .NET is similar to Java in that it is a high level object oriented platform that

runs in a virtual machine—CLR (Common Language Runtime). MS .NET applications can be written in

C#, J# (similar to Java), Visual Basic and C++. Most of the core .NET functionality is available in the

Compact Framework and allows use of the majority of windows mobile UI components, access to

databases, networking, simplified web services. So far the Compact Framework has been released in three

versions. CF1 was the most basic and was quite limiting, however missing functionality was implemented

by a community driven open source project called OpenNETCF36, which for example allowed serial port

access and more advanced drawing to screen. CF2 brought more functionality and the majority of

OpenNETCF became redundant, and the main improvement was dynamic user interface layouts so

applications displayed well on different screen resolutions. This was an important development as there is

an ever-increasing list of windows mobile screen resolutions, currently: 176x226, 320x240, 240x240 and

640x480. Furthermore, most devices can switch from a portrait to landscape display, and CF2 allows for

35 http://blog.vikdavid.com/2004/12/java_on_pocketp.html
36 http://www.opennetcf.org

Chapter 5: Dynamic software adaptation

 111

automatic re-layout when this happens. CF 3.5 brought compression and Windows Communication

Foundation (WCF) which is a very simple to use remote procedure call technique for communications

between devices and servers. A very powerful feature of CF is its ability to call native libraries directly

without any bridging code; this is made possible by the Marshal classes in the .NET framework that are

responsible for converting data from the managed CLR memory to unmanaged, and handle data type

conversion automatically. This allows CF software to utilise native device features such as WiFi and

Bluetooth scanning very easily. CF supports simplified access to SQL CE, a database for Windows

Mobile devices, and powerful data binding classes for linking data structures and user interface

components to data in a database. CF has reflection libraries that allow dynamically loading classes from

DLLs at run time. Finally, .NET applications are developed in Visual Studio that includes a form designer

and debugger, and one button to compile, deploy and execute the application on the mobile device or

emulator. All of these features make .NET CF the best choice currently for mobile device development

for research software.

In summary, small form factor is offered by most of the options discussed but high quality development

tools and easy access to built-in functionality such as 802.11, whilst the ability to modify software

structure dynamically at runtime is only realistically available through the Windows Mobile platform

using the Microsoft .NET framework.

5.3.3 Communication

As mentioned in the design section, the communication segment of Domino is required to discover

nearby peers wirelessly, exchange history logs, and transfer modules. The Windows Mobile devices

chosen for the implementation offer communication through Bluetooth and WiFi, although other similar

models also support 2G (GPRS and EDGE) and 3G (UMTS and HSDPA) communications. A

comparison of these technologies is shown in Figure 34.

Technology Frequency

(GHz)

Cost Power

consumption

(active)

(mW)

Range Theoretical

Max (KB/s)

Laptop

Max

(KB/s)

Mobile

Device

Max

(KB/s)

GPRS 0.85-1.9 High 1400 long 5 5 5
EDGE 0.85-1.9 High 1400 long 15 15 15
UMTS 2.1 High 1700 long 48 48 48

HSDPA 2.6 High 1700 long 460.8 204.8 128
Bluetooth 1 2.4 None 120 10m 54 53 53

802.11G 2.4 None 990-1600 300m 6912 3328 128

Figure 33: Comparison of current wireless technologies for mobile devices. Power statistics are

from [92]. Speed tests are by this author.

It is interesting to see that mobile devices do not reach speeds close to the theoretical maximums of the

faster technologies. Primarily, this is due to memory bus constraints on current phones. Furthermore, if

Chapter 5: Dynamic software adaptation

 112

the data downloaded is to be stored in flash memory then the speed required to write to such storage can

reduce the speed even further.

Domino requires the use of local network connections, for example Bluetooth or WiFi, rather than long

distance connections such as GPRS or UMTS. Firstly, local connections intrinsically offer relevance

filtering by location. That is, those geographically proximate to a user are more likely to be carrying

software components that are of relevance to that particular user. This is due to the fact that people tend to

spend much of their time in close proximity with friends and work colleagues, who obviously have

similar social or work interests. Additionally, local 802.11 and Bluetooth connections can work

anywhere, even when a phone is out of cell coverage; for example, in ‘dead zones’ such as the subway

[93]. Another significant advantage is that WiFi and Bluetooth are free to use for local ad hoc

connections, whilst for mobile devices longer-range connections can be extremely expensive if large

amounts of data are to be exchanged. Furthermore, local WiFi connections offer significant bandwidth

and speed improvements over longer-range technologies. This is particularly important to the work in this

thesis because Domino’s design relies on spreading data epidemically, and so it often wishes to transfer

large amounts of data. One final disadvantage of long-range cellular connections is that it is usual for a

single, paid account per device with a SIM card. For example, a mobile phone or PCMCIA data card (for

laptop use) both have a single SIM card, and the operator expects that there will only be a single user and

that all their operator services will be delivered over this single device. If devices are to become more

adaptive and do indeed begin sharing content between peers on a frequent basis, regardless of where they

are, then operators could support usage models supporting multiple connection points per person or per

household. An interesting new device is the Amazon Kindle e-book reader37, which is the first device to

have a free 3G data connection with no contractual obligation to an operator.

If connections such as 3G data services become cheaper and more flexible in the future, then it may

become prudent to use them, as they would greatly increase the population of available peers from which

information can be cultivated. However, if this does occur it would be prudent to ensure a privacy system

offering a suitable degree of anonymity for users interacting with each other be created, as currently these

connections may expose personal data, such as phone numbers.

Although Bluetooth consumes a relatively low amount power, it lacks the speed of WiFi. Furthermore, it

suffers from a severe problem in that when a device is in discovery mode—that is, when it is attempting

to seek for peer Bluetooth devices—it continually hops between radio frequencies. As a result, it is

extremely unlikely that a device in discovery mode could ever be detected by another, as there is only a

slim chance that two such devices would both be using the same frequency simultaneously. Indeed, as the

chance of this occurring is so small, the majority of Bluetooth devices simply completely stop advertising

their existence for the duration they are in discovery mode. As a result Bluetooth devices are a poor

choice for a peer-to-peer technology if the system requires devices to be continually scanning for peers.

37 http://www.amazon.com/gp/product/B000FI73MA

Chapter 5: Dynamic software adaptation

 113

Due to the advantages and disadvantages listed, WiFi was chosen for communications for most of the

research described in this thesis. By utilising the WiFi and the peer discovery implementations in

Treasure, Feeding Yoshi and StreetHawk it could become the ideal peer discovery component for

Domino.

To summarise the evolution of the WiFi discovery driver in this thesis, the initial design began with a

driver to automatically lock a WiFi device onto a particular infrastructure network in Treasure to increase

reliability. This was then improved in Feeding Yoshi to support ad hoc connections between mobile

players out with the range of infrastructure networks. At this stage the Self Discovering Spaces (SDS)

component was added to enable applications to discover each other and communicate once the devices

were connected to WiFi. In Feeding Yoshi it was used to support the swapping of fruit between players.

FarCry and Samara also utilised this driver and SDS, and an additional component was added to support

reliable epidemic transfers of information. Finally, Streethawk added the ability to detect infrastructure

networks that have Internet connections. Although the current design of Domino does not have a

requirement for Internet access, it could potentially use this access in the future, for example to validate

the authenticity of modules.

The final implementation of the WiFi peer discovery component in Domino, involves two parts. The

connection to a physical network (ad hoc or infrastructure), and the discovery of Domino peers on the

connected network. In wireless networks, the same physical network means that devices use the same

SSID and network mode (ad hoc or infrastructure). This allows them to communicate using 802.11

Ethernet frames, which the application layer IP protocol runs on top of, and which Domino peers use.

Existing MANET systems provide no requirement for devices to auto configure their setup for ad hoc

networking. In the majority of research, it is assumed the device has been preconfigured with a set SSID

and IP Address before use by the end-user, and thus is ready for applications to communicate.

Furthermore, it is often assumed all devices are in range of each other when experiments start. Obviously,

this is rarely the case if users have their own devices and are fully mobile during their normal day. More

commonly, devices would be set to a specific SSID when not in range of any others. As will be seen

shortly, this can lead to a protocol failure that causes devices to be unable to communicate with one

another when they are in range, even though they have the same ad hoc SSID set. This was the case in

Hocman, in which devices frequently failed to communicate with one another when riders passed each

other on the road. However, as will be seen, the systems in this thesis were designed to overcome this

particular problem.

WiFi was designed as a replacement for Ethernet cables, and works in a very similar way that it robustly

transmits Ethernet frames that encapsulate IP packets. Thus, in theory, applications can transmit data

wirelessly using TCP or UDP as if they were using a wired connection without any specific WiFi code.

Chapter 5: Dynamic software adaptation

 114

In a decentralised wireless ad hoc network, there is no DHCP server to control the distribution of IP

address configurations, so devices automatically assign their own addresses. In other words, it is not

possible to ensure the IP addresses are unique and on the same subnet, which applications depend on for

successful communications. This issue is addressed by the Dynamic Configuration of IPv4 Link-Local

Addresses protocol. This is implemented on Windows Mobile devices, and provides the mechanism for

devices to self-allocate unique IP addresses to all peers on an ad hoc network. However, in practice it can

take up to a minute for an address to be self-configured. Domino overcomes this by generating a static IP

address from the device’s serial number, and takes 3 seconds (because Windows Mobile require a power

cycle of the WiFi device).

The Hocman [50] system enabled motorcyclists to exchange personal web pages of information whilst

riding. Self-configured addressing at connection time was too slow for what Hocman required. So in the

implementation of Hocman it was necessary to pre-configure each device to be constantly in ad hoc mode

with a predefined static IP address in a specific subnet and constantly associated with a specific network

SSID. The application can do this when it is run. Due to the problems explained in configuring IP

addresses, some might assume that applications should exchange data at a lower level in the networking

stack, and implement a custom protocol. However, this would greatly increase the complexity in the

application, and would require the re-implementation of a great deal of the functionality offered by IP

protocols; for example fault tolerance in TCP and broadcasting in UDP. The extra work required to

implement and test this might outweigh any advantage gained. The authors of [94] point out that:

Although the technology for achieving MANET is well studied, applications of it are rare

Indeed, Hocman is one of the first widely known systems to successfully utilise 802.11 MANETs as the

communication technology of a mobile, peer-to-peer application. The authors also state:

Operation without an infrastructure fits well with biking since traffic encounters can take

place anywhere

However, this statement can be extended to most mobile systems, as the location of devices, and the

likelihood of these devices being near an infrastructure node when they encounter one another, cannot

easily be predicted.

In Hocman, whilst the MANET configuration worked well in the system, there was a problem with the

MANET configuration in Hocman that was not discussed in published work but is known to exist from

conversations and experiments with the authors. This was that the reliability of devices being able to

successfully communicate with one another in the trials was far lower than expected. The most likely

cause of this was due to constraints in the wireless device drivers that existed at the time Hocman was

trialled. Devices at that time commonly had to be in range of one another when they were first set to ad

hoc mode or they would not be able to meet. This constraint was caused by the fact that setting a device

Chapter 5: Dynamic software adaptation

 115

to ad hoc mode actually created a hidden BSSID that was used as a fake infrastructure node two peers in

range could both address. As this BSSID was created randomly, if the two devices were not in range of

one another when set in ad hoc mode they would be forced to generate separate IDs and thus not be able

to communicate over the same ID when in range, as the protocol rejects any messages not received from

the BSSID that matches that currently stored. The 802.11 specification defines that if ad hoc devices with

the same SSID move in range of each other then all devices should associate with the same simulated

BSSID. However, in practice, depending on the WiFi device and driver user, this is not always the case.

By using only local connections, rather than transmitting information over the Internet, no personal data

about users is ever sent through a third party, and there are no logs that communications ever took place.

However, whilst this threat is removed, others are introduced. For example, peers could be designed to

disseminate malicious logs, resulting in the recommendation of components that would not typically be

used, and which may have been designed to perform malicious attacks. That is, a malicious user could

create fake logs in an attempt to get their own virus distributed amongst a peer community. Although

complete security of Domino was not considered as a major feature of its design, and this implementation

does not attempt to provide a fully secure system, its vulnerabilities are acknowledged and possible the

issues and possible solutions are examined in detail in Section 6.6.

Awareness of peers is critical to Domino, and having a variety of up-to-date log data from these peers is

key to the recommendation system’s operation. When connected to a network, be it fixed or wireless, the

SDS component within Domino repeatedly sends out packets containing an IP address and port number

on which it can accept connections from other Domino systems. This allows any other Domino systems

on the same network to discover, connect to, and request and receive history data and modules quickly

from other peers. In order to maximise opportunities for encounter, peers continually attempt to meet on a

certain network, and will consistently switch to one appropriate network. Domino systems running on

devices with wireless connectivity actively seek out infrastructure mode networks and connect to them

whenever possible. When no networks are available, Domino switches to its own ad hoc network. These

features allow Domino systems to contact each other even when no 802.11 infrastructure mode networks

are present, while still permitting users to use infrastructure access points, i.e. hotspots, to connect to the

Internet as they normally would. In our trials the custom wireless driver code was extremely quick in

carrying out the required switching between networks and network modes. Typical times involved with

Domino’s 802.11 connections are as follows:

• Switching between infrastructure mode and ad hoc mode: 1ms

• Associating with an infrastructure access point: 3s

• Time to acquire an IP address via DHCP for infrastructure: 5s

• Time to set IP address for ad hoc: 3s

• Discovering a peer after joining a network: 1s

Chapter 5: Dynamic software adaptation

 116

The DHCP time for infrastructure is highly variable depending on the quality of signal to the access point

and the number of users on the network. When in ad hoc mode we decided to assign static IP addresses as

we found automatic private addressing to be slow and unreliable. It should be noted that the above times

are taken from the moment a Domino system makes the decision to switch to another network. In our

code we typically made this decision after trying but failing to reconnect to the previous network four

times with a period of 250ms between each attempt. Thus, the effective total duration for switching from

one infrastructure network to another typically was 9s ±5s.

