48 research outputs found

    Contextual compositionality detection with external knowledge bases and word embeddings

    Get PDF
    When the meaning of a phrase cannot be inferred from the individual meanings of its words (e.g., hot dog), that phrase is said to be non-compositional. Automatic compositionality detection in multiword phrases is critical in any application of semantic processing, such as search engines [9]; failing to detect non-compositional phrases can hurt system effectiveness notably. Existing research treats phrases as either compositional or non-compositional in a deterministic manner. In this paper, we operationalize the viewpoint that compositionality is contextual rather than deterministic, i.e., that whether a phrase is compositional or non-compositional depends on its context. For example, the phrase \ufffdgreen card\ufffd is compositional when referring to a green colored card, whereas it is non-compositional when meaning permanent residence authorization. We address the challenge of detecting this type of contextual compositionality as follows: given a multi-word phrase, we enrich the word embedding representing its semantics with evidence about its global context (terms it often collocates with) as well as its local context (narratives where that phrase is used, which we call usage scenarios). We further extend this representation with information extracted from external knowledge bases. The resulting representation incorporates both localized context and more general usage of the phrase and allows to detect its compositionality in a non-deterministic and contextual way. Empirical evaluation of our model on a dataset of phrase compositionality1, manually collected by crowdsourcing contextual compositionality assessments, shows that our model outperforms state-of-the-art baselines notably on detecting phrase compositionality

    Semantic Representation and Inference for NLP

    Full text link
    Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).Comment: PhD thesis, the University of Copenhage

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    Integrating Distributional, Compositional, and Relational Approaches to Neural Word Representations

    Get PDF
    When the field of natural language processing (NLP) entered the era of deep neural networks, the task of representing basic units of language, an inherently sparse and symbolic medium, using low-dimensional dense real-valued vectors, or embeddings, became crucial. The dominant technique to perform this task has for years been to segment input text sequences into space-delimited words, for which embeddings are trained over a large corpus by means of leveraging distributional information: a word is reducible to the set of contexts it appears in. This approach is powerful but imperfect; words not seen during the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any plausible application where embeddings are used. One approach applied in order to combat this and other shortcomings is the incorporation of compositional information obtained from the surface form of words, enabling the representation of morphological regularities and increasing robustness to typographical errors. Another approach leverages word-sense information and relations curated in large semantic graph resources, offering a supervised signal for embedding space structure and improving representations for domain-specific rare words. In this dissertation, I offer several analyses and remedies for the OOV problem based on the utilization of character-level compositional information in multiple languages and the structure of semantic knowledge in English. In addition, I provide two novel datasets for the continued exploration of vocabulary expansion in English: one with a taxonomic emphasis on novel word formation, and the other generated by a real-world data-driven use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards contextualized representations of subword tokens, I describe the form in which the OOV problem still appears in these methods, and apply an integrative compositional model to address it.Ph.D

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Enhancing Word Representation Learning with Linguistic Knowledge

    Get PDF
    Representation learning, the process whereby representations are modelled from data, has recently become a central part of Natural Language Processing (NLP). Among the most widely used learned representations are word embeddings trained on large corpora of unannotated text, where the learned embeddings are treated as general representations that can be used across multiple NLP tasks. Despite their empirical successes, word embeddings learned entirely from data can only capture patterns of language usage from the particular linguistic domain of the training data. Linguistic knowledge, which does not vary among linguistic domains, can potentially be used to address this limitation. The vast sources of linguistic knowledge that are readily available nowadays can help train more general word embeddings (i.e. less affected by distance between linguistic domains) by providing them with such information as semantic relations, syntactic structure, word morphology, etc. In this research, I investigate the different ways in which word embedding models capture and encode words’ semantic and contextual information. To this end, I propose two approaches to integrate linguistic knowledge into the statistical learning of word embeddings. The first approach is based on augmenting the training data for a well-known Skip-gram word embedding model, where synonym information is extracted from a lexical knowledge base and incorporated into the training data in the form of additional training examples. This data augmentation approach seeks to enforce synonym relations in the learned embeddings. The second approach exploits structural information in text by transforming every sentence in the data into its corresponding dependency parse trees and training an autoencoder to recover the original sentence. While learning a mapping from a dependency parse tree to its originating sentence, this novel Structure-to-Sequence (Struct2Seq) model produces word embeddings that contain information about a word’s structural context. Given that the combination of knowledge and statistical methods can often be unpredictable, a central focus of this thesis is on understanding the effects of incorporating linguistic knowledge into word representation learning. Through the use of intrinsic (geometric characteristics) and extrinsic (performance on downstream tasks) evaluation metrics, I aim to measure the specific influence that the injected knowledge can have on different aspects of the informational composition of word embeddings

