15,679 research outputs found

    How will the Internet of Things enable Augmented Personalized Health?

    Full text link
    Internet-of-Things (IoT) is profoundly redefining the way we create, consume, and share information. Health aficionados and citizens are increasingly using IoT technologies to track their sleep, food intake, activity, vital body signals, and other physiological observations. This is complemented by IoT systems that continuously collect health-related data from the environment and inside the living quarters. Together, these have created an opportunity for a new generation of healthcare solutions. However, interpreting data to understand an individual's health is challenging. It is usually necessary to look at that individual's clinical record and behavioral information, as well as social and environmental information affecting that individual. Interpreting how well a patient is doing also requires looking at his adherence to respective health objectives, application of relevant clinical knowledge and the desired outcomes. We resort to the vision of Augmented Personalized Healthcare (APH) to exploit the extensive variety of relevant data and medical knowledge using Artificial Intelligence (AI) techniques to extend and enhance human health to presents various stages of augmented health management strategies: self-monitoring, self-appraisal, self-management, intervention, and disease progress tracking and prediction. kHealth technology, a specific incarnation of APH, and its application to Asthma and other diseases are used to provide illustrations and discuss alternatives for technology-assisted health management. Several prominent efforts involving IoT and patient-generated health data (PGHD) with respect converting multimodal data into actionable information (big data to smart data) are also identified. Roles of three components in an evidence-based semantic perception approach- Contextualization, Abstraction, and Personalization are discussed

    Prediction Techniques in Internet of Things (IoT) Environment: A Comparative Study

    Get PDF
    Socialization and Personalization in Internet of Things (IOT) environment are the current trends in computing research. Most of the research work stresses the importance of predicting the service & providing socialized and personalized services. This paper presents a survey report on different techniques used for predicting user intention in wide variety of IOT based applications like smart mobile, smart television, web mining, weather forecasting, health-care/medical, robotics, road-traffic, educational data mining, natural calamities, retail banking, e-commerce, wireless networks & social networking. As per the survey made the prediction techniques are used for: predicting the application that can be accessed by the mobile user, predicting the next page to be accessed by web user, predicting the users favorite TV program, predicting user navigational patterns and usage needs on websites & also to extract the users browsing behavior, predicting future climate conditions, predicting whether a patient is suffering from a disease, predicting user intention to make implicit and human-like interactions possible by accepting implicit commands, predicting the amount of traffic occurring at a particular location, predicting student performance in schools & colleges, predicting & estimating the frequency of natural calamities occurrences like floods, earthquakes over a long period of time & also to take precautionary measures, predicting & detecting false user trying to make transaction in the name of genuine user, predicting the actions performed by the user to improve the business, predicting & detecting the intruder acting in the network, predicting the mood transition information of the user by using context history, etc. This paper also discusses different techniques like Decision Tree algorithm, Artificial Intelligence and Data Mining based Machine learning techniques, Content and Collaborative based Recommender algorithms used for prediction

    A Survey on Various Techniques in Internet of Things (IoT) Implementation: A Comparative Study

    Get PDF
    As per the current trends in computing research socialization and Personalization in Internet of Things (IOT) environment are quite trending and they are being widely used. The main aim of research work is to provide socialized and personalized services along with creating awareness of predicting the service. Here various kind of methods are discussed which can be used for predicting user intention in large variety of IOT based applications such as smart mobile, smart television, web mining, weather forecasting, health-care/medical, robotics, road-traffic, educational data mining, natural calamities, retail banking, e-commerce, wireless networks & social networking. By common consent it is found that the prediction is made usually for finding techniques that can be accessed by the mobile user, predicting the next page that is most likely to be used by web user, predicting favorite and most likely TV program that can be viewed by user, getting a list of browsing usage and need of user and also predicting user navigational patterns, predicting future climate conditions, predicting the health and welfare of user, predicting user intention so that implicit could be made and human-like interactions could be possible by accepting implicit commands, predicting the exact amount of traffic at a particular location, predicting curricular performance of student in schools & colleges, having prediction of frequency of natural calamities and their occurrences such as floods, earthquakes over a long period of time & also the required time in which precautionary measures could be adopted, predicting & detecting the frauds in which false user try to make transaction in the name of genuine user, predicting the steps and work done by the user to improve the business, predicting & detecting the intruder acting in the network, by the help of context history predicting the mood transition information of the user, etc. Here in this topic of discussion, different techniques such as Decision Tree algorithm, Artificial Intelligence and Data Mining based Machine learning techniques, Content and Collaborative based Recommender algorithms are used for prediction

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Pervasive CSCW for smart spaces communities

    Get PDF
    Future pervasive environments will take into consideration not only individual users' interest, but also social relationships. In today's scenarios, the trend is to make use of collective intelligence, where the interpretation of context information can be harnessed as input for pervasive systems. Therefore, social CSCW applications represent new challenges and possibilities in terms of use of group context information for adaptability and personalization in pervasive computing. The objective of this paper is to present two enterprise scenarios that support collaboration and adaption capabilities through pervasive communities combined with social computing. Collaborative applications integrated with pervasive communities can increase the activity's quality of the end user in a wide variety of tasks

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Health Promotion for Childhood Obesity: An Approach Based on Self-Tracking of Data

    Get PDF
    [EN]At present, obesity and overweight are a global health epidemic. Traditional interventions for promoting healthy habits do not appear to be e ective. However, emerging technological solutions based on wearables and mobile devices can be useful in promoting healthy habits. These applications generate a considerable amount of tracked activity data. Consequently, our approach is based on the quantified-self model for recommending healthy activities. Gamification can also be used as a mechanism to enhance personalization, increasing user motivation. This paper describes the quantified-self model and its data sources, the activity recommender system, and the PROVITAO App user experience model. Furthermore, it presents the results of a gamified program applied for three years in children with obesity and the process of evaluating the quantified-self model with experts. Positive outcomes were obtained in children’s medical parameters and health habits
    • …
    corecore