This ‘network discovery followed by service discovery’ approach has advantages over IP-based discovery

protocols such as ZeroConf38, which only provide the latter service. Searching for other networks and

discovering new clients continues even while connected and transmitting data over a network. This

behaviour results in nearby Domino systems being able to locate each other in most situations. Indeed,

unless the network card is required to be exclusively locked to another application, a Domino system is

likely to locate another nearby in a matter of seconds.

The UDP packet that each Domino system broadcasts every second holds an IP address, a port number

and a unique ID for the device. In order to protect a Domino user’s privacy, his or her own username,

actual device ID or MAC address are never used as identifiers in any of the data transmitted over the

network. Instead, each user can choose one of two types of anonymous ID. Firstly, when Domino is

initially run on a system, a random number can be generated and permanently stored on the device to be

used as the ID in all subsequent Domino transactions. As the ID is randomly generated the user’s

anonymity is preserved. The main advantage of this technique is that if two or more sets of data are

exchanged with a peer at different times then the receiver, although not able to identify the actual user,

will be able to identify that the data comes from the same source and so will subsequently be able to

determine more exact recommendation weightings for the entries. For example, if a new set of data is

received and shows a moderate similarity to the current Domino user, the likelihood of it being

recommended would high. However, if it was found that, in addition to this new set, previous data had

been received from this user in the past, the chance of recommendation could be significantly higher.

The alternative ID that can be used is simply a random number generated for each transaction with a peer.

Whilst this technique is the most efficient at protecting the originator’s identity, it does result in it being

impossible to determine if two different data sets came from the same source. However, the

recommendation system mainly relies on finding similarities within short windows and, as these windows

are commonly far smaller than any set of data transferred in a typical Domino transaction, this method

actually has little impact on the quality of the overall recommendations.

When one Domino system receives the UDP packet broadcast by another, it can use the information

contained therein to act as a client and create a TCP connection to the advertised IP address and port.

Thus, the systems temporarily assume the traditional client/server roles. The most commonly used

38 http://www.zeroconf.org

Chapter 5: Dynamic software adaptation

 117

requests in our systems so far are to list the users for whom one has history data, to send the N most

recent history entries for user X, and to send N history entries starting from the Mth most recent entry for

user X. These three request types allow a client to identify which histories are available on the server, to

begin obtaining the most recent history data and then to continue to gather more data as time allows. As

connections can be lost at any time, a request generally consists of a single message, and we parse

incoming streams so that we can make use of most of the data received up to the point when the

connection was lost. As all connections are threaded and handled separately, each Domino system can act

as a server and a client simultaneously. Indeed, this is the typical behaviour for Domino systems, as they

will normally discover each other at approximately the same time. Each Domino system also contains a

lightweight implementation of an FTP client and server for the exchange of modules.

When utilising existing communication technologies on the phone its important to be careful not to

disrupt the activities users may carry out in the normal use of their device. The majority of mobile phones

will not be running existing background services that utilise the WiFi connection, so an appropriate

implementation would be for Domino to control WiFi when the device is not in use. This can be achieved

on Windows Mobile devices by an API method that checks if the device is idle. This is defined as a state

when keys have not been pressed for some time and the screen has gone off.

5.3.4 Recommendation

The recommendation of modules is implemented using the peer-to-peer version of Recer presented in

Section 4.3.1 because of its simplicity and ability to log in a general format. This was previously proven

successful in Samara, a tourist application for recommending places to go. The advantage of using the

Recer collaborative filtering algorithm is it uses a generic logging format of a time stamp, plain text field,

and another plain text field specifying the entry type. For peer-to-peer Recer to be used in Domino, the

format of the log entry had to be chosen, a design for how module use would be logged was needed, and

when recommendations should be generated needed to be decided.

Time Id User Type Symbol ExtraData

13/11/2006 15:10 5106 AndyC Domino Barracks barracks.dll

13/11/2006 15:13 5107 AndyC Domino Barracks barracks.dll

13/11/2006 15:13 5108 AndyC Domino MaintainedForest maintainedforest.dll

13/11/2006 15:13 5109 AndyC Domino MaintainedForest maintainedforest.dll

13/11/2006 15:13 5110 AndyC Domino Sawmill sawmill.dll

13/11/2006 15:17 5111 AndyC Domino Barracks barracks.dll

13/11/2006 15:17 5112 AndyC Domino MaintainedForest maintainedforest.dll

13/11/2006 15:17 5113 AndyC Domino MaintainedForest maintainedforest.dll

13/11/2006 15:17 5114 AndyC Domino Sawmill sawmill.dll

Figure 34: Sample data from the UserPath Recer database table in a Domino application.

Chapter 5: Dynamic software adaptation

 118

The Time, Id, and User field are standard in any Recer application. The Time field is the date and time

the entry was created. The Id is an identity field used to overcome the limitation that multiple entries may

occur at exactly the same time, so an Id is used to distinguish them. The username is The Type field

identifies the format of the logging used. Here, we use the type name ‘Domino’ to identify that this row’s

format of the final two fields are specified for a Domino application. The Symbol field contains the

Domino module name, for example this could be GPS Driver, or if the modules were even more fine-

grained it may be a .NET class name. Finally, the ExtraData field is utilised to specify the .NET DLL that

contains the module named by the Symbol field, because their names may differ or there could potentially

be multiple modules within a DLL. A sample of the Recer UserPath database table can be seen in Figure

34.

Whenever a module is activated or deactivated, the entire set of all running modules is logged to the

history database. Also, within a Domino module there is the ability to log a usage event with a simple

Log function call. Domino knows by reflection the context from where Log was called, for example the

current user and current module, so it has enough information to send the new entry to Recer. Thus it is

up to the designer of the module to decide when the suitable time is to log usage. In the case of user

interface modules, for example a map layer of icons within a mapping application, it might be suitable to

log whenever an icon is clicked. For non-UI modules, internal events could trigger logging, for example a

GPS driver could log when a GPS fix is obtained. For modules that have no visual interactivity, and are

not suitable for logging internal events, an alternative is to simply log a usage event at periodic time

intervals. This logging technique is vulnerable to the log function being called too frequently within a

module, either accidentally or maliciously, which could lead to the UserPath table being flooded. To

combat this, measures to detect and prevent flooding could be implemented, however at present it is

assumed the design guidelines have been followed.

By utilising peer-to-peer Recer, each Domino system can carry not only its own user’s history but also the

histories of many other users. The recommendation system periodically analyses the similarity between

the owner’s history and all other cached histories. It identifies the most similar histories in terms of

overlap in module usage, and stores the IDs associated with their owners. As the more similar users are

likely to provide the most relevant recommendations, similar users’ histories are the last to be thrown out

when storage space is low and the first to be requested from other devices when they meet. The similarity

comparisons are carried out as an average of matches per history entry since a basic overlap would

unfairly favour longer histories.

When similar, but not exactly matching, history sections are found, the modules not in the current context

are tallied, ranked and delivered as recommendations. New recommendations are generated whenever a

module is activated or deactivated, as these changes alter the current context of the user and so may alter

the recommendation results—even if no new history data has been created in the interim.

Recommendations are also generated when new history data is received from another Domino system, as

this is likely to provide novel module recommendations. Finally, recommendations can be generated

Chapter 5: Dynamic software adaptation

 119

manually if required, and because the current context can change irrespective of the previous two events

occurring, different recommendations will occur.

As shown, Domino has the ability to log all the information required to generate recommendations for

new functionality in the form of modules, and trades usage data with peer recommenders on other

devices. It is by scanning through this logged history of other users’ data and searching for sections that

are similar to the current user’s current module configuration, i.e. the current context, that

recommendations can be generated.

5.3.5 Adaptation

The adaptation component of Domino is responsible for handling new modules, installing modules into

the system, determining module dependencies and finally executing modules. All of these tasks are

achieved during runtime, allowing for dynamic and ongoing adaptation of Domino systems to support

users with minimal disruption.

A module in Domino is defined as a bundle of functionality that can be transferred and installed, and each

module runs under direct control of a Domino Manager. Managers are responsible for deciding whether

to accept a new module, and for loading, installing and running modules. The Manager keeps track of all

running modules in a hash table. A default Manager is provided in the Domino system, which is fully

capable of performing all of these tasks. However, if a developer desires, this default Manager it can be

extended in order to create specialised behaviour. For example, after receiving module recommendations,

the default Manager automatically installs the new module. If such behaviour was not desired, the

Manager class could be edited to bypass this automatic installation and could prompt the user for a final

decision to determine whether the module should be installed. In general, Managers will be directly

linked to the UI of an application as this allows decisions such as authorisation requests, module removals

or when to pause modules to be directly controlled by the user. This allows users to easily remove

adaptations and additions that turn out to be less advantageous than expected. In fact, Domino contains a

default user interface form for managing modules (Figure 35).

Chapter 5: Dynamic software adaptation

 120

Figure 35: Default user interface for Domino module management displaying a list with module

names and the .NET DLL container name.

The module management user interface displays the four lists of modules: installed, wastebasket, wanted

and visible. By holding the stylus on a list item and selecting uninstall from the pop up menu, modules

can be uninstalled. Then it enters the wastebasket, which allows the module to be dormant on the device,

so that it can be transferred to other systems if requested. When modules are installed and the

dependencies are resolved, it can be the case that a required dependency is not found; these modules

appear in the wanted list. Finally the visible list displays the entire list of modules running on all devices

currently in range and discovered, allowing for manual transfer and installation.

Domino modules themselves can contain many program classes and thus be of any size - from a simple

map layer to a complex device driver. The only constraint on modules is that they must conform to the

Domino Module Interface (DMI) to allow a manager to control integration with other modules already

active on a system. Module developers can easily achieve the required conformity either by implementing

the DMI directly or by extending a sample base class that already conforms to the interface. The interface

itself is extremely simple and contains only seven method stubs: SetManager, GetDependencies,

CanSupport, AddDependent, Start, Pause and Destroy.

When a new module arrives on a Domino system, the first method called is SetManager, which assigns

the Manager to the module so the module can query the Manager at its own convenience. If the module

has a dependency on another module, for example a handle to a particular instance of an existing object in

the system is required, then the module should implement the GetDependencies method. For example, a

Chapter 5: Dynamic software adaptation

 121

map layer module may have a dependency on a map viewer. Such dependencies must be identified and

coded into the module by its developer, basically ensuring any required fields are set, which is part of

normal initialisation in any ordinary class. If any dependencies exist, the Manager tries to fulfil them, first

checking if any active modules can support the new addition, which is achieved by calling the

CanSupport methods all active modules in the hash table the manager maintains. If any of the modules

that are already active can fulfil the dependency, the new module is connected to the one that is already

running by a call to its AddDependent method. Checks to CanSupport are necessary, as in certain cases

one module may be technically capable of supporting another, however, perhaps due to resource limits or

other constraints, be currently unable to fulfil a dependency. For example, a map may be able to support a

maximum of 5 map layers, and if it already has 5 connected layers then a call to CanSupport on behalf of

yet another new map layer will return false. If no currently active modules can support the new module,

but the Manager has access to a DLL that contains a module that could fulfil the dependency if active, it

will attempt to start a new instance in order to fulfil the dependency. Finally, if all calls to CanSupport

fail and the Manager does not have access to a required module DLL on the local device, the Manager

will store the type of module that is required (usually an interface name) in a ‘wanted list’ and seek it in

future peer encounters. If this occurs, the new module will not be started immediately, but in all future

peer encounters the required modules will aggressively be sought and, when available, will be installed

and the new module started at that point, if the user of the device still wishes.

By utilising the first four interface methods in this way, a Domino Manager can dynamically install a

module in to any Domino system. The installation algorithm followed when a new module, modx, is

received and started by the Manager, is described by the following pseudo code.

Chapter 5: Dynamic software adaptation

 122

modx.SetManager(this);

dependencies[] = modx.GetDependencies();

stillRequired[] = new array();

foreach(dependency in dependencies) {

 fulfillers[] = new array();

 foreach (module in activeModules) {

 if (typeof(module) != typeof(dependency)) {

 continue;

 }

 if (module.CanSupport(typeof(modx)) {

 fulfillers.add(module);

 }

 }

 if (fulfillers.isEmpty()) { // no modules are currently active which could fulfil the dependency

 search module library on local device for dependency;

 if (dependency is in local library) {

 newModule = start new instance of module;

 dependency.fulfil(newModule);

 } else {

 stillRequired.add(dependency);

 continue;

 }

 } else if (fulfillers.length == 1) {

 dependency.fulfil(fulfillers[0]);

 } else { // there are multiple modules that can fulfil the dependency

 most_suitable = Run_recer_algorithm_to_find_most_suitable(fulfillers);

 dependency.fulfil(most_suitable);

 }

}

if (all dependencies fulfilled) {

 modx.Start();

} else {

 modx.Destroy();

 add missing dependencies to list of wanted modules;

}

The other three methods in the DMI are Start, Pause and Destroy. These simply allow an installed module

to be executed and halted as desired. When the Manager first calls a module’s Start method the module

should allocate any resources it requires to run and begin execution. Subsequently, if the Manager calls

the Pause method, possibly at the behest of the user, the module should halt its execution but not release

any resources it holds. Paused modules can be restarted by a call to their Start method that should not

reinitialise the entire module if repeatedly called, as resources have already been allocated, but simply

resume from the paused state. If the Manager calls the Destroy method, the module should fully stop

execution and releases any system resources it holds.

