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Abstract

Representation learning, the process whereby representations are modelled from

data, has recently become a central part of Natural Language Processing (NLP).

Among the most widely used learned representations are word embeddings trained

on large corpora of unannotated text, where the learned embeddings are treated as

general representations that can be used across multiple NLP tasks. Despite their

empirical successes, word embeddings learned entirely from data can only capture

patterns of language usage from the particular linguistic domain of the training data.

Linguistic knowledge, which does not vary among linguistic domains, can poten-

tially be used to address this limitation. The vast sources of linguistic knowledge

that are readily available nowadays can help train more general word embeddings

(i.e. less affected by distance between linguistic domains) by providing them with

such information as semantic relations, syntactic structure, word morphology, etc.

In this research, I investigate the different ways in which word embedding

models capture and encode words’ semantic and contextual information. To this

end, I propose two approaches to integrate linguistic knowledge into the statisti-

cal learning of word embeddings. The first approach is based on augmenting the

training data for a well-known Skip-gram word embedding model, where synonym

information is extracted from a lexical knowledge base and incorporated into the

training data in the form of additional training examples. This data augmentation

approach seeks to enforce synonym relations in the learned embeddings. The sec-

ond approach exploits structural information in text by transforming every sentence

in the data into its corresponding dependency parse trees and training an autoen-

coder to recover the original sentence. While learning a mapping from a dependency



Abstract 4

parse tree to its originating sentence, this novel Structure-to-Sequence (Struct2Seq)

model produces word embeddings that contain information about a word’s struc-

tural context. Given that the combination of knowledge and statistical methods can

often be unpredictable, a central focus of this thesis is on understanding the effects

of incorporating linguistic knowledge into word representation learning. Through

the use of intrinsic (geometric characteristics) and extrinsic (performance on down-

stream tasks) evaluation metrics, I aim to measure the specific influence that the

injected knowledge can have on different aspects of the informational composition

of word embeddings.
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NLP, the branch of Artificial Intelligence (AI) that deals with the automated inter-

action with human language, has seen an exponential growth in applications in the

past years. At the heart of many contemporary NLP applications lie word embed-

dings, which are learned vectorial representations of words that encode linguistic

information captured from training data.

The current trend in text representation is to use increasingly complex models

trained on vast amounts of data (e.g. the widely used Bidirectional Encoder Repre-

sentations from Transformers (BERT) model Devlin et al. (2018) contains billions

of parameters trained on a dataset of several billion words). Nevertheless, con-

structing alternative models that can approximate the performance of these massive

models at a fraction of the computational and data costs can have many potential ad-

vantages. Lightweight word embedding models can facilitate porting state-of-the-

art NLP models to low-resource languages, i.e. languages for which large amounts

of data is not readily available. Additionally, lowering the data requirement of these

models gives more control over the selection of training data, where a more care-

fully selected training dataset can produce specialised embeddings for niche lan-

guage domains where general-purpose models might perform poorly. Smaller and

better understood datasets can also reduce the bias that word embedding capture

from their training data, since these embeddings can reinforce negative stereotypes

in the applications they are used for (for a more detailed discussion on this topic

refer to Bolukbasi et al. (2016b)).

Getting a better understanding of the inner workings and theoretical and

empirical limitations of word embeddings can help harness these models to
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create more inclusive NLP applications. This research aims to provide some

of the necessary stepping stones towards that goal. In the longer term, this

research has the potential to transform a wide range of NLP applications

that have become ubiquitous in everyday life, such as machine translation

(e.g. DeepL Translator, https://translate.google.com/) to grammar checkers (e.g.

https://www.grammarly.com/, https://mail.google.com), search engines, or fake

news detectors.

https://www.deepl.com/translator
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Chapter 1

Introduction

It is quite an illusion to imagine that one adjusts to reality essentially

without the use of language and that language is merely an incidental

means of solving specific problems of communication or reflection. The

fact of the matter is that the ‘real world’ is to a large extent

unconsciously built upon the language habits of the group.

Edward Sapir, The Status of Linguistics as a Science

The volume of text data available today has far exceeded the capacity for man-

ual human analysis. This has increased the need for computational methods that

can process text data efficiently. The first step, and possibly the most crucial in the

computational processing of language, is generating computer-actionable represen-

tations of text that are rich in syntactic and semantic information.

Representation learning, as defined by Bengio et al. (2013), is the field of ma-

chine learning that deals with explicitly designing how representations are modelled

from data. The driving idea behind representation learning is that, by focusing on

specific aspects of the data, a model can learn general representations that can be

used across different tasks. Learned representations of words have recently become

central to machine learning-based NLP (Young et al., 2018), where they have en-

abled models to exploit linguistic information from large text corpora to solve a

wide array of different NLP tasks. Despite their widespread use, the exact man-

ner in which these representation models capture and embed the information from

the training data remains poorly understood (Gladkova and Drozd, 2016; Tsvetkov
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et al., 2015; Schnabel et al., 2015).