    Familial Clustering For Weakly-labeled Android Malware Using Hybrid Representation Learning

    Full text link
    IEEE Labeling malware or malware clustering is important for identifying new security threats, triaging and building reference datasets. The state-of-the-art Android malware clustering approaches rely heavily on the raw labels from commercial AntiVirus (AV) vendors, which causes misclustering for a substantial number of weakly-labeled malware due to the inconsistent, incomplete and overly generic labels reported by these closed-source AV engines, whose capabilities vary greatly and whose internal mechanisms are opaque (i.e., intermediate detection results are unavailable for clustering). The raw labels are thus often used as the only important source of information for clustering. To address the limitations of the existing approaches, this paper presents ANDRE, a new ANDroid Hybrid REpresentation Learning approach to clustering weakly-labeled Android malware by preserving heterogeneous information from multiple sources (including the results of static code analysis, the metainformation of an app, and the raw-labels of the AV vendors) to jointly learn a hybrid representation for accurate clustering. The learned representation is then fed into our outlieraware clustering to partition the weakly-labeled malware into known and unknown families. The malware whose malicious behaviours are close to those of the existing families on the network, are further classified using a three-layer Deep Neural Network (DNN). The unknown malware are clustered using a standard density-based clustering algorithm. We have evaluated our approach using 5,416 ground-truth malware from Drebin and 9,000 malware from VIRUSSHARE (uploaded between Mar. 2017 and Feb. 2018), consisting of 3324 weakly-labeled malware. The evaluation shows that ANDRE effectively clusters weaklylabeled malware which cannot be clustered by the state-of-theart approaches, while achieving comparable accuracy with those approaches for clustering ground-truth samples

    Interpretable Architectures and Algorithms for Natural Language Processing

    Get PDF
    Paper V is excluded from the dissertation with respect to copyright.This thesis has two parts: Firstly, we introduce the human level-interpretable models using Tsetlin Machine (TM) for NLP tasks. Secondly, we present an interpretable model using DNNs. The first part combines several architectures of various NLP tasks using TM along with its robustness. We use this model to propose logic-based text classification. We start with basic Word Sense Disambiguation (WSD), where we employ TM to design novel interpretation techniques using the frequency of words in the clause. We then tackle a new problem in NLP, i.e., aspect-based text classification using a novel feature engineering for TM. Since TM operates on Boolean features, it relies on Bag-of-Words (BOW), making it difficult to use pre-trained word embedding like Glove, word2vec, and fasttext. Hence, we designed a Glove embedded TM to significantly enhance the model’s performance. In addition to this, NLP models are sensitive to distribution bias because of spurious correlations. Hence we employ TM to design a robust text classification against spurious correlations. The second part of the thesis consists interpretable model using DNN where we design a simple solution for complex position dependent NLP task. Since TM’s interpretability comes with the cost of performance, we propose an DNN-based architecture using a masking scheme on LSTM/GRU based models that ease the interpretation for humans using the attention mechanism. At last, we take the advantages of both models and design an ensemble model by integrating TM’s interpretable information into DNN for better visualization of attention weights. Our proposed model can be efficiently integrated to have a fully explainable model for NLP that assists trustable AI. Overall, our model shows excellent results and interpretation in several open-sourced NLP datasets. Thus, we believe that by combining the novel interpretation of TM, the masking technique in the neural network, and the integrated ensemble model, we can build a simple yet effective platform for explainable NLP applications wherever necessary.publishedVersio
    corecore