Chapter 5: Dynamic software adaptation

 123

Module removal is currently not supported when dependencies are involved. However a possible solution

would involve a further use of GetDependencies to identify any other modules that rely on the module to

be removed. These modules could then be listed and displayed to the user, who can decide if he or she

still wishes to proceed with the removal. Relying on the user for every module removal may not be the

most suitable course of action, as users may be involved in other tasks, and requesting they authorise

module removals may be a distraction. Furthermore, users may not have the understanding required to

identify how modules are connected, or even the functionality any one module provides. Therefore, an

automated removal process may be preferable. Whilst automation of this type could be achieved through

a developer creating a customised version of a Domino Manager, it may be more appropriate if this were

the default behaviour of Domino, as requiring a user to understand modules seems in direct opposition

with its most fundamental goals. Therefore, the automated removal of modules, and identification and

handling of dependent modules, is an item for future work, and is discussed in the Future Work section of

Chapter 6.

The adaptation manager, like the other components in Domino, is written entirely in C# for the .NET

platform. Each module is a .NET class that is wrapped inside a DLL. DLLs are used as they provide a

convenient package for transporting code between devices. When a new DLL arrives on a device the

Manager uses the .NET reflection capabilities to dynamically instantiate the class at runtime.

5.3.5.1 Dependency resolution

As shown, Domino utilises a recommendation system to recommend potentially relevant and compatible

modules to the set in current use. The simplest type of module recommended is one that is not

functionally dependent on any other module. For example, calendar and address book applications are

useful in combination to those who are keen organisers, however the applications are separate and are not

functionally dependent. However when there are functional dependencies required to be fulfilled by

recommended modules, there are two categories, and Manager implementations exist to handle both of

them.

1. Dependency on a specific module implementation

2. Dependency on a module interface

The first type of module recommendation is one that has a functional dependence on another known

module – ‘dependency on a specific module implementation’, for example a map layer dependent on a

specific map viewer (Figure 36). In this case the Manager can query all running modules using the

CanSupport method and find a suitable candidate.

Chapter 5: Dynamic software adaptation

 124

Figure 36: A map layer test application with three Domino modules.

The second type of module recommendation is when there are multiple implementations of a certain kind

of module, where the function names are known, but the underlying implementations differ –

‘dependency on a module interface’, for example there exists multiple map viewer modules that all

confirm to a known map viewer interface, which a map layer modules depend on.

A problem that can arise in both situations is when there are multiple dependency candidates in the

running Domino system. For example, if there are two map viewers running in the application, and both

could support the recommended map layer module, it may be only suitable to add the layer to a certain

one. Fortunately Domino is in a unique situation to solve this problem through a novel use of the same

algorithm that produced the original recommendation.

As previously mentioned, windows of context within the UserPath table in the Recer database produce

the ranking of modules which when ordered by rank, produce a list of weighted recommendations.

Domino can further utilise Recer to disambiguate between multiple dependency possibilities. By using

the recommended module as the sole context in a recommendation search, a ranked list of dependency

possibilities can be found. The result can be used to query the active dependencies of the original

dependency candidates, and this allows a decision to be made, based on the history of past use. For

example, consider an application with two map viewers, and one of those map viewers has a layer

displaying the user’s GPS location. Another application with one map viewer has been previously used

with both the GPS layer and a pollution layer and Domino has logged this usage, thus has modelled the

relationship in the form of the Recer database. When the pollution layer is recommended to the

application with two map viewers, the dependency search is likely to result in the pollution layer being

placed in the map viewer that contains the active GPS layer. This scenario has been tested successfully

using the Domino Map Tester – the first implemented Domino application pictured in Figure 37 and

Figure 38. A link to a video of this application can be found in Appendix A – Online materials.

Chapter 5: Dynamic software adaptation

 125

Figure 37: Domino map layer test

application. One device has a map viewer

with two layers: pollution and GPS.

Another device has two viewers and at

present only the GPS layer.

Figure 38: The pollution layer has been

transferred from the PDA on the left to the

PDA on the right, and is displaying in the

map viewer containing the GPS layer,

which it has been known to be used with.

5.4 Conclusion

In summary, this chapter began with a survey of relevant literature in the field of dynamic software

adaptation. The term ‘adaptation’ is widely used in computing and can mean a variety of different things.

Three different types of adaptation were examined in this chapter: adaptive content—the content of a web

page, for example, is customised depending on the context of the user, adaptive displays and user

interfaces—the actual interface itself is adapted as opposed to the content, and personal adaptation of

software—users often seek to extend the functionality of the software they use in a more general way.

Most importantly in this chapter, the core system of this thesis was introduced—Domino. Domino’s

design was inspired both from background work on adaptation, and from developing the systems and

experiences presented earlier in this thesis. Domino manages and supports adaptation of the set of

software components within an ubicomp application. The Domino architecture actively supports

incremental adaptation based on a user’s activities, needs and interests. The word ‘adaptation’, in terms of

the architecture presented here, refers to an adaptation of software structure to meet the dynamically

evolving needs of the user. It takes utilises the infrastructure components described earlier in this thesis,

for peer discovery, peer–to-peer recommendations, and epidemic spreading of components and usage

histories between users. It tracks and logs the current system ‘context’ in terms of the set of components

currently running in the application. This set is used to filter usage histories in the course of making

recommendations of new components to install and run. Therefore, instead of relying solely on

predefined templates or patterns of use, like Speakeasy for example, Domino also takes advantage of

emergent patterns of use in recommending and integrating components. This is done in a way that hides

Chapter 5: Dynamic software adaptation

 126

from the user much of the technical details of discovery and integration of new software, but reveals

enough to let him or her maintain control over the system. When a user accepts a recommendation,

Domino checks whether other currently running components satisfy the component’s dependencies—

required interfaces declared a priori by the developer—in an effort to ensure that its execution is

technically feasible before trying to install it. If not, it suspends installation until it finds such

components, which then can be recommended, accepted by the user, and installed. Dependencies specify

objective constraints on component combination, like the connections in Humble’s Jigsaw editor and

Speakeasy’s templates, but Domino goes beyond other work in this area by also taking advantage of the

evolving patterns of use that represent users’ subjective preferences about component combination.

Domino could potentially work automatically and autonomously, but an expectation inherent in the

design is that user intervention and control is part of the process of recommendation and adaptation, i.e.

Domino is designed to be part of the sociotechnical process of adaptation, and can take advantage to

patterns of use (and hence patterns of adaptation) not foreseen by module designers. In this way, Domino

is an example of a more dynamic and adaptive system, in comparison to earlier systems, and is an

illustration of a viable solution to RQ2, as discussed later in the conclusion of this thesis.

A link to the implementation source code of all parts of Domino can be found in Appendix A – Online

materials.

Chapter 6: Investigation of a Domino application: Castles

 127

Chapter 6 Investigation of a Domino
application: Castles

To test the Domino architecture and the related user experience a novel mobile strategy game was

developed. The design, implementation and evaluation of Castles explore the combination of many of the

key features discussed in the preceding chapters. Castles is a context aware, peer-to-peer, seamful,

adaptive system utilising the Domino implementation presented in the previous chapter. This chapter

covers a design iteration involving a prototype, pilot trial, prototype redesign, a final trial, and a

discussion of the findings. The pilot trial was primarily a technical one, conducted to ensure that the

Domino system behaved as hoped within the game, with peers discovering one another, exchanging

recommendation information and modules and offering useful adaptations in line with expectations. The

final system overcame the usability and performance issues identified in the previous version, and then

was trialled with 16 participants to investigate user experience, acceptance and privacy issues surrounding

the use of socially proximate software recommendations and adaptations.

6.1 Why a game?

The study and design of games has added diversity to many areas of ubicomp research. Games have wide

social and financial impact, and form an interesting application area in themselves [95], and introduce

challenges in terms of designing enjoyable experiences and implementing distributed ubicomp systems.

More particularly though, a game was chosen to test Domino because one can design a game to explore

Chapter 6: Investigation of a Domino application: Castles

 128

specific technical issues raised by wider research, and adapt it with ongoing findings relatively easily.

Additionally, players find new ways to stretch one’s designs, assumptions and concepts, and are often

keen to participate in tests of one’s systems. The Treasure [3] and Feeding Yoshi [22] mobile games

presented in 2.2.5 were successfully used to investigate the exposure of system infrastructure in a

‘seamful’ way, so that users might appropriate variations in the infrastructure. Can You See Me Now [24]

examined earlier in 2.2.5 on Seamful Design, led to generalisable results concerning positioning systems

and the use of self–reporting.

Real Tournament [26], a simple ‘shooter’ game, explored IPv6 and issues such as host mobility, security,

content delivery and wireless overlay networks:

A number of possible architectures exist which are suitable for supporting distributed

multi-player gaming environments in fixed networks. We surveyed various groupware and

online multiplayer gaming architectures in order to define a suitable model for sharing and

communicating data between distributed sets of users. …we focus on the centralized server,

peer-to-peer and mirrored server based architectures

Multiplayer games require complex architectures, and have real-time games have requirements for high

performance and reduced latency in network connectivity, both extremely well developed research areas.

Games offer an interesting test-bed for real world experiments, complementing the simulation style work

this network research often focuses on.

Another unique aspect of games is that people are often keen to play them, and can spend substantial

periods of time experimenting with them. Good games are engrossing, to the extent that users are more

likely to find ways to stretch designs. From experience of previous systems’ trials, it is clear that trials

based around a game result in a larger number of willing participants, and an increased and prolonged

interest in using and reporting on the system. Players’ engagement can lead to new patterns of use that

reveal system strengths and weaknesses, in particular the system’s ability to adapt to or be adapted to

such changing uses and contexts. Games are an application area in which users are already often involved

in radical re-engineering (i.e. adaptation) of systems. Many games now have extensive ‘modding’

communities (such as Half Life39) and so the idea of an adaptable or changing application is not one that

is alien to game applications or to the people who use them.

6.2 Castles

Castles is similar, in theme, to other strategy games—such as the popular Age of Empires, Stronghold

and Settlers games40—in which the player must create a building infrastructure, which in turn allows for

39 http://half-life2.com/ (game information), http://www.planethalflife.com/features/motw/ (modding
information)
40 http://www.microsoft.com/games/empires http://www.stronghold-game.com http://www.settlers4.com

Chapter 6: Investigation of a Domino application: Castles

 129

the construction of armies. The majority of the Castles game is played in a solo building mode, during

which the player chooses buildings to construct and how many resources to use for each one. The goal of

this stage is for the player to create a building infrastructure that efficiently constructs and maintains the

player’s army units. For example, a player may wish to have many ‘Knight’ units being produced.

However, to achieve this, the player must first ensure that he or she has constructed suitable buildings to

produce enough food, iron, stone and wood to build and continually supply a Knights’ ‘School’, the unit

that produces ‘Knights’. There are two types of buildings players can build—Shops and Producers. Shops

are buildings that, when built on the map, can be clicked on so that a new screen is shown and the player

can build (or buy) army units. The shop screen also shows the required and available stock items to build

the unit. Producers are buildings that, when placed on the map, begin producing items every game cycle

(3 seconds). These buildings will produce their output if their inputs are satisfied. Some buildings, such as

the House, have no inputs and produce peons regardless every cycle. Producers can be enabled or

disabled by clicking them. Both types of buildings can be demolished if more space is required to build

more efficient buildings on the map. When the game starts, there are a wide variety of buildings and army

units available to the player, allowing for extremely varied combinations of buildings supporting distinct

types of army. For example, one player may wish to have an army consisting mainly of mounted units

whilst another may try a strategy of having a large number of ranged units such as archers. Different

players begin the game with different sets of buildings.

Castles is played on a mobile device and, when two players’ devices are within wireless range, one may

choose to attack another. When a battle request is accepted, both players select from their army the troops

to enter into battle, positioning their units in three possible locations (front, back and reserves). Players

view the battle screen as the battle proceeds, and can view their army depleting and the waves of units

moving forward. After the battle, players can talk about the game, or the buildings they have been using

and either found useful or discarded. Also after the battle, players might see a notification about newly

available buildings, and they return to ‘solo building mode’ during which they can rebuild or improve

their armies using the new buildings.

The buildings in the game are, in fact, Domino modules. In order to mimic the way that plug-ins and

components for many software systems continually appear over time, new buildings and units are

introduced throughout the game, as upgrades and extensions that spread among players while they

interact with each other. As shown in the previous chapter Domino is first required to log the use of

Domino modules. When a building is interacted with, for example when a unit is created, an entry is

created in the Recer database. During the battle logs of use are exchanged in the background over the ad

hoc WiFi network. The recommendation algorithm is run after this data has been received, and the user is

notified about new buildings they have ‘discovered’.

With such a high number of buildings and units, there is significant variation in the types of society

(module configurations) that a player may create. Selecting which buildings to construct next or where to

apply building adapters can be a confusing or daunting task. However, Domino helps by finding out

Chapter 6: Investigation of a Domino application: Castles

 130

about new modules as they become available, recommending which modules to create next, and loading

and integrating new modules that the player accepts.

The idea and design behind Castles originated mainly from the author, along with Marek Bell and Scott

Sherwood and the actual system was implemented collaboratively.

6.3 Initial implementation

This section describes the first prototype implementation of Castles. The results of testing this prototype

led to the modified implementation used in the user trial. As mentioned, Castles is built using the Domino

adaptation architecture. In Castles, buildings are C# classes that implement the Domino Module Interface,

and are compiled in separate DLLs. For example, the Barracks building in the game is a Domino module

which is contained in its own individual DLL ready for transport over the network should any other

Domino client request a copy. Castles ran on HP iPAQ hx2750 Windows Mobile Pocket PCs with 128Mb

RAM, 624MHz CPU, WiFi and a 320x340 stylus touch screen.