Learned representations of words typically obtain the totality of their informa-

tion from training data. Many of the most common word representation models are

based on some form of language model, where word representations are learned

by observing the patterns of occurrence of a word within its context, where the

concept of context can be defined and modelled in different ways, e.g. context in

Word2Vec is defined as the words that appear within a fixed window around a cen-

tre word. These representations reportedly capture subtleties in the use of language

that might escape even the most meticulous human analysis. However, in order to

identify commonalities across different language usages, these representation mod-

els require large training datasets that are representative of a diversity of linguistic

domains.

This thesis explores how the shortcomings of word representation learning

models can be addressed by more closely emulating language acquisition in hu-

mans, where experiential learning is combined with pre-existing linguistic rules.

Incorporating different sources of linguistic knowledge into the statistical represen-

tation learning process can potentially reduce the high data requirements of repre-

sentation learning models while also producing word representations that are more

invariant across linguistic domains. In this research I investigate two approaches

that integrate linguistic knowledge into the unsupervised training of neural network-

based word embeddings: the augmentation of training data with linguistic relations

extracted from lexicons, and a training objective based on reconstructing grammat-

ical structure. The aim of this research is to investigate how linguistic knowledge

can be exploited to learn higher-quality word representations with smaller training

datasets. To this end, I explore different approaches to inject linguistic knowledge

into the statistical learning of word representations while preserving the distribu-

tional information of word occurrence in natural language. As argued in chapter 2,

reproducibility remains a highly desirable, but not always attained, characteristic in

NLP research. The research in this thesis has been continually shaped by transparent

and reproducible experiments. In order to isolate and more clearly trace the effect
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of the injected linguistic knowledge in the learning process, this research places a

high emphasis on tracking all experimental conditions by following a framework

I designed as a model for experimental reproducibility. To test out the practical

applications of this research, I propose new word representation models that can

accommodate an ever-growing diversity of language uses.

1.1 Relevance of Word Embeddings
In recent years, large scale Transformer-based language model such as BERT (De-

vlin et al., 2018) have started displacing word embedding models like Word2Vec (Mikolov

et al., 2013b) and Global Vectors (GloVe) (Pennington et al., 2014) as the preferred

text representation technique for many downstream applications. However, as ev-

idenced by the most recent instances of some of the main NLP conferences, word

embeddings remain a very active research area, see for instance Zheng et al. (2022);

Poumay and Ittoo (2021); Marchisio et al. (2021); Templeton (2021). Word embed-

dings are also used in commercial NLP applications and libraries such as the spaCy

library (Honnibal and Montani, 2017), which, among other things, uses word em-

beddings as the foundation of its text similarity functionality. Word embeddings can

provide an alternative when working with limited computational resources (Zheng

et al., 2022; Poumay and Ittoo, 2021) or low-resource languages (Templeton, 2021).

1.2 Contributions
The main contributions of this research are:

• A comprehensive analysis of principles and features captured by different

word representation models

• An automated pipeline to construct feature-engineered word representa-

tions from multiple sources of linguistic information

• A learning algorithm that incorporates external knowledge to enhance word

embeddings by augmenting the training data
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• A partitioned word embedding model that constrains information flow to

different subspaces of the word vector

• A novel Struct2Seq model that trains semantic structure-aware word em-

beddings based on a dependency parse tree-to-text sequence encoder-decoder

architecture

• An alternative intrinsic evaluation metric based on distance distributions

of three sets of word pairs that provides further insight into the informational

capacity of learned word embeddings

1.3 Thesis Structure
Chapter 2 describes representation learning for text from the perspective of a neural

network learning algorithm, as well as different approaches for representing lan-

guage computationally. Chapter 3 reviews some of the most widely used word

representation approaches, together with their corresponding theoretical and em-

pirical advantages and limitations. This chapter also introduces the experimental

design that is used throughout this research, and evaluation results for a set of base-

line word representation models. Chapter 4 introduces a novel data augmentation

process to inject linguistic knowledge into the training data of a Skip-gram word

embedding model, as well as an embedding partition mechanism that controls how

this augmented information gets propagated through the word embedding. Chap-

ter 5 presents a new neural network autoencoder architecture that learns structure-

aware word embeddings by training a model that maps a dependency parse tree

to its originating sentence. Finally, chapter 6 contains a general discussion of the

results of this research, concluding remarks, and plans for future work.