First the basic components of the game had to be implemented. A map component with the ability to pan

and zoom in was created, reusing the same map component developed by this author and used in

Treasure. The stocks, units and buildings in the game were decided, and images found. The units have 4

strength attributes: melee attack, melee defence, ranged attack and ranged defence. A range of intuitive

values were spread across all unit types, for example, the archer had a high ranged attack but a low melee

attack, because its weapon was a bow and arrow. The buildings had run costs and items produced set,

which were also intuitive with respect to their name, for example, the knight school’s cost to produce a

knight was a swordsman and iron. 36 building types and 11 unit types were created.

Buildings are built by choosing their name from a pop up list, by clicking B in Figure 39. Then they are

positioned on the map using a building placement tool that ensured buildings were only placed in valid

positions. There was a game timer, responsible for periodically looping every ‘producer type’ building

and executing its build cycle. If the building’s costs were satisfied these were removed from the global

stock list, and the items produced were added.

The Domino implementation described in Section 5.3 was utilised in Castles, however the game had to be

designed around the various parts of the Domino system. For Domino to be able to recommend buildings,

their use by the players was required to be logged. The moments at which buildings were built on the map

were deemed to be good times to trigger the logging of use to the database in the initial version. Also, use

events were logged when units were produced using a building.

In this initial implementation Domino was left in fully automatic mode. When peers were found the usage

histories were exchanged using the peer-to-peer Recer implementation explained in Section 4.3.1. At the

end of an exchange Domino automatically started the recommendation algorithm. The result of the

Chapter 6: Investigation of a Domino application: Castles

 131

recommendation search is a paired list of building name and rank number. If a recommended building’s

module name was not in the list of Domino’s installed modules, the system actively sought this module.

Then, when found, Domino’s adaptation component instantiates the building class, it reports a

dependency requirement of a Building List module, and adds it to the list of buildings within the Castles

game. Castles then presents a user interface dialogue mentioning a new building is installed, and available

to be built and added to the map.

The ranked list of recommendations is cached, and the three buildings that the system most recommends

the user construct next, are shown when the user clicks the R (recommendation) button (Figure 39). Thus,

the user has quick access to guidance from the Domino system about how to proceed.

Figure 39: The recommendations show in a pop up when user clicks the R button (hidden under

pop up).

If the user desires, he or she can get additional information about recommendations, such as its

dependencies or the modules most frequently used in conjunction with it in the past in similar contexts.

This information is a by-product of the internal work of the recommendation algorithm, and can be

obtained in a pop-up dialog by clicking the recommendation information button in the build panel, can

help the player understand more fully how the module might be used (Figure 40).

Chapter 6: Investigation of a Domino application: Castles

 132

Figure 40: Recommendation dialog window in the Castles game. These are the modules a module

has been used in combination with previously.

A new module is smoothly integrated into the player’s system without requiring substantial module

management, or indeed any knowledge of the low-level transfer or installation process. Simply, the user

sees the new options and recommendations, and can make use of that information without having to

search manually for or install the new modules. It presents them in a way that lets the user see them as he

or she plays, find out something of their past use, and show this information to others when meeting and

talking with other players. Overall, Domino complements the conversation and discussion among players

about new and interesting modules, and eases the introduction of new modules into each individual

system and into the community.

6.3.1 Pilot trial

Pilot trials were run and offered some initial findings about the system’s use. The game was set up so that

four players sat in rooms distant from one another, and out of wireless network range. We periodically

moved the players between rooms, so that they passed by each other, and met up in pairs. This meant that

users spent most of the time alone but periodically met up to start battles and to talk about the game and

its modules, much as they might if they were walking with their mobile phones during a normal day.

Each player started with the same base set of buildings and units available, as well as five extra buildings

unique to him or her. For example, amongst the additional items given to one player was the catapult

factory. As anticipated, when players met for battle, their Domino systems exchanged usage information

and transferred modules between phones so as to be able to satisfy recommendations. Thus, the catapult

Chapter 6: Investigation of a Domino application: Castles

 133

factory and catapult unit began with one player, but were transferred, installed and run by two of the three

other players during the game.

Several players who had been performing poorly because of, for instance, a combination of buildings that

was not efficient for constructing large armies, felt more confident and seemed to improve their strategies

after encountering other players. They started constructing more useful buildings by following the

recommendations. In each of these cases, this did not appear to stem from players’ conversation, but

directly from the information provided by the system. After the first meeting with another player, the

system had gathered its first new history to compare against, and thus it is the first time the player saw

recommendations. When the player began to construct a new building, he or she always saw at least one

recommendation for which building to construct next and followed it.

Each Domino system’s interactions with others were mainly hidden from the users. When devices came

into wireless range of one another they exchanged history data and modules, but this was not explicitly

shown to the users. In testing it was revealed that this information could be of use to users and designing

the next prototype involved making a decision about how to present the information in an useful way, and

appropriate within the context of the game. A more seamful approach, as demonstrated in Chapter 3

would be utilised with regard to this particular aspect.

There were some experience and interface issues with the first prototype that were addressed in the final

version used for the main trial. Specifically, the issues revolved around feedback and control, that is to

say, allowing the user to control with whom history data would be shared, and feedback on how much

data had been received. Also, there were issues with the players not having enough information about

buildings, for example a building had to be built before the information about what it produced and

required was shown. Lastly, players had trouble understanding the rank numbering. The rank number is

relative to the number of entries in the database so different ranges of numbers can appear, for example

the highest ranking might be seen as 10 or 10,000.

In the trial, the Domino technology performed as had been hoped. When battles occurred history logs and

modules were exchanged and in following periods of isolated play recommendations were generated and

newly available Domino modules used. During the trial an average of 2140.8 history entries were

exchanged between peers during their encounters, and it took an average of 10.1ms to transfer each

individual history entry. This time includes the time for the requests to occur, the database to be queried,

entries to be sent over the network, and entries to be inserted in the receiver’s database. This suggests that

an average total of 99.4 Domino history entries can be transferred per second. History transfers occurred

in the background during battles, so users did not experience any delay whilst waiting to exchange this

data with peer devices. In all cases, history exchanges between devices occurred simultaneously. It is

likely that the transfer time would be lower if data were exchanged only in one direction, but the scenario

of data being simultaneously exchanged is more typical of a pure peer-to-peer environment, in which all

peers are equal and behave similarly. An average of 1.33 modules were transferred during each encounter

Chapter 6: Investigation of a Domino application: Castles

 134

in the game, and the average size of the modules transferred was 7871 bytes. At the end of the game

trials, after playing three other participants, the average size of the history database on each device was

1452KB.

This initial trial of Domino in the Castles game was primarily a technical one, ensuring that the

technology behaved as expected, and practically demonstrating that high levels of adaptation, based on

users’ context and a recommendation system, are possible in mobile systems. Whilst the trial did fulfil

this primary goal, and revealed some user interface design issues, it was small and it left open many

questions—particularly regarding the user experience with the adaptation a Domino system provides. For

this reason, a second larger trial was carried out, involving a greater number of participants and an

updated version of Castles. The goals of this trial were to examine the user experience, discovering if an

adaptive system is acceptable to users, whether they value the recommendations for software modules

that Domino provides, and showing how they used and interpreted the system’s recommendations and

adaptations.

6.4 Final System

The first version of the user interface relied on the native look and feel of the Windows Mobile UI

widgets and users it affected the game’s intuitiveness. Unfortunately these widgets are not very

aesthetically pleasing, and the default pop-up list used for buildings proved to constraining for the

information users requested, for example the inputs and outputs. To make the software look more like a

fun game, it was decided to redesign the interface using a full screen approach with large iconic buttons

that clearly represented the game features. Furthermore, the interface chosen was inspired by a popular

Windows Mobile car navigation system called Route 6641, which has an excellent graphics and clear

navigation between various forms of information. The map user interface with larger icons and basic

stock level information can be seen in Figure 41.

41 http://www.route66.com

Chapter 6: Investigation of a Domino application: Castles

 135

Figure 41: The updated Castles map screen

with large intuitive icons and basic stock

levels.

Figure 42: This screen is shown when the

player clicks on the Archery building.

From here, archers can be created or the

building can be demolished.

In the pilot, users felt a lack of understanding for why new buildings were suddenly available and it was

apparent that more of this process should be made visible to the player. Players felt they would like to see

more information about, and have more control over the adaptation process. To address issues of

feedback and control, a seamful design was applied utilising the outcomes from Chapter 3, and a similar

approach to Treasure was used to present underlying technical aspects of the system infrastructure in

game terms, for easy understanding that did not detract from the experience of sharing and discovering

the software modules. As mentioned in 5.2 Domino was designed and implemented to expose the events

within its infrastructure, and this was utilised by Castles, in particular more feedback and control about

the recommendation process.

A more seamful design was achieved in two ways. A more informative building screen was created and

allowed users to request recommendations at any time. History log exchanges were restricted to only

occur during battles and at the end of a battle a message written in ‘game terms’ was shown mentioning

that an exchange had taken place.

A building list screen was created to replace the old pop-up list. It displayed each currently installed

building and the stock required to build it, and what it requires to produce, and what it yields, along with

a star ratings for recommendations (Figure 43). By presenting the detailed building statistics, the aim was

Chapter 6: Investigation of a Domino application: Castles

 136

that users would feel more confident in making decisions about what to build, and verify they did follow

a recommendation they had the stock to make use of it.

Figure 43: The Castles building list screen showing star ratings for recommendations of what to

build. The star button runs the algorithm and sorts the list in order of rank.

Chapter 6: Investigation of a Domino application: Castles

 137

The player can invoke the recommendation algorithm at any time using the star button on the building

screen. After a few seconds, a star rating appears on the buildings—which are also ordered by rating. The

wide ranges of rank values displayed in the old user interface were scaled to six-point scale: from zero

stars to five stars. If a building is recommended that is not one of the installed Domino modules, it

appears as a greyed out item although it still has a star rating. If the module has been transferred to the

device and is ready to be activated a “click to activate” message is displayed on the list item (Figure 44).

Figure 44: The castles building screen, displaying a greyed out building, which is a recommended

Domino module ready to be installed.

After a battle ends, and Domino history information has been received, another new screen is displayed.

This screen displays the message “Information received – you have received information about what

others are building, use the star to learn about new buildings” and a message count is displayed (Figure

45). This wording was chosen as it notifies the user that information is received during battles, and it

directly relates to the star ratings of buildings.

Chapter 6: Investigation of a Domino application: Castles

 138

Figure 45: This Castles screen appears after a battle and represents the size of the history path

received.

With the new screens, Castle’s design was more intuitive. All features were available from the main map

screen. The structure of the screens can be seen in Figure 46.

Figure 46: Hierarchy of the screens in Castles.

Chapter 6: Investigation of a Domino application: Castles

 139

The system logged all game information in an XML format. The log contains both system events, such as

when recommendations are requested and modules installed, and state information, for example the stock

level that continually changes. Enough information was logged so that games could be replayed in a

simulator to examine the adaptations that occurred. Figure 47 shows the XML logged when the

recommendation algorithm completes. The domino DLL name is not logged because it can be inferred

from the building name.

<record type="event">

 <timestamp>632990293040000000</timestamp>

 <Recommendations>

 <HunterHut>1209</HunterHut>

 <StoneMasonHut>580</StoneMasonHut>

 <CatapultFactory>201</CatapultFactory>

 <SpearSchool>145</SpearSchool>

 <Encampment>136</Encampment>

 <MaintainedForest>66</MaintainedForest>

 <Sawmill>33</Sawmill>

 <Pigery>19</Pigery>

 </Recommendations>

 </record>

Figure 47: Example from Castle’s game log of a recommendation event occurring. The Hunter

Hut has a rank of 1209 – the best recommendation for this player.

This version of Castles was a vast improvement of the last. With better game screen structure, more

intuitive graphics, and most importantly including feedback and control over the adaptation process

presented in a user-friendly fashion — a seamful design.

6.5 Final evaluation

The author primarily conducted the evaluation, however Barry Brown, Louise Barkhuus and Scott

Sherwood assisted with the interviews. The trial consisted of 6 game sessions, with 4 participants in each.

At the start of the trial, a short tutorial on how the game is played was presented, and participants were

then given an opportunity to familiarise themselves with the game and its controls. The trial lasted

approximately one hour, with three 10 minute solo building rounds during which participants create

buildings and army units, and three battle rounds against each other participant in the trial, each of which

lasted until there was a winner. As in the pilot trial, each player started with a different set of 19-21

buildings. The experimental setup can be seen in Figure 48.

Participants were encouraged to openly discuss the game at any time, and they were filmed with two

video cameras. After the rounds were complete, they were asked about their experience in an interview in

groups of two. The aim of this user trial was primarily to examine people’s reactions to history based

Chapter 6: Investigation of a Domino application: Castles

 140

software recommendations and system adaptation, to see if the changes made due to pilot findings had

improved the user understanding of the system.

Figure 48: After solo play, the four players battling in Castles.

6.6 Results

In very broad terms, the basic mechanisms of Castles—building up resources, meeting other players to

battle, and discovering new buildings—were appreciated as being fun and engaging. Players particularly

enjoyed the open-ended aspect of the game, and reported that they would have liked to continue to play

longer after the trial ended. The players’ understanding of the game’s features developed to differing

levels over time, but all players understood the buildings were being transferred from other players

devices.

Generally, from a technical viewpoint, the game worked well and only a few crashes occurred. This was

primarily due to bugs in the battle calculation code, not in Domino, and these have since been fixed. As

the game state is saved, and Domino saves the list of installed modules, the game could be restarted

immediately with no loss of information when crashes did occur, meaning that users could simply restart

and continue playing where they left off.

Chapter 6: Investigation of a Domino application: Castles

 141

By examining videos of users and logs of system data, we obtained insights into the emergence and

success of different strategies, and how features of the system and the setting were used in players’

interaction with each other. For example, as their understanding of the game grew and players began to

comprehend that their activities were the source of recommendations, they adjusted their use of game

strategy accordingly. For example, they began creating other types of units they had seen successfully

used by their opponents, especially the cannons, which seemed to generate particular interest because of

their dominance on the battle screen. These changes in their game play did not always result in winning

battles, but they did generally lead to more excitement and engagement in the game.

Castles mirrored the findings described earlier in Treasure in 3.2.1 in that players’ development of game

play did not stem solely from the space the game was played in, the system design alone, or the space and

the system together. Discovering and learning to use new buildings was a combination of the system

affording use of them and the conversation with others of how to use them. Players’ use was a mix of old

and new media developed through a historical and social process. Over time, people affected and were

affected by each other, and system and space served as resources, as well as constraints, on interaction.

Figure 49: Graph showing the number of buildings installed per player in the trial of Castles.

Figure 49 conveys that all participants successfully adapted their systems by installing many

recommended buildings. On average, 9 new buildings were installed per player, bringing the average total

buildings after play to 29 (each participant started the trial with an average 20). Strategies around players

utilising recommendations and installing new buildings were evident from two findings. People’s

opinions on how well the recommendation system worked were greatly influenced by early experience.

Chapter 6: Investigation of a Domino application: Castles

 142

Secondly, as players’ confidence in their own gaming strategy developed, they relied on

recommendations less. However, they re-visited the feature in combination with revelations from

discussions with other players, especially when stuck in ‘resource traps’. Players were ‘gaming’ the

recommendation system to use it to their advantage as much as possible.

As seen in Figure 49, participant A3 only installed two buildings, the lowest of the entire game. This

participant explained that the first recommendations received were unsuitable, and then disregarded every

future recommendation. This participant had a notably poor performance, winning no games. After the

trial games the player reported that if playing again he would definitely reconsider using them, because in

discussions the other users expressed the recommendations’ positive effects on their game and the

broadening of their tactics. It is clear that even though the system may perform well overall, poor

impressions are possible and can sour people on using or relying recommendations. If there was more

transparency in the recommendation system, then when bad recommendations happen users could

understand the reasons behind them. This supports the argument that recommendation systems should

find a compromise between giving enough information to allow people to make more informed choices

and bombarding them with too much information.

However, the majority of other players had positive early experiences, infusing confidence in the system

overall. For example:

The most significant thing is that initially when I was learning the game it

(recommendations) helped me a lot at the beginning cause I didn’t know what I was doing

and I had this semi-useful strategy of building the raw materials but after that I didn’t know

what I was doing and I just clicked the recommendations and it helped me get along.

Another player specifically mentions that the recommendations allowed him to positively overcome the

mental pressure in evaluating the dependencies between buildings:

The building part was a bit more involving because you had to think about the

dependencies and what you need to build so that you don’t get shortages and stuff, however

if I may go on to the recommendation system that’s where it came in handy at the beginning

because I didn’t know exactly what I was doing so I would just click on it, ok 5 star and I

would just build it with the confidence that it was somewhat the right thing to do. After the

first 15 minutes or so when I realised what the game was about and how each thing related

to one another I could just, I didn’t use the recommendation system at all but before I had

gotten to that I guess you could call it level of expertise or whatever - familiarity with the

game.

Managing a balance of resources is a key part of the game. For example, an efficient Castle configuration

is one where the outputs of buildings are fully utilised as inputs to other ones. The player quoted felt that

Chapter 6: Investigation of a Domino application: Castles

 143

the recommendations were only useful in the beginning. However, there were situations in which they

became useful again: recommendations were also found to be useful when players got ‘stuck’—that is,

their production had come to a standstill, and they did not have enough stock to build new buildings.

Although the recommendations were not guaranteed to fix their situation, sometimes trying a

recommendation for a building they had not used previously gave players fresh inspiration, perhaps

encouraging them to continue in a slightly different direction involving other types of stock.

It became apparent from interviews that all players were able to distinguish between the star rating of

buildings for the recommendation for what to build, and the newly discovered buildings that appear with

the ‘click to activate’ message. In fact, both of these features are the result of the recommendation system.

New buildings were installed continually, but the use of the star ratings were most used early on, and at

moments of getting stuck, as mentioned above.

Although users understood that modules came from other players, they did not really understand that

histories were replicated. So if A played B, and then B subsequently played C, C received the histories of

both A and B; so recommendations for new modules could have arisen from either A’s log, B’s log or

both. This failure to understand is most likely due to a deficiency in the messages presented on–screen,

and players agreed more information would have been useful. Castles could improve comprehension of

players by presenting even more underlying infrastructure as features in the game, by allowing users to

‘drill down’ to gain insights into deeper aspects of the system. For example, by displaying what user’s log

the recommended module appeared in, or an information screen displaying statistics about a player’s

performance, for example battles won.

Another interesting example from play is that during a battle B1 noticed B3’s use of cannons in the back

row of his formation. After the battle, in which B1 lost, B1 was recommended the cannon factory. Then

B1 decided to build cannons and use them in the same formation as used by B3. So B1 took the

recommendation for the cannon factory and also the extra information of how to use the cannon units

successfully in a battle. This is a significant activity, overcoming a weakness of the recommendation

system: it only recommends that something should be used, not how to use it, and if the use is not

experienced, for example if player B1 had not noticed the cannons, the benefit might have been missed.

To support this feature, Castles could be improved to show screenshots, video clips, or demos of use to

show more of the context of how others had used buildings. Dialogues of “do you want to install it?” as

well as “do you want to see how to use it?” could be shown, a bit like the “see what’s new” dialogue in

some software applications. However, in the case of a Domino application, this information is not

something added by the developer, because one cannot predict the way every feature will be used. This

should be something either created from log data automatically, or added by users of the component who

might make a tutorial or demo for new users or friends they’d like to help—for reasons that might vary

from altruism, wishing to be part of the game community, to more selfish demonstration of expertise—

i.e. showing off. This example serves to show just one way in which system designers could do more to

Chapter 6: Investigation of a Domino application: Castles

 144

support the development of the tactics and strategies of users of an adaptive system. Such ‘playbacks’,

and demos based on recorded data on system use, would be another use of historical data within the user

experience—extending the use of history beyond that of prior systems, including George Square and

Treasure.

Richer display of the use or potential of a building would also address another issue found in the trials. A

central part of the users’ experience of such dynamic systems is based on their experience of the

recommendations—the quality of which depends on the recommendation algorithm, but also on how

users play and whom they battle first. Some players dismissed the use of recommendations after an early

bad experience, and then regretted it subsequently. Some, perhaps naively, blithely assumed all

recommendations were of high quality after initial good experience with them. In actuality, to use a

building well, one needs to know what the best balance is with regard to others; for example, what

buildings feed into it, and what it can supply. Players have to balance the costs and benefits of taking time

to try out recommendations and learn about new buildings and strategies, and so it is likely that it would

be beneficial to have more ways to explore past play when beginning a new game; that is, from games

prior to the current one—rather as new visitors to George Square were able to draw upon the experiences

of prior visitors that they might never have met.

Unsurprisingly, all the participants reported that they felt more confident in selecting which buildings to

create after they had their first encounter with a peer, and hence were able to generate recommendations.

However, none of the players realised that the modules transferred could contain potentially harmful

code. Since participants were likely to have felt secure in the controlled trial environment, and would

likely have assumed that the trial organisers wrote all the code, they did not perceive the risk from

harmful modules. This raised both security and privacy concerns on our part, as participants were clearly

unaware that logs were being transmitted or that the new building modules that were received could have

contained any code—including code that could be harmful, or access logs for malicious reasons. These

concerns led to a slight redesign of the peer-to-peer Recer recommendation system to allow for greater

anonymity and to considerations of possible solutions to increase security. Some of the anonymity

improvements have since been implemented, whilst possible security solutions are still being considered.

As with the George Square and Treasure trials, the trials of Castles revealed that the system’s use was

dependent on the people using it as much as the objective functionality the system offered. Module

recommendation and associated system adaptation were generally found to be useful, and yet they were

also subjects of individual interpretation and social discussion. In other words, recommendations were not

followed blindly and individually, but tactically (e.g. to work out what other people were doing) and

socially, as a means to learn about the system’s possibilities, as a mechanism to be understood and

manipulated to one’s own advantage (i.e. to be ‘gamed’), and so forth.

These findings tend to confirm the view of system adaptation as a sociotechnical process rather than a

purely objective technical one. This backs up the design decision not to make adaptation happen fully

Chapter 6: Investigation of a Domino application: Castles

 145

automatically. The trials suggest that the system should not only support individual user awareness of

current choices, but should show—in comprehensible terms appropriate to the application and the users—

what has been done by users in the past and how they might behave in the future.

Lastly, the game was successful as a means to display that variations in another ubicomp infrastructure—

software infrastructure, in this case—were presented and used in ways that were crucial to user activity

and enjoyment. Castles, like Feeding Yoshi and Treasure, adds to the evidence that ubicomp technical

infrastructure can be considered by designers as a seamful resource for users’ interaction—interaction

with the system and with each other.

A link to the trial system logs and interview transcripts can be found in Appendix A – Online materials.

6.7 Security considerations

Security is a serious problem for any system that uses mobile code that is exchanged between different

devices, and it has been an important focus of this authors and others’ research, for example, [96] [97]

[98] [99]. A particular threat is so called ‘sleeper viruses’ that act as valid and useful modules for a period

of time, become accepted in a community, and then after an incubation period ‘turn bad’ and start to act

as damaging viruses.

Signing is a popular technique for deciding which applications to trust, in which a trusted authority

analyses each possible application or module and decides whether it is harmful or not. Those that are

determined to be non-harmful are signed with a secure key that end-clients know they can trust. In theory

this can inhibit harmful applications from spreading to many machines, however most implementations

permit a user to decide to force an unsigned module or application to run, allowing dangerous code to

spread regardless of its lack of authorisation.

Whilst employing signing for Domino would provide an almost complete solution to security concerns,

there are severe disadvantages that have, so far, stopped us from implementing it. Firstly, one of

Domino’s main strengths is that it allows for an extremely open community where anyone can contribute

a new module or amend an existing one. In an environment where each module had to be signed a large

number of users would decline to create new modules, as those modules would then have to go through

the signing process. As this would be likely to involve some cost (in terms of money or time for

developers) this would further deter potential developers from contributing to the community.

Furthermore, forcing each module to go through a central location where it was signed would negate the

strength of the epidemic spreading Domino supports. There would be little or no reason to provide

epidemic spreading if one source had access to every possible module in the community and could

therefore, in theory, simply distribute them all from one central location.

Chapter 6: Investigation of a Domino application: Castles

 146

A second possible solution is to create a sandbox environment for both the entire Domino environment

running on a device and for each individual module within that environment. Indeed, as Domino is

implemented using the .NET Framework that it already runs through a virtual machine — specifically the

CLR (Common Language Runtime). Code Access Security is a feature of .NET to restrict any application

from having access to a part of or the entirety of the rest of the operating system depending on set

permissions. However, if a Domino module wanted to access a file on the local device and didn’t have the

necessary permission, may have to ask permission from the user who could deny, accept once or accept

forever the module’s request. Whilst many languages that run on virtual machines employ this method, it

would be likely to be too intrusive to users in a Domino environment. Previously, this method has usually

been used where the number of new modules or applications is relatively low, and so the user is required

to intervene on an infrequent basis. In a typical Domino system there can be an extremely large number

of modules running at any one time, and requiring the user to intervene for each one could prove too

time-consuming. Furthermore, as one of the advantages of Domino is that it allows users to quickly

obtain expert tools, it is unlikely that the user would have the required in-depth knowledge of each

particular module to make the correct decisions about when to trust them. Methods of automating the

process of determining which applications should be permitted to run or have access to a particular part of

the operating system may aid the user in this process. For example, Deeds [100] attempts to analyse code

and roughly categorise it before comparing it to the access levels given to code that previously fell into

the same category. Such a technique could make permissions a viable option in the Domino architecture,

by removing many of the constant interruptions that might otherwise be presented to the user.

A third potential solution relies on the same epidemic algorithms as the spread of the modules

themselves, spreading information about malicious modules during any contact with peers. For example,

if one user found a malicious module they could, after removing it, add it to a list of known bad modules.

From then on, the list would be transmitted to any Domino peers that were encountered. A Domino client

which had received this information could then refuse to accept the module if it ever encountered that

module. Similarly, a client that was running the module and received information that it was malicious

could quickly remove the module even if it had not yet done any damage. As the information about

malicious modules would be constantly spread rather than having to be recommended, and as clients

would be able to remove the module before it did any damage, the spread of the information that the

module was malicious would probably be faster than the spread of the module itself. In this way, viral

outbreaks of malicious modules might generally be prevented. However, this solution has a weakness in

that although it would stop a large viral outbreak in the community, it would not stop damage to a

particular client who received the module before receiving the information that it was malicious. More

advanced implementations could make use of the Internet to broadcast information about malicious

modules, ‘overtaking’ their spread through peer-to-peer contact. In so–called ‘honey pot’

implementations [101], this has been shown to be particularly effective at stopping the spread of

conventional computer viruses.

Chapter 6: Investigation of a Domino application: Castles

 147

Apart from these technical approaches to countering viruses, it is possible for a user to view a module’s

history of use: on which device it originated, on which other devices it was used prior to its arrival, and in

what contexts it was used along the way with regard to other modules. This helps users to decide for

themselves whether the history is typical of a trustable module. Alternatively this history information

could be fed into an algorithm such as that in [102] or [103], to give a calculated level of trust. Although

this technique may not be sufficient in itself, its use is advocated as an additional protection method to be

used in conjunction with other measures.