1.4 Notational Conventions
The following notationa convention will be used throughout this thesis:

• Matrices are represented with bold uppercase letters, e.g. X

• Vectors are represented with bold lowercase letters, e.g. x
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• Square brackes with subscripts are used to refer to a specific element in a

vector, e.g. [x]i, a row in a matrix, e.g. [X]i, or a cell in a matrix, e.g. [X]i j

• Ordered elements in a sequence have a superscript (t) to denote they appear

at the tth position, or timestep, of the sequence

• Calligraphic uppercase letters are used to refer to sets, e.g. V is used to denote

the vocabulary as a set of words

• Monospaced font is used to refer to text that is used as data

• Green monospaced font is used to refer to named features



Chapter 2

Representation Learning in Natural

Language Processing

There can be no informational sensitivity without representation. There

can be no flexible and adaptive response to the world without

representation. To learn about the world, and to use what we learn to act

in new ways, we must be able to represent the world, our goals and

options. Furthermore we must make appropriate inferences from those

representations.

Kim Sterelny, The representational theory of mind: An introduction.

Abstract representations of objects and ideas are fundamental for the human

mind’s process of knowing, understanding, and reasoning about the world around

it. In the context of AI, one of the main overarching goals is to imbue machines with

(some manner of) the reasoning and abstractive capabilities of humans. The pursuit

of this goal has produced a wealth of computer-actionable representation families,

such as symbolic logic, which lies at the heart of all programming languages and is

modelled after human reasoning; or graphs and relational tables, the foundations for

databases, which resemble memory and relationships between objects or concepts.

The usefulness of these representations depends not on how closely they resemble

cognitive processes, but rather on how effective they are at providing abstractions

of information that can subsequently be computed with.
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Until recently, all representations of the world had been created (or designed)

by humans, but with the advent of machine learning, computers are now capable of

producing their own representations. These automatically learned representations

leave behind all notions of interpretability and real-world mimicry in lieu of task-

specific representations that are (theoretically) optimal in informational capacity.

Since these representations are learned solely in terms of their usefulness in solving

a given learning task, there are no guarantees as to what aspects or patterns from the

data get distilled into these representations, they depend solely on the way the prob-

lem is posed. These task-specific (and oftentimes uninterpretable) representations

are a fundamental part of neural network-based machine learning pipelines.

The process by which neural networks learn to represent information is highly

complex and dependent on multiple interrelated elements and design decisions.

Gaining a better understanding into the representational process of neural network

models is essential in order to construct more interpretable and data-efficient mod-

els, as well as more transferable data representations, as argued by Bengio et al.

(2013)

The idea of sharing representations between multiple machine learning tasks

is very closely related with the concept of transfer learning.1 For a complete dis-

cussion on transfer learning methods and approaches refer to Pan and Yang (2009)

and Lu et al. (2015). Transfer learning in AI refers to the process of exploiting

knowledge learned from one task to solve another related task and is inspired by

humans’ ability to reuse knowledge obtained in the past when confronted with new

scenarios or problems. Humans achieve this by abstracting and generalising the

acquired knowledge, analysing the new setting and adapting the knowledge corre-

spondingly. In the context of learning algorithms, this translates to finding com-

monalities in the data that enable the transfer of knowledge from one learning task

to a different one. The focus of this research is on a transfer learning approach

termed feature representation transfer (Lu et al., 2015), which seeks to build rep-

resentations of the data that encode the necessary knowledge to solve a variety of

1Transfer learning has also been associated with other terms through the years, such as lifelong
learning, knowledge transfer, meta-learning, multi-task learning, and domain adaptation.
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different learning tasks.

2.1 A Neural Network Learning Algorithm for NLP

Neural network models, which are loosely based on the inner workings of the brain,

consist of layers of interconnected non-linear processing units. Neural network

models have become some of the most successful machine learning models as

exemplified by Krizhevsky et al. (2012), Mikolov et al. (2013a), Sutskever et al.

(2014), Devlin et al. (2018), Lee et al. (2021), among many others. The success

of neural networks is largely due to their capacity to learn an informationally effi-

cient representation of the input features by combining neuron units to approximate

an target function and iteratively update or learn the connection strengths between

these units to improve their approximation. These units can be arranged in different

ways to either provide more abstract representations of the input, composing mul-

tiple layers to create “deep” networks, or to accommodate different types of input,

such as fixed-size structures (e.g. images), variable-length sequences (e.g. text,

audio), graphs, etc.

As described by Belz (2021), reproducibility of results has become an in-

creasingly central topic in NLP research in recent years. Some of the most impor-

tant conferences on machine learning, e.g. ICML, ICLR, NeurIPS, have introduced

workshops and research tracks on reproducibility. In a survey conducted by Mieskes

et al. (2019), in which they asked two hundred NLP practitioners about their per-

ception of the state of replicability of experiments in the field of NLP, they noticed

that the majority of respondents conceive replicability as being of high importance

in NLP research. In spite of this, Belz (2021), Mieskes et al. (2019), and Mieskes

(2017) identify issues with the current state of reproducibility, arguing that sharing

the code and data used in an experiment are not sufficient to reproduce its results. In

response to this necessity for more thorough reproducibility, I propose a framework

that allows every individual experimental condition to be clearly documented.