As stated, security is a serious issue and, whilst this is being researched along with possible solutions, a

single robust solution has not been found yet which is completely trustworthy. For this reason, the

creation of ‘mission critical’ applications based on the Domino architecture have, so far, been avoided

and have instead, for the time being, concentrated implementing Domino into game systems. While this

does not avoid problems of viruses and malware (since ‘bad’ modules could destroy a user’s game, or be

used as a way of cheating) it does provide an environment for experimenting with module

recommendation and the broader security issues, limiting the potential damage to users’ devices. It is one

of the topics of future work planned for Domino, as mentioned in the next subsection.

6.8 Future work

Although a substantial volume of work was completed during the course of this thesis, there remain

problems and limitations that the author hopes to overcome in the future. Domino is an advanced

infrastructure, designed to be easy to integrate into mobile systems in order to increase their adaptability

and flexibility. Work continues on improving Domino, and one aspect is to show the benefits of removing

a running module from a system, rather than only adding new ones. Users can manually remove modules,

to reduce the system becoming bloated or confusing, but at the moment Domino does not assist users in

this process. Analysing logs of user activity can help with these issues, if the details of modules’ use and

removal are recorded. Normal, continuing use could involve periodically recording a small positive

weight for each module in the current configuration. However, if users consistently install one module

and then manually remove another soon after, this may indicate that the former is an upgraded version of

the latter or otherwise replaces the latter’s functionality. This recorded pattern of use might then be

interpreted by the system so as to record a substantial negative weight for the removed module in the

history database, to help lower it in the rankings of modules while the new module builds up its use. If a

user does not have the apparently older or superseded module, then he or she will be less likely to receive

recommendations for it. If a user does have the module, the system may be able to recommend the new

module as well as the removal of the old one.

Unfortunately, as its design and implementation of Domino was complex and consumed a substantial

amount of time, there has not been an opportunity to make Domino generally available to other

developers yet. Although the author and the Equator team at Glasgow were able to use Domino in a few

of their research systems, completion of a version of Domino that was well documented and robust was

Chapter 6: Investigation of a Domino application: Castles

 148

not achieved early enough to allow for its dissemination to the wider mobile developer community.

Therefore, an important item to address in the near future is the public release of the Domino

infrastructure in order to allow a greater number of new mobile applications that make use of its unique

abilities to be constructed. To achieve this a Domino SDK, developer documentation and example code

will be released through CodePlex.com in the coming months. Due to demand, a public release of

Domino and Castles, without documentation has been made available at the Equator project web site42

and an updated version with documentation will be available at the link in Appendix A – Online

materials.

The Castles trials proved extremely useful, and successfully demonstrated that the Domino infrastructure

proved to be of great value to end users when integrated into the Castles game. However, it is realised

that the trial was relatively constrained, both in terms of its setting (primarily it was conducted in one

building), and length. It is felt that longer trials over a period of weeks, and covering a greater

geographical area, would allow for a more in-depth study of how users react to software adaptation and

recommendations in a more natural setting as they go about their normal daily tasks. Indeed, if

participants carried a PDA continually over a period of weeks, the area covered would likely be large, and

the chances and situations for encountering peers would be more varied. Therefore, a larger and longer

trial of Domino in a new application aimed at supporting module developers is planned to take place in

2008.

A different area of work relates to the way that the concepts and techniques behind Domino have

application to less mobile settings—in particular, applications in software development and plug-ins for

IDEs (integrated development environments) and in web browsers such as Firefox. As pointed out in

[104], many such systems are large and yet rather chaotic, and a Domino-like system might assist users in

finding new code to work on as well as new code to work with.

In IDEs, mail tools and in mobile systems, Findlater and McGrenere’ comments about involving the user

should be borne in mind. There may well be applications that would demand or involve automatic

changes to an interactive system without a user’s permission, but it is difficult to come up with too many

examples of them. Instead, the techniques explored in Domino are a means to combine adaptable and

adaptive elements, so that the system and the user both control some of the interaction. Domino goes

beyond most existing systems in providing evidence that collective records and patterns of use can be a

productive resource for individuals adapting their adaptive systems.

As shown in background work on context aware systems, location information is a very useful resource.

Expansion of Domino’s model of context and its recommendations is at the core of a forthcoming

EPSRC-funded project due to commence in Spring 2008, Contextual Software. Quoting from its work

plan, “At present, Domino’s model of context is univariate: the modelled dependencies and associations

are only between software components. Building on George Square, which used patterns of association in

42 http://www.equator.ac.uk/index.php/articles/c117

Chapter 6: Investigation of a Domino application: Castles

 149

usage histories to combine locations and URLs, Domino’s information on context, operation and use will

be enriched. New Visual Studio tools will allow the programmer to specify and analyse dependencies and

patterns of association between components, locations and other logged contextual features. The

programmer will then use the project’s new communications infrastructure to disseminate new

components among user trial participants, along with any specified usage histories needed to ‘bootstrap’

the recommendation process. For example, a programmer might specify that a new component offering

an audio tour of a museum can only be started up when the user’s device is in that museum. In a trial, he

could then analyse the sets of components running when the new one was installed and used, where in the

museum this occurred, and video recordings of user discussion at those times.”

Similarly, security is a topic of future work in the new project that will take advantage of the low-level

middleware of the EU Haggle project43: “The distribution and integration of Domino components is, at

present, relatively inefficient and insecure. By porting Domino to run on top of the .NET implementation

of Haggle, secure opportunistic forwarding via both fixed and mobile ad hoc networks can be used, using

multiple forms of connectivity, for example, WiFi, SMS, GPRS and Bluetooth. Domino will keep its

facilities for recommendation and adaptation, but will use Haggle for device discovery, transmission of

usage histories and components, resource management and security. Thus, collection of usage data from

mobile devices, and distribution of new components and usage data from the IDE to those devices—

including new Domino components that offer users choice over Haggle’s facilities for communications,

resource management and security will be supported. A PhD student (RS1) will focus on usable security

and privacy built on Haggle’s facilities and techniques such as audit trails, virtual machine sandboxing

and OS virtualisation.”

6.9 Conclusion of investigation

The Castles game demonstrates one application of Domino in a mobile, peer-to-peer environment. As

mentioned at the start of this chapter, Castles is a context aware, peer-to-peer, seamful, adaptive system.

The treatment of context used is very limited, being explicitly restricted to the set of Domino modules in

use but implicitly also employing the proximity of other users so as to narrow or bias the sharing and

discovery of modules. Castles used the infrastructure developed in the systems discussed in earlier

chapters, so as to gain the advantages of peer-to-peer mobile communication such as mobility, cheapness

and high bandwidth. Castles is a seamful design in that it selectively exposes software structure to users,

so that they can be aware of software modules and appropriate them for their own contextually relevant

patterns of use. Lastly, the trials offered a technical demonstration that Castles is adaptive around a user’s

activity, and that functionality can be discovered, shared and integrated in the mobile environment whilst

applications are actively running. This therefore demonstrated a degree and style of system adaptation not

previously shown in ubicomp, but it also demonstrated the value of future work on topics such as removal

as well as addition of modules, greater transparency (or seamfulness) in the interface, addressing of

security and privacy concerns, and extension of the set of contextual features used in recommendations.

43 http://www.haggleproject.org

Chapter 6: Investigation of a Domino application: Castles

 150

Rather like the findings of the George Square trials, the trials of Castles revealed that the system’s use

was dependent on the people using it as much as the objective functionality the system offered. Module

recommendation and associated system adaptation were generally found to be useful, and yet were also

subjects of individual interpretation and social discussion. In other words, recommendations were not

followed blindly and individually, but tactically (e.g. to work out what other people were doing), as a

means to learn about the system’s possibilities, as a mechanism to be understood and manipulated to

one’s own advantage (i.e. to be ‘gamed’), and so forth.

These findings tend to confirm the view of system adaptation as a sociotechnical process rather than a

purely objective technical one. This backs up the design decision not to make adaptation happen fully

automatically. The trials suggest that the system should not only support individual user awareness of

current choices, but should show—in comprehensible terms appropriate to the application and the users—

what has been done by users in the past and might they might do in the future.

Chapter 7: Conclusions

 151

Chapter 7 Conclusions

In this chapter a summary of the results and contributions of the thesis are presented.

7.1 Summary of thesis

The introductory chapter expressed that there is a growing need to employ adaptation in mobile

ubiquitous systems to alleviate problems in design caused by difficulties in predicting context changes in

the mobile environment, users’ needs over long periods of time and the various unique situations mobile

applications are expected to be available in. It was observed that, to date, the majority of mobile

applications are simply reduced versions of standard desktop applications. They are rigid and inflexible,

requiring many compromises from users to provide any useful functionality; they are essentially blind to

the vast volume of context information potentially available to a mobile device.

Chapter 2 covered research on context awareness relevant to the work in this thesis. The features that

make up what a program might model as ‘context’ were discussed. In particular, it is clear that context

awareness is of critical importance to the type of dynamic mobile systems proposed throughout this

thesis, and two aspects of context might were highlighted as being potentially useful with regard to

adaptation: the configuration of the system itself, and the history of its use.

Chapter 3 presented the concept of seamful design, and returned to the roots of ubicomp as a principle or

ideal. The systems described in the chapter, Treasure and Feeding Yoshi, demonstrate seamfulness’ first

Chapter 7: Conclusions

 152

full application to ubicomp system design. The games were used as an initial vehicle to explore seamful

design, and showed that ubicomp system design could make infrastructure into a resource for users in

ways that let them use or appropriate the system and its infrastructure to suit their own contexts, for

example, building up strategies and tactics with regard to WiFi, and fitting such as system into their

everyday lives.

Chapter 4 identified literature involving mobile peer-to-peer systems, and it was discovered that of

particular importance are those systems that take advantage of people’s everyday movement as the

mechanism for transport and filtering information in a purely ad hoc mobile scenario - the social

proximity application (SPA). Several systems were presented that utilised social proximity to spread data

epidemically within a community of users.

Chapter 5 examined existing literature in the field of adaptation. An architecture for a mobile software

recommendation and adaptation was presented, Domino, involving a design based on the findings of the

earlier chapters based on literature and systems, in particular mobile ad hoc networks, peer discovery,

epidemic sharing of software modules as well usage histories, and a peer-to-peer version of the Recer

recommender subsystem.

Chapter 6 discussed the Castles system, which demonstrated the deployment and user experience of a

Domino-based system. Module recommendation and associated system adaptation were generally found

to be useful, and yet were also subjects of individual interpretation and social discussion. Trial findings

confirmed the view of system adaptation as a sociotechnical process rather than a purely objective

technical one, added to the evidence for the viability of the seamful approach, and gave pointers towards

future work on further ways to reveal history and recommendation information, and on handling privacy

and security.

7.2 Contributions

In conclusion, this thesis has addressed the three original research questions introduced at the outset of

the thesis:

RQ1 What aspects of existing research and systems can be applied to the design of an

adaptive infrastructure for ubicomp?

RQ2 How can ubicomp researchers design more dynamic and adaptive systems?

RQ3 How do users react to adaptive and dynamic ubicomp systems?

RQ1 was addressed through a literature review, detailed analysis of systems and user studies in the areas

of context awareness, seamful design, mobile peer-to-peer applications and adaptive systems (Chapters

Chapter 7: Conclusions

 153

2–5). RQ2 was addressed through the design and implementation of Domino, an adaptive infrastructure

for ubicomp presented in the second half of Chapter 5, designed specifically based on the research and

systems investigated to address RQ1 in the earlier chapters. RQ3 was addressed through the

implementation and user trial of a Domino based adaptive dynamic ubicomp system, Castles, where users

found recommendations and associated system adaptation generally useful, and yet were also subjects of

individual interpretation and social discussion.

Chapter 2 addressed RQ1 by conveying that making a system have a broad model of context—spanning

the external environment around it, such as peers and other devices, internal context such as files or

software configuration on the device itself, and historical aspects of context such as usage histories—may

greatly assist towards functionality, usability and behaviour appropriate to an adaptive ubicomp system.

The George Square system proved an excellent test bed to examine how an advanced context aware

system may operate, and offered findings highly relevant to the design of adaptive systems. George

Square demonstrated how the past could be used as a resource to generate relevant information from

recommendations, based on a comparison of the current user’s context with the histories of past activity

and context generated by previous users, and indicated that the same mechanism could potentially drive

software adaptation. George Square also offered design guidelines that should be adhered to when

creating mobile, context-aware adaptive systems. The architecture of the George Square software

infrastructure, although modular and reconfigurable, was limited by its reliance on central servers,

suggesting that dynamic architectures would be more flexible if relieved of this restriction. George

Square featured content and associations that adapt dynamically with use, rather than being completely

pre-authored. George Square highlights the importance of the peer-to-peer community in mobile systems

and suggests that only by sharing information between a community of users can many mobile systems

gain a critical mass of data that makes them useful and interesting.

Chapter 3 addressed RQ1, demonstrating that the application of seamful design to a complex and

dynamic adaptive system could be beneficial to user understanding and acceptance. If adaptive systems

were to expose aspects of their underlying infrastructure, users could take advantage of past patterns of

use; for example, finding practical significance in current events though their relationship to past events.

Treasure and Feeding Yoshi showed that ubicomp system design could make infrastructure into a

resource for users in ways that let them use or appropriate the system to suit their own contexts. Histories

of use were again found to be a useful resource in this task, for example, in the WiFi maps of Treasure.

To some extent these maps are examples of content being created by users, reflecting the benefits of user-

generated content shown in George Square.

Chapter 4 addressed RQ1 by examining literature involving mobile peer-to-peer systems, and of

particular importance are those systems that take advantage of people’s mobility as the transport

mechanism for information in a purely ad hoc mobile scenario—the social proximity application (SPA).

This thesis contributed a novel type of SPA, one that shares data to generate intelligent recommendations

of software. This type of adaptive SPA can receive new functionality in the form of software components

Chapter 7: Conclusions

 154

between collocated users, utilising social activity and movement to drive the mechanism offering changes

in functionality. As such, the systems described in his chapter also serve as concrete demonstrations of

responses to RQ2. FarCry demonstrated the epidemic spreading of information via peer-to-peer

connections over wireless networks, aided by a custom wireless driver. StreetHawk pushed the limits of

using dynamically discovered WiFi networks by supporting both infrastructure and ad hoc modes. The

peer-to-peer version of Recer, built on top of the FarCry platform and tested in Samara, allowed history

logs to be distributed and maintained efficiently and a recommendation service to be built that avoided

George Square’s limitations due of centralisation. Overall, the experience gained from implementing and

testing these systems helped towards answering both RQ1 and RQ2, and meant that we had reliable

systems for peer discovery, communication and information sharing—identified as being key

requirements of a successful mobile adaptive infrastructure.

Chapter 5 addressed RQ1 by examining existing literature on dynamic software adaptation and its

relevance to ubicomp systems. Three different types of adaptation were examined in this chapter:

adaptive content—the content of a web page, for example, is customised depending on the context of the

user, adaptive displays and user interfaces—the actual interface itself is adapted as opposed to the

content, and personal adaptation of software—users extending the functionality of the software they use

in a more general way.

The ideas and experiences explored in seeking to answer RQ1 offered a potential novel approach to

overcome the weaknesses of current mobile systems, in that they are mainly static, cut-down versions of

desktop software, and offered an opportunity to build successful mobile adaptive systems, which blend

with and support users in their dynamically changing activities and environments, thus fitting with the

design ideals of ubicomp systems and addressing RQ2. The Domino system was designed to specifically

address the requirement that mobile systems should be highly adaptable to the user and his/her context.

By relying on the peer-to-peer Recer system, Domino continually monitors a user’s context, records

his/her actions and actively adapts, at runtime, to what the user is involved in. By distributing both the

history logs and functionality in the form of modules, the Domino system is able to provide an extremely

high degree of adaptation within a mobile, peer-to-peer environment. The level of adaptation Domino

provides is undoubtedly novel to the mobile environment, and yet also goes beyond the dynamic

adaptation that has been achieved in most desktop systems.

To address RQ3, the Castles game was built to demonstrate one application of Domino in a mobile, peer-

to-peer environment and was the subject of a user trial to uncover users’ reactions. Castles is a context

aware, peer-to-peer, seamful, adaptive system. Castles used the infrastructure developed in the systems

discussed in earlier chapters, so as to gain the advantages of peer-to-peer mobile communication such as

mobility, cheapness and high bandwidth. Castles is seamful in that it selectively exposes software

structure to users, so that they can be aware of software modules and appropriate them for their own

contextually relevant patterns of use. The user trial offered a technical demonstration that Castles is

adaptive and adaptable around a user’s activity, and that functionality can be discovered, shared and

Chapter 7: Conclusions

 155

integrated in the mobile environment whilst applications are actively running. Rather like the findings of

the George Square trials, the trials of Castles revealed that the system’s use was dependent on the people

using it as much as the objective functionality the system offered. Recommendations were not followed

blindly and individually, but tactically and as indirect expressions of players’ activity and skill. The

Castles trial findings and surrounding discussion therefore document users’ reactions to an adaptive and

dynamic ubicomp system, and therefore are an answer to RQ3—thus completing this thesis’ response to

the three original research questions set out at the beginning of this thesis.

7.3 Conclusion

This thesis set out to address a longstanding issue of how to design software that can continue to be

helpful and appropriate whilst operating in the highly dynamic environment of people’s everyday lives.

Researchers agree that system adaptation is a key issue in the field of ubicomp because it can be hard to

design for all situations how and where software should be used and how devices should behave under

different circumstances. The fact that an overwhelming number of researchers paraphrase the same issue

confirms that this is indeed a problem in the field.

This thesis presented the Domino architecture, and its approach to dynamic adaptation to support users’

needs, interests and activities. Domino identifies relationships between code modules beyond those

specified in code by programmers themselves prior to system deployment, such as classes, interfaces and

dependencies. It uses those relationships, but it also takes advantage of code modules’ patterns of use and

combination after they have been released into a user community. The Castles game demonstrated

Domino’s components and mechanisms, exemplifying its means of peer-to-peer communication,

recommendation based on patterns of module use, and adaptation based on both module dependencies

and history data. The openness and dynamism of Domino’s system architecture is applicable to a variety

of systems, but is especially appropriate for mobile systems because of their variety and the

unpredictability of patterns of use, their frequent disconnection from fixed networks, and their relatively

limited amount of memory. As people visit new places, obtain new information and interact with peers,

they are likely to be interested in new software that can optimise their tasks, and novel methods of

interacting with and combining modules. These requirements justify the need for dynamic adaptive

systems in ubicomp. This thesis has successfully presented a viable infrastructure for the development of

such systems, and therefore delivered a basis for solving a long-standing problem in ubicomp.

Chapter : Appendix A – Online materials

 156

Appendix A – Online materials

Online materials that accompany this thesis are briefly listed below. The up-to-date index is available at

http://www.dcs.gla.ac.uk/˜hall/thesis/. These materials include demos (suitable for Windows Mobiles

with touch screens), videos, and pictures of the various implementation demonstrations in action. The

electronic version of this thesis is also available.

Domino Section 5.3

Source code and documentation.

Domino map sharing application Section 5.3.5.1

Video of a map layer being transferred between PDAs.

Source code.

Castles Chapter 6

Source code and documentation.

Trial system logs, videos and interview transcripts.

Chapter : References

 157

References

[1] M. Weiser, "The Computer for the 21st Century," Scientific American, vol. 265, pp. 94-104,

1991.

[2] L. Barkhuus and P. Dourish, "Everyday Encounters with Context-Aware Computing in a

Campus Environment," in Ubicomp, Nottingham, UK, 2004, pp. 232-249.

[3] J. Humble, A. Crabtree, T. Hemmings, K.-P. Åkesson, B. Koleva, T. Rodden, and P. Hansson,

"“Playing with the Bits” User-configuration of Ubiquitous Domestic Environments," in

UbiComp, Seattle, Washington, USA, 2003.

[4] T. Rodden and S. Benford, "The evolution of buildings and implications for the design of

ubiquitous domestic environments," in CHI 2003, pp. 9-16.

[5] W. K. Edwards and R. Grinter, "At Home with Ubiquitous Computing: Seven Chal-lenges," in

Ubicomp, 2001, pp. 256-272.

[6] O. S. Kaya, O. D. Incel, S. Dulman, R. Gemesi, P. Jansen, and P. Havinga, "Using TinyOS

Components for the Design of an Adaptive Ubiquitous System," in International Workshop on

Wireless Ad-hoc Networks, 2005.

[7] A. K. Dey, G. D. Abowd, and D. Salber, "A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications," in Human Computer

Interaction, 2001, pp. 97-166.

Chapter : References

 158

[8] A. K. Dey and G. Abowd, "Towards a Better Understanding of Context and Context-

Awareness," in 1st International Symposium on Handheld and Ubiquitous Computing (HUC

’99), Karlsruhe, Germany, 1999, pp. 304-307.

[9] B. N. Schilit, N. I. Adams, and R. Want, "Context-Aware Computing Applications," in

Workshop on Mobile Computing Systems and Applications Santa Cruz, CA, USA: IEEE

Computer Society, 1994, pp. 85-90.

[10] R. Hull, P. Neaves, and J. Bedford-Roberts, "Towards Situated Computing," in The First

International Symposium on Wearable Computers, Cambridge, MA, USA, 1997, pp. 146-153.

[11] J. Redstrom, P. Dahlberg, P. Ljungstrand, and L. E. Holmquist, "Designing for Local

Interaction," in Managing Interactions in Smart Environments, 1999.

[12] E. Paulos and E. Goodman, "The familiar stranger: anxiety, comfort, and play in public places,"

in Proceedings of the SIGCHI conference on Human factors in computing systems Vienna,

Austria: ACM, 2004, pp. 223-230.

[13] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable Computers," in 2nd IEEE

International Symposium on Wearable Computers: IEEE Computer Society, 1998, pp. 92-99.

[14] M. Chalmers, "A Historical View of Context," Comput. Supported Coop. Work, vol. 13, pp. 223-

247, 2004.

[15] W. Newman and P. Wellner, "A desk supporting computer-based interaction with paper

documents," in Conference on Human Factors and Computing Systems, Monterey, California,

USA, 1992, pp. 587-592.

[16] B. Brown, I. MacColl, M. Chalmers, A. Galani, C. Randell, and A. Steed, "Lessons From The

Lighthouse: Collaboration In A Shared Mixed Reality System," in Human Factors in Computing

Systems, Fort Lauderdale, Florida, USA, 2003, pp. 577-584.

[17] M. Chalmers, K. Rodden, and D. Brodbeck, "The Order of Things: Activity-Centred Information

Access," in World Wide Web, Brisbane, Australia, 1998, pp. 359-367.

[18] M. Chalmers, "Information Awareness and Representation," CSCW, vol. 11, pp. 389-409, 2003.

[19] C. Greenhalgh, "EQUIP: a Software Platform for Distributed Interactive Systems," in Equator

Technical Report 02-002 Nottingham: University of Nottingham, 2002.

[20] G. Fitzpatrick, S. Kaplan, T. Mansfield, A. David, and B. Segall, "Supporting Public Availability

and Accessibility with Elvin: Experiences and Reflections," CSCW, vol. 11, pp. 447-474.

[21] M. Weiser, "The World is not a Desktop," ACM Interactions, vol. 1, pp. 7-8, 1994.

[22] M. Bell, M. Chalmers, L. Barkhuus, M. Hall, S. Sherwood, P. Tennent, B. Brown, D. Rowland,

and S. Benford, "Interweaving mobile games with everyday life," in Proceedings of the SIGCHI

conference on Human Factors in computing systems Montreal, Canada: ACM, 2006.

[23] M. Chalmers, I. MacColl, and M. Bell, "Seamful Design: Showing the Seams in Wearable

Computing," in IEEE Eurowearable, Birmingham, United Kingdom, 2003, pp. 11-17.

[24] M. Flintham, R. Anastasi, S. Benford, T. Hemmings, A. Crabtree, C. Greenhalgh, T. Rodden, N.

Tandavanitj, M. Adams, and J. Row-Farr, "Where On-Line Meets On-The-Streets: Experiences

With Mobile Mixed Reality Games," in Human factors in computing systems, Fort Lauderdale,

Florida, USA, 2003, pp. 569-576.

Chapter : References

 159

[25] W. W. Gaver, J. Beaver, and S. Benford, "Ambiguity as a Resource for Design," CHI Letters,

vol. 5, pp. 233-240, 2003.

[26] K. Mitchell, D. McCaffery, G. Metaxas, and J. Finney, "Six in the City: Introducing Real

Tournament - A Mobile IPv6 Based Context-Aware Multiplayer Game," in NetGames '03,

Redwood City, California, USA, 2003, pp. 91-100.

[27] S. Benford, J. Bowers, P. Chandler, L. Ciolfi, M. Flintham, M. Fraser, C. Greenhalgh, T. Hall, S.

O. Hellstrom, S. Izadi, T. Rodden, H. Schnadelbach, and I. Taylor, "Unearthing virtual history:

using diverse interfaces to reveal hidden virtual worlds," Lecture Notes in Computing Science,

vol. 2201, pp. 225-231, 2001.

[28] L. Barkhuus, M. Chalmers, P. Tennent, M. Hall, M. Bell, S. Sherwood, and B. Brown, "Picking

Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile Game," in

Ubicomp, Tokyo, Japan, 2005, pp. 358-374.

[29] A. Luis von and D. Laura, "Labeling images with a computer game," in Proceedings of the

SIGCHI conference on Human factors in computing systems Vienna, Austria: ACM, 2004.

[30] E. G. Rebecca, W. K. Edwards, W. N. Mark, and D. Nicolas, "The work to make a home

network work," in Proceedings of the ninth conference on European Conference on Computer

Supported Cooperative Work Paris, France: Springer-Verlag New York, Inc., 2005, pp. 469-488.

[31] F. Siegemund, "Spontaneous Interaction using Mobile Phones and Short Text Messages," in

Workshop on Supporting Spontaneous Interaction in Ubiquitous Computing Settings at

Ubicomp, 2002.

[32] A. J. Nicholson, I. E. Smith, J. Hughes, and D. Noble, "LoKey: Leveraging the SMS Network in

Decentralized, End-to-End Trust Establishment," in Pervasive, 2006, pp. 202-219.

[33] A. L. Murphy, G.-C. Roman, and G. Varghese, "An Exercise in Formal Reasoning about Mobile

Communications," in Software Specifications and Design, Ise-Shima, Japan, 1998, pp. 25-33.

[34] A. Beaufour, M. Leopold, and P. Bonnet, "Smart-tag based data dissemination," in Proceedings

of the 1st ACM international workshop on Wireless sensor networks and applications, Atlanta,

Georgia, USA, 2002, pp. 68-77.

[35] J. Brucker-Cohen, K. Moriwaki, and L. Doyle, "UMBRELLA.net: Exploring Coincidence Ad-

Hoc Networks," in Ubicomp, Nottingham, UK, 2004.