This section provides an overview of neural network models from the per-

spective of NLP. These models are best understood in the context of the learning
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algorithms within which they are used, so I will start by sketching out a generic

learning algorithm, shown in figure 2.1, that encompasses multiple different appli-

cations, datasets, and architectures.

Task, dataset, and 
architecture definition

1 Preprocessing2 Vocabulary 
construction

5 Vocabulary 
construction

3

Vocabulary 
construction

5 Datapoint 
construction

4Vocabulary 
construction

5 Input 
representation

5Vocabulary 
construction

5 Dataset split6

Vocabulary 
construction

5 Model training7 Vocabulary 
construction

5 Post-training8

Figure 2.1: Simplified learning algorithm for an NLP task

2.1.1 Task, dataset, and architecture definition

Dataset definition

In all 16 cases he found nerve 
damage. The results, on 
virtually every test, differed 
markedly from control group of 
healthy adults. For many of the 
farmers involved, the news is 
devastating. But it is what they 
had feared. A large number are 
incapable of heavy work, and 
have given up their farms. The 
findings were entirely 
consistent with organophosphorus 
poisoning.

Text corpus (raw)
S1: A man inspects the uniform 
of a figure in some East Asian 
country. 
S2: The man is sleeping. 
Label: contradiction 
 
S1: A soccer game with multiple 
males playing. 
S1: Some men are playing a 
sport. 
Label: entailment 
 
S1: A smiling costumed woman is 
holding an umbrella. 
S2: A happy woman in a fairy 
costume holds an umbrella. 
Label: neutral

Classification dataset
Architecture definition

IN
PU

T

O
U

TPU
T

LEARNING 
MODULE

X1 X2 Xn

y2

y1

yn

t1

t2

tn

p(x | D)

pQ(x | D)

Task definition

Figure 2.2: Task, dataset, and architecture definition and their dependencies

The first step of a learning algorithm is to clearly and unambiguously define the

main task (T ) to solve in terms of an target function which a model approximates by

minimising a loss function (L ). The learning task will guide every other decision

in the algorithm, from the choice of dataset to the success metrics and real world

applications of a trained model. The task may be defined directly in terms of the
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end application, for example measuring the accuracy of a Part-of-Speech (POS)

tagger (Huang et al., 2015); or indirectly as a proxy task towards a longer term goal,

such as learning transferable text representations by solving a language modelling

task (Mikolov et al., 2013b; Peters et al., 2018; Devlin et al., 2018).

The choice of dataset is one of the most important decisions for the success of

a trained model. Machine learning models learn by example, so the number, qual-

ity, and diversity of the examples that are used to train these models will determine

the limits of what the model will be able to learn. In a supervised learning set-

ting, where the model is trained to associate a set of inputs (x) to a pre-specified

set of corresponding targets (τ), the selection of dataset is closely related to the

specific prediction task or application the model is trained for. Given the high costs

of annotating data (correctly and meaningfully), labelled datasets are very scarce,

especially datasets that are large enough to meet the requirements of data-hungry

neural network models. As a result, the choice of dataset is mostly constrained

by the specific learning task, with many tasks having but a few, or even a single,

viable datasets, such as the case of the natural language inference (NLI)2 (Bow-

man et al., 2015) task, shown in the classification sample of figure 2.2, where the

dataset was constructed specifically for this task. Even though there are several

datasets for this task, like the datasets for Recognizing Textual Entailment tasks or

the Winograd NLI dataset included in the GLUE (Wang et al., 2019b) and Super-

GLUE (Wang et al., 2019a) benchmarks, the Stanford NLI (Bowman et al., 2015)

and the Multi-Genre NLI (Williams et al., 2017) datasets are orders of magnitude

larger,3 which can be a significant concern when training data-intensive models such

as large neural networks.

In unsupervised learning, dataset selection can be a fundamental part of the

modelling process. Unsupervised learning refers to the family of tasks that do not

require targets to train on, but rather aim to discover regularities in the data either

2NLI is a renaming of the Recognizing Textual Entailment three-way classification task first de-
scribed by Dagan et al. (2006) where, given two text fragments, a premise and a hypothesis, the
model must determine whether the (directed) relationship between the two fragments is an entail-
ment, a contradiction, or whether the relationship between the two texts is semantically neutral.

3The Stanford NLI and Multi-Genre NLI contain ∼570k and ∼433k sentence pairs respectively,
while the smaller datasets mentioned contain fewer than 1,000 sentence pairs each
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to form datapoint groupings (clustering), to learn an approximation of the underly-

ing data distribution (density estimation), or to learn a lower-dimensional mapping

of the input (dimensionality reduction). Given that this type of learning does not

require labels, the training dataset can be selected or constructed from a very wide

variety of domains. Additionally, since there are no explicit labels to conduct the

learning, these models will be very sensitive to the underlying distribution of the

data, meaning that the choice of dataset will determine the type of information (and

biases) the model will be able to capture (Bolukbasi et al., 2016a; Caliskan et al.,

2017; Barikeri et al., 2021). In NLP, the choice of dataset has important implica-

tions with regards to the type of language usage (vocabulary employed, syntactic

structures, level of formalism, etc.). Therefore, a model trained on, for example, a

corpus of legal documents will be oblivious to the syntax of colloquial language, or

the specialised vocabulary of scientific articles.

Finally, the design of the model’s architecture is largely determined by the

learning task. The model must have the right capacity to approximate the objective

function. A very complex (high capacity) architecture might unnecessarily increase

the computational cost of training, and is more prone to overfitting, which is the

effect of a model becoming increasingly good at predicting the examples that it is

trained with at the expense of its generalisation capabilities, i.e. its ability to make

predictions on previously unseen data. Conversely, underfitting happens when the

model is too simple to provide a good approximation to the objective function.

Moreover, the shapes of a model’s input and output are also defined by the

learning task. The loss function determines the shape of the output of a model,

where a classification problem, for instance, requires the model to produce a prob-

ability distribution over a set of classes. The underlying structure of the dataset, in

turn, defines the shape of the input to the model, which should be expressly designed

to consume the variable length sequences that might be required when processing

text, or the fixed size colour channels commonly used in image processing. The size

of the dataset also has a bearing on the architectural design, since a large dataset can

be used to train a more complex model without the risk of overfitting, but the in-
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creased number of parameters and training examples will cause the computational

cost of training the model to increase as well.

2.1.2 Preprocessing

In all 16 cases he found nerve 
damage. 

The results, on virtually every test, 
differed markedly from control group 
of healthy adults. 

For many of the farmers involved, the 
news is devastating. 

But it is what they had feared. 

A large number are incapable of heavy 
work, and have given up their farms. 

The findings were entirely consistent 
with organophosphorus poisoning.

Sentence tokenisation

Tagging
Named entities

the University   of   Leiden
O B-ORG I-ORG I-ORG

Dependency parse

Part-of-Speech
he   found   nerve   damage
PRON VERB ADJ NOUN

Constituency parse

| In | all | 16 | cases | he | found 
| nerve | damage | . | The | results 
| , | on | virtually | every | test 
| , | differed | markedly | from | 
control | group | of | healthy | 
adults | . | For | many | of | the | 
farmers | involved | , | the | news | 
is | devastating | . | But | it | is 
| what | they | had | feared | . | A 
| large | number | are | incapable | 
of | heavy | work | , | and | have | 
given | up | their | farms | . | The 
| findings | were | entirely | 
consistent | with | organophosphorus 
| poisoning | . |

N-gram tokenisation

N-gram transformation
Case conversion

But butlowercase

Punctuation removal
.   ,   -   :   ?   ;   !

Token substitution

16

<NUM>fixed token

##generic form

Special character replacement

château

ch#teaufixed token

ch\u00E2teauUTF-8 
code

differed differhead word
Lemmatization

Figure 2.3: Preprocessing pipeline in two granularities: sentences and n-grams

Before the start of the training phase, the dataset typically undergoes a set of trans-

formations to: (a) convert it into a format that is easier to process; (b) emphasise

specific traits in the data; and/or (c) include any additional information that might

be beneficial to the learning task. In an NLP learning algorithm, the first prepro-

cessing decision is the text granularity to use during training. The transformations

applied to the data when working at the document-level differ from those that are

more useful at the sentence or n-gram (sequence of n textual tokens) levels. Some

examples of preprocessing stages for text data can be seen in figure 2.3.

The most common initial preprocessing step in NLP is tokenisation, which is

the process of splitting the text data into a set of tokens of a set granularity (e.g.

paragraphs, sentences, n-gram, characters). Some applications require multiple to-

kenisation steps, and the order in which these steps are applied will determine the

information that is lost in the process. For example, an application that works with

interactions between words in a sentence would require the text corpus to first get

tokenised into sentences, and subsequently tokenise each sentence into words. Per-

forming these steps in the wrong order risks blurring or removing relevant informa-
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tion, such as the semantic delimitation that sentences provide in text. Tokenisation

techniques can range from simple regular expressions (e.g. using white space to

separate tokens) to complex rule-based systems like the Stanford Tokenizer (Stan-

ford NLP Group), or learned subword segmenters such as the WordPiece model (Wu

et al., 2016a).

Once the text has been tokenised it can be undergo additional transformations.