[36] M. Östergren, "Sound Pryer: truly mobile joint music listening," in ICEC, 2004.

[37] A. Bassoli, J. Moore, and S. Agamanolis, "TunA: Synchronized Music-Sharing on Handheld

Devices," in Ubicomp, 2004.

[38] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall, "When Peer-

to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in Mobile Ad hoc

Networks," in First International Conference on Peer-to-Peer Computing, Lingköping, Sweden,

2001.

[39] P. Persson, J. Blom, and Y. Jung, "DigiDress: A Field Trial of an Expressive Social Proximity

Application," in UbiComp 2005, 2005, pp. 195-212.

[40] L. Holmquist, J. Falk, and J. Wigstrm, "Supporting Group Collaboration with Inter-Personal

Awareness Devices," in Personal Technologies, 1999.

Chapter : References

 160

[41] W. Alexandra and H. Lars Erik, "Hummingbirds Go Skiing: Using Wearable Computers to

Support Social Interaction," in Proceedings of the 3rd IEEE International Symposium on

Wearable Computers: IEEE Computer Society, 1999, p. 191.

[42] S. Milgram, "The Familiar Stranger: An Aspect of Urban Anonymity."

[43] L. Brunnberg, "The Road Rager: making use of traffic encounters in a mobile multiplayer

game," in Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia

College Park, Maryland: ACM, 2004.

[44] L. Brunnberg and O. Juhlin, "Movement and Spatiality in a Gaming Situation - Boosting Mobile

Computer Games with the Highway Experience," in Interact, Zürich, Switzerland, 2003.

[45] G. Kortuem and Z. Segall, "Wearable communities: augmenting social networks with wearable

computers.," in Pervasive Computing, 2003, pp. 71-78.

[46] T. Michael, D. M. Elizabeth, R. Kathy, and L. Darren, "Social net: using patterns of physical

proximity over time to infer shared interests," in CHI '02 extended abstracts on Human factors

in computing systems Minneapolis, Minnesota, USA: ACM, 2002, pp. 816-817.

[47] P. Dahlberg, J. Redstr, and H. Fagrell, "People, places and the newspilot," in CHI '99 extended

abstracts on Human factors in computing systems Pittsburgh, Pennsylvania: ACM, 1999, pp.

322-323.

[48] E. O'Neill, V. Kostakos, T. Kindberg, A. F. g. Schieck, A. Penn, D. S. Fraser, and T. Jones,

"Instrumenting the city: developing methods for observing and understanding the digital

cityscape," in Ubicomp, 2006.

[49] T. Kindberg and T. Jones, "“Merolyn the Phone”: A Study of Bluetooth Naming Practices " in

Ubicomp, 2007, pp. 318-335.

[50] M. Esbjörnsson and M. Östergren, "Hocman: supporting mobile group collaboration," in CHI

'02 extended abstracts on Human factors in computing systems, Minneapolis, Minnesota, 2002,

pp. 838-839.

[51] V. Kostakos and E. O’Neill, "Quantifying the effects of space on encounter," in Space Syntax

Symposium, Istanbul, 2007.

[52] A. Vahdat and D. Becker, "Epidemic Routing for Partially-Connected Ad Hoc Networks," Duke

University 2000.

[53] L. Aalto, N. G, thlin, J. Korhonen, and T. Ojala, "Bluetooth and WAP push based location-aware

mobile advertising system," in Proceedings of the 2nd international conference on Mobile

systems, applications, and services Boston, MA, USA: ACM, 2004.

[54] T. Finin, O. Ratsimor, A. Joshi, and Y. Yesha, "eNcentive: A Framework for Intelligent

Marketing in Mobile Peer-To-Peer Environments," in International Conference on Electronic

Commerce (ICEC), 2003.

[55] Anonymous and Cachelogic, "The true picture of peer-to-peer filesharing," in a presentation

available online at: http://www.cachelogic.com/research/index.php, 2005.

[56] M. W. Newman, A. Voida, R. E. Grinter, N. Ducheneaut, and K. Edwards, "Listening in:

practices surrounding iTunes music sharing," in CHI '05: Proceeding of the SIGCHI conference

on Human factors in computing systems, Portland, Oregon, USA, 2005, pp. 191--200.

Chapter : References

 161

[57] J. Hightower, S. Consolvo, A. LaMarca, I. Smith, and J. Hughes, "Learning and Recognizing the

Places We Go," Lecture Notes in Computer Science, vol. 3660, pp. 159-176, 2005.

[58] N. Marmasse and C. Schmandt, "Location-Aware Information Delivery with ComMotion," in

2nd international symposium on Handheld and Ubiquitous Computing, Bristol, UK, 2000, pp.

157-171.

[59] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, "MovieLens unplugged:

experiences with an occasionally connected recommender system," in 8th international

conference on Intelligent user interfaces, Miami, Florida, USA, 2003, pp. 263-266.

[60] R. Opperman, M. Specht, and I. Jaceniak, "Hippie, A Nomadic Information System," in Proc.

1st international symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany,

1999, pp. 330-333.

[61] B. Schiele, T. Jebera, and N. Oliver, "Sensory-Augmented Computing: Wearing the Museum's

Guide," IEEE Micro, vol. 21, pp. 44-52, 2001.

[62] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou, "Developing a Context-aware

Electronic Tourist Guide: Some Issues and Experiences," in Human Factors in Computing

Systems, The Hague, Amsterdam, 2000, pp. 17-24.

[63] K. Cheverst, N. Davies, K. Mitchell, and A. Friday, "Experiences of developing and deploying a

context-aware tourist guide: the GUIDE project," in Mobile Computing and Networking, Boston,

MA, USA, 2000, pp. 20-31.

[64] K. Cheverst, K. Mitchell, and N. Davies, "The role of adaptive hypermedia in a context-aware

tourist GUIDE," Commun. ACM, vol. 45, pp. 47-51, 2002.

[65] N. Mitrovic and E. Mena, "Adaptive User Interface for Mobile Devices," in Proceedings of the

9th International Workshop on Interactive Systems. Design, Specification, and Verification,

2002, pp. 29--43.

[66] D. Vogel and P. Baudisch, "Shift: A Technique for Operating Pen-Based Interfaces Using

Touch," in CHI, San Jose, CA, 2007, pp. 251-260.

[67] D. Crow and B. Smith, "The role of built-in knowledge in adaptive interface systems," in

Proceedings of the 1st international conference on Intelligent user interfaces, Orlando, Florida,

United States, 1993, pp. 97-104.

[68] F. Linton, D. Joy, H.-P. Schaefer, and A. Charron, "OWL: a recommender system for

organization-wide learning.," Educational Technology & Society, pp. 62-76, 2000.

[69] J. M. Carroll and C. Carrithers, "Training wheels in a user interface," Communications of the

ACM, vol. 27, pp. 800-806, August 1984 1984.

[70] J. B. Black, J. M. Carroll, and S. M. McGuigan, "What kind of minimal instruction manual is the

most effective," in SIGCHI/GI Conference on Human Factors in Computing Systems and

Graphics Interface, Toronto, Ontario, Canada, 1986, pp. 159-162.

[71] L. Findlater and J. McGrenere, "A comparison of static, adaptive, and adaptable menus," in

Proceedings of the 2004 conference on Human factors in computing systems, Vienna, Austria,

2004, pp. 89-96.

Chapter : References

 162

[72] E. Horvitz, "Principles of mixed-initiative user interfaces," in Proceedings of the SIGCHI

conference on Human factors in computing systems, Pittsburgh, Pennsylvania, United States,

1999, pp. 159-166.

[73] L. Birnbaum, E. Horvitz, D. Kurlander, H. Lieberman, J. Marks, and S. Roth, "Compelling

intelligent user interfaces: how much AI?," in Proceedings of the 2nd international conference

on Intelligent user interfaces, Orlando, Florida, United States, 1997, pp. 173-175.

[74] A. Cypher, "Eager: Programming Repetitive Tasks by Example," in CHI, New Orleans, 1991,

pp. 33-39.

[75] Bao, "Fewer Clicks and Less Frustration: Reducing the Cost of Reaching the Right Folder," in

Intelligent User Interfaces, 2006.

[76] W. E. Mackay, "Patterns of sharing customizable software," in Proceedings of the 1990 ACM

conference on Computer-supported cooperative work, Los Angeles, California, United States,

1990, pp. 209-221.

[77] M. Allan, C. Kathleen, L. Lennart, vstrand, and M. Thomas, "User-tailorable systems: pressing

the issues with buttons," in Proceedings of the SIGCHI conference on Human factors in

computing systems: Empowering people Seattle, Washington, United States: ACM, 1990, pp.

175-182.

[78] M. W. Newman, S. Izadi, W. K. Edwards, J. Z. Sedivy, and T. F. Smith, "User interfaces when

and where they are needed: an infrastructure for recombinant computing," in Symposium on

User Interface Software and Technology, Paris, France, 2002, pp. 171-180.

[79] M. W. Newman, J. Z. Sedivy, C. M. Neuwirth, W. K. Edwards, J. I. Hong, S. Izadi, K. Marcelo,

T. F. Smith, and J. Sedivy, "Designing for serendipity: supporting end-user configuration of

ubiquitous computing environments," in Symposium on Designing Interactive Systems, London,

England, 2002.

[80] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, and S. Izadi, "Challenge: Recombinant

Computing and the Speakeasy Approach," in International Conference on Mobile Computing

and Networking, Atlanta, Georgia, USA, 2002, pp. 279-286.

[81] J. A. Kim, O.-C. Kwon, J. Lee, and G.-S. Shin, "Component adaptation using adaptation pattern

components," in Systems, Man, and Cybernetics, 2001 IEEE International Conference on,

Tucson, AZ USA, 2001, pp. 1025-1029.

[82] J. Kramer and J. Magee, "The Evolving Philosophers Problem: Dynamic Change Management,"

IEEE Trans. Softw. Eng., vol. 16, pp. 1293-1306, 1990.

[83] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,

D. S. Rosenblum, and A. L. Wolf, "An Architecture-Based Approach to Self-Adaptive

Software," IEEE Intelligent Systems, vol. 14, pp. 54-62, 1999.

[84] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, and P. Steenkiste, "Exploiting

Architectural Style for Self-repairing Systems," 2002.

[85] P. Oreizy, N. Medvidovic, and R. N. Taylor, "Architecture-based runtime software evolution," in

Proceedings of the 20th international conference on Software engineering, Kyoto, Japan, 1998,

pp. 177-186.

Chapter : References

 163

[86] H. Cervantes and R. Hall, "A Framework for Constructing Adaptive Component-Based

Applications: Concepts and Experiences," in CBSE, 2004.

[87] D. Linthicum, "B2B Application Integration: e-Business-Enable Your Enterprise," 2001.

[88] A. Gaddah and T. Kunz, "A Survey of Middleware Paradigms for Mobile Computing," Carleton

University Systems and Computing Engineering 2003.

[89] B. Brumitt and J. J. Cadiz, ""Let There Be Light" Examining Interfaces for Homes of the

Future," in INTERACT, 2001.

[90] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and

D. Terry, "Epidemic algorithms for replicated database maintenance," in Principles of

distributed computing, Vancouver, BC, Canada, 1987, pp. 1-12.

[91] M. Hall and P. Gray, "Mobile Support for Team-Based Field Surveys," in 6th International

Symposium on Mobile HCI, 2004, pp. 431-435.

[92] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and R. Gupta, "Wireless Wakeups

Revisited: Energy Management for VoIP over Wi-Fi Smartphones," in Mobisys, 2007.

[93] A. Bassoli, J. Brewer, and K. Martin, "undersound: Music and Mobility Under the City," in

Ubicomp, 2006.

[94] M. Esbj, rnsson, O. Juhlin, Mattias, and stergren, "Traffic encounters and Hocman: associating

motorcycle ethnography with design," Personal Ubiquitous Comput., vol. 8, pp. 92-99, 2004.

[95] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals: MIT Press, 2004.

[96] J. Ametller, S. Robles, and J. A. Ortega-Ruiz, "Self-Protected Mobile Agents," Proc. Joint

Conference on Autonomous Agents and Multiagent Systems, vol. 1, 2004.

[97] J. Page, A. Zaslavsky, and M. Indrawan, "A buddy model of security for mobile agent

communities operating in pervasive scenarios," Proceedings of Australasian information

security, Data Mining and Web Intelligence, and Software Internationalisation, vol. 32, 2004.

[98] A. Pfitzmann, B. Pfitzmann, and M. Waidner, "Trusting Mobile User Devices and Security

Modules," Computer, vol. 30-2, pp. 61-68, 1997.

[99] P. L. Kocher, R. McGraw, G. Raghunathan, A. Ravi, S. , "Security as a new dimension in

embedded system design," in Design Automation, 2004, pp. 753-760.

[100] E. Guy, A. Anurag, and C. Vipin, "History-based access control for mobile code," in

Proceedings of the 5th ACM conference on Computer and communications security San

Francisco, California, United States: ACM, 1998.

[101] J. Goldenberg, Y. Shavitt, E. Shir, and S. Solomon, "Distributive immunization of networks

against viruses using the ‘honey-pot’ architecture," Nature Physics, vol. 1, 2005.

[102] F. Chen and W. Yeager, "Poblano: A Distributed Trust Model for Peer-to-Peer Networks," in

Technical Report, TR-I4-02-08 Palo Alto: Sun Microsystems, 2002.

[103] M. Saeb, M. Hamza, and A. Soliman, "Protecting Mobile Agents against Malicious Host

Attacks," in Smart Objects Conference, Grenoble, France, 2003.

[104] D. Birsan, "On plug-ins and extensible architectures," Queue, vol. 3, pp. 40–46, 2005.