Tagging sentences is a common way of incorporating linguistic information into

the training data. Some of the most widely used tagging schemes are the directed

grammatical relations between words provided by dependency parse trees, com-

positional information from constituency parse trees, words’ functional roles from

POS tags, or named entity recognition (NER) to identify entities such as locations,

persons, or organisations. These types of tags are typically assigned at the sentence-

level, since they depend on the full context of the sentence to determine whether,

for example, the word light is used as an adjective, a noun, or a verb. Performance

of current language taggers, such as the models provided by Honnibal and Montani

(2017) or the current state-of-the art models in dependency parsing (Mrini et al.,

2020) and POS tagging (Bohnet et al., 2018b), have allowed the tagging process to

be automated with a relatively small number of incorrect tags.

At the n-gram level, additional transformations can help reduce the token di-

versity by unifying the letter case, and substituting or removing tokens (n-grams or

characters). These transformations are often necessary to make a dataset compu-

tationally viable since they can substantially reduce the number of distinct tokens

that appear in the data by merging tokens with slightly different spellings, special

characters, or different letter casing. This reduction, however, comes at an informa-

tional cost, since it might merge together tokens that are meant to be distinct, like

Apple (a company) and apple (a fruit), or it might entirely remove information-

ally relevant tokens such as punctuation marks or characteristic numbers.

In an unsupervised learning setting, the raw data is known as a text corpus (Q).

I will reserve the term dataset (D) to refer to the data, both labelled and unlabelled,

after it has undergone a preprocessing stage.
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2.1.3 Vocabulary construction

Indexing and thresholding

Index Word Counts

.
.
.

.
.
.

.
.
.

frequency cutoff

vocabulary

the 
of 
and 
a 
in 
<NUM> 
 
 
test 
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entirely 
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Figure 2.4: Vocabulary construction process with a minimum frequency threshold

Processing written language implies dealing with discrete tokens, composed to form

larger combinatoric structures. These compositional units can be collected into a

dictionary where every term is assigned a unique index, this is the most basic pro-

cess of numericalising a set of elements. When composing characters into words4

the dictionary of characters is relatively small,5 and gets composed into a finite set

of discrete elements: a vocabulary (V ) of valid words which is orders of magni-

tude larger than the dictionary of their constituting characters. However, the phrases

or sentences produced by composing words together can have arbitrary lengths and

still be valid constructions in the language, and are therefore no longer a finite set.

Words are commonly used as the base granularity in NLP due to the fact that, as

described by Gasparri and Marconi (2016), they are the minimal units of meaning,

yet they can still be efficiently processed as discrete tokens.

When using words as the basic language unit, there are several considerations

4For the remainder of this thesis I use the term words instead of n-grams since most of the work
presented here is done on unigrams.

5While this is true for English, where the most basic character dictionary is the set of 128 charac-
ters in the ASCII encoding, for a logographic language like Chinese the full alphabet can comprise
tens of thousands of characters.
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to keep in mind. Even though the set of all words in a language is finite, the size of

this set is usually too large6 for NLP applications whose computational times might

scale exponentially with the size of the vocabulary (|V |). Additionally, when work-

ing with real-world data, there are bound to be errors in spelling, letter casing, punc-

tuation, or spacing, as well as neologisms, which would further increase the size of

this set of words. A practice commonly found in NLP literature (e.g. Collobert et al.

(2011); Mikolov et al. (2013b)) for the construction of these vocabularies is to only

include words that appear a certain number of times in the dataset, as depicted in

figure 2.4. The rationale is that setting a frequency threshold removes misspelled

words, which should be far less frequent than correct spellings, while at the same

time allowing the model to focus on the subset of words for which more informa-

tion is available. Using a limited vocabulary can also improve the model’s learning

process by reducing the model’s size complexity and the sparsity of the representa-

tion space. However, there are downsides to using these smaller vocabularies, the

most obvious of which relates to reducing the coverage of the data. Coverage in this

context refers to the percentage of words in the data (either unique or repeated) that

is captured by a given vocabulary. Removing infrequent words has little bearing on

the coverage over repeated words in a dataset due to a phenomenon regarding the

distribution of word frequencies in natural languages known as Zipf’s law (Zipf,

1936). Zipf’s law states that given a word w, the frequency of that word, f (w), in a

text corpus is roughly inversely proportional to its frequency rank r(w):

f (w) ∝
1

r(w)α

where α ≈ 1 is a constant.

As described by Piantadosi (2014), the original formulation of Zipf’s law pro-

vides a simplified approximation to what is really a more complex word frequency

distribution, but while there is no perfect fit for this distribution at this time, empir-

ical evidence does seem to suggest it follows a near-Zipfian form.

6The American Heritage Dictionary of the English Language contains over 370,000 words, al-
though other estimates calculate there are over one million words in the English language (Michel
et al., 2011)
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Even though for every word from the data that gets removed from the vocab-

ulary there is a corresponding loss of information, this loss is not proportional to

the coverage contribution of that particular word. A very infrequent word, such as

organophosphorus, will have an almost negligible contribution to the coverage

of the dataset, yet seeing such a rare word in the data can be extremely informative.

For instance, in a document classification setting, a highly specialised word like

organophosphorus could provide enough information to correctly classify a

document as being related to agriculture. It is important to keep this tradeoff in

mind when making decisions about the construction of the vocabulary.

2.1.4 Datapoint construction

Cloze task
in all <NUM> cases he found 
[MASK] damage 
Label: nerve 
 
the results on virtually every 
test [MASK] markedly from 
control group of healthy adults 

Label: differed 
 
the results on virtually every 
test differed markedly from 
control [MASK] of healthy adults 
Label: group

a man inspects the uniform of a 
figure in some east asian 
country <EOS> the man is 
sleeping 
Label: contradiction 
 
a soccer game with multiple 
males playing <EOS> some men are 
playing a sport 
Label: entailment

Concatenation

in 
in 
in 
all 
all 
all 
all 
<NUM> 
<NUM> 
<NUM> 
<NUM> 
<NUM> 

Contextual word pairs 
(Skip-gram)

Focus word Context word
all 
<NUM> 
cases 
in 
<NUM> 
cases 
he 
in 
all 
cases 
he 
found

.
.
.

.
.
.

Figure 2.5: Datapoint construction process for (a) the Word2Vec Skip-gram model for word
embeddings (Mikolov et al., 2013a), (b) NLI sentence pair and labels, and (c)
the Cloze task for sentence embeddings from Devlin et al. (2018)

Machine learning models are trained to map an input (x) to its corresponding target

(τ).7 A datapoint in this context refers to the input-target tuple that makes up a

single training example. The construction of individual datapoints from the data is

therefore intimately connected with the learning task.

In supervised learning tasks, such as text classification or NLI (figure 2.5b pro-

vides an example of NLI), the process of constructing datapoints is straightforward,

since the labelled datasets used for these tasks have already been formatted as input-

target pairs. Datapoints in unsupervised learning tasks, on the other hand, do not

7This generalisation does not directly apply to reinforcement learning models. Since reinforce-
ment learning falls outside of the scope of this research, these models are not considered in this
discussion.
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have pre-specified targets and can hence be defined in different ways. For example,

in language modelling, an unsupervised learning task that consists of the probabilis-

tic modelling of a word w occurring in a sequence given a conditioning history h,

p(w|h), datapoints are usually constructed by treating the history h as the input, and

the word w as the target.

2.1.5 Input representation

Token index replacement

in 4vocabulary 
index
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Figure 2.6: Common input representation strategies

The next step after constructing the datapoints is to package them in a numerical

form that machine learning models can work with. The representation of the dat-

apoints will have a large bearing on the quality and generalisational capabilities of

the final model. Even though different machine learning models can learn to focus

on the features8 that are most relevant for the learning task they are trained to solve,

the representation that is used in training determines the universe of information

that the model can learn from. The best representation for a particular task is there-

fore determined by the specific information that the task requires (Collobert et al.,

2011), but the scope of what constitutes “relevant information” is rarely discernible.

The possible representations of the input to an NLP learning algorithm are

determined by the choice of text granularities. Elements are generally represented

8Feature, as used throughout this thesis, can be defined as the set of properties or constituting
elements that are used to characterise a dataset.
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either as distinct tokens from a finite dictionary, like words, characters, or linguistic

features; or as compositional structures made up of collections of these tokens, like

sentences as sequences of words. Representations for both tokens and structures can

either be manually engineered or learned from data (a more thorough discussion on

the construction of text representations is provided in section 2.2). Figure 2.6 shows

some of the most widely used input representation strategies in NLP. The question

of how best to represent textual data numerically remains a very active research

problem, and the main focus of this thesis.

2.1.6 Dataset split
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Figure 2.7: Train-Test-Validate dataset splitting methods

Machine learning models are trained to fit a dataset in order to match inputs to

targets. With the current availability of computational resources, models can be

arbitrarily complex. The implication of this increase in complexity is that these

larger models can overfit even large datasets. To keep track of how well a model

is fitting the data, along with its generalisation capabilities, the dataset is typically

split into disjoint sets: a training set which is used for the data-driven optimisation

of a model’s parameters; a validation set to keep track of how well a model is

generalising to unseen data as part of a model selection stage (i.e. selecting the

model with the best predictive performance); and (sometimes) a test set that is used

to measure the final model’s performance on new data.
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The model parameters will be updated in the training phase, meaning that the

model will only ever explicitly fit the training set. The training error can give a

sense of how well a model is fitting the data, and it should consistently decrease

after every epoch, i.e. iteration over the full training set. Since the training set

is the only partition that will be used to modify the parameters of the model, this

partition should be the largest in size, a common heuristic in NLP literature is to use

between 70% and 90% of the full dataset, although the exact number depends on the

dataset size and the learning task. The validation set is typically the remainder of

the full dataset (or around half of the remaining data when there is an additional test

set). The expected behaviour of the validation error is for it to decrease during the

initial epochs, until it reaches a point of inflection, generally regarded as the point of

overfitting (or optimal capacity (Goodfellow et al., 2016)), after which subsequent

training will result in poorer generalisation capabilities identified as an increasing

validation error. A model can be prevented from reaching the point of overfitting

through early stopping, also known as stopped search (Sjöberg et al., 1995), a

process in which the validation error is used to signal the end of the training phase.

In some cases, the dataset is partitioned into multiple train-validation splits, also

known as folds, in a process known as cross-validation (Stone, 1974), which can be

visualised in figure 2.7. Cross-validation allows the model to make more efficient

use of the available data and provides a better estimate of the model’s predictive

performance on unseen data. Whenever the validation set is used to select model

hyperparameters, it can no longer provide an unbiased evaluation of the model’s

performance. In these cases, the performance of the final model should be evaluated

on a separate test set, made up of data that the model has never interacted with

before.

The order of the training data is also an important factor. Natural language data

is typically collected from real-world sources, such as news articles or books. The

language or style used at the beginning of a dataset might differ greatly from that

which appears in the middle or towards the end of the dataset as a result of differ-

ences in text categories (e.g. a dataset that combines fiction books with scientific



2.1. A Neural Network Learning Algorithm for NLP 37

articles, as with the British National Corpus (BNC Consortium, 2007) or the Project

Gutenberg dataset (N.d.)), the time at which a particular text was written, different

authors, etc. Since training happens sequentially, running through a dataset in order

might have unwanted effects, such as specialising the model to the linguistic style

that happens towards the end of the dataset, or using a validation set that does not

reflect the full linguistic diversity of the data. It is therefore useful to consider shuf-

fling the dataset before creating these partitions, as discussed by Goldberg (2017).

2.1.7 Model training
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Figure 2.8: Generic model training process

The main part of the learning algorithm is the actual training of the model, which

is abstracted in figure 2.8. Gradient descent-based models, such as neural net-

works (LeCun et al., 1989, 1998), may require multiple passes over the dataset

before they reach a point of convergence, or local optimum. The first decision to



2.1. A Neural Network Learning Algorithm for NLP 38

make here is how long to train for, which is most commonly defined in terms of

a fixed number of epochs, or some early stopping criterion typically linked to the

validation error obtained at the end of an epoch.

Once the length of training is defined, everything inside the epoch is a repeating

sequence of steps divided into a pre-epoch block, a training phase and a valida-

tion phase. The pre-epoch block consists of all actions that need to occur before

the training and validation phases, which can include an early stopping check to

determine whether or not to continue training, as well as actions that determine the

order of training, like the shuffling of the dataset and the construction of datapoint

batches, which are groups of datapoints that can speed up computation by being

processed as a single input-target block. Dataset shuffling and batch construction

can either be performed once before training begins, or at the beginning of every

epoch.

The training phase is itself made up of three stages: it starts with the data pro-

cessing, commonly called a forward pass in the context of neural networks, which

refers to the processing of a datapoint or batch through the model to produce an out-

put. The output produced is known as a model’s prediction, y = f (x;Θ), where y is

the prediction, f is the predictive function with parameters Θ, and x is the input. In

the second stage, this prediction is compared to the target (or ground truth) in terms

of a loss function that defines a measure of dissimilarity between the prediction and

the target and produces a loss (also called error or cost) term L . The final stage

consists of two steps: first it uses the loss term to calculate the contribution of the

parameters of the model to the prediction in a process of error propagation that cal-

culates the gradient of the loss function with respect to the parameters, ∇ΘL . For

neural networks, the number and degree of connectivity of parameters can make the

calculation of these gradients computationally expensive. The back-propagation

algorithm (Rumelhart et al., 1986) offers a way to speed up this calculation by

using the chain rule of calculus to break it down into a sequence of partial deriva-

tives, which can be stored and reused in subsequent calculations. Consider a simple

feedforward neural network: a multilayer perceptron with one hidden layer (this
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architecture will be described in more detail in the next section) defined as the map-

ping y = σ(W(2)g(W(1)x)), where W(1) and W(2) are the trainable parameters of

the model, and σ and g are activation functions (i.e. element-wise, and commonly

non-linear, functions). For a simple example consider an input x = {x1,x2,x3}, a

scalar output y and a hidden layer of dimensionality 2, as depicted in figure 2.9, with

the following parts and dimensions (superscript (n) refers to the layer number):

Θ = {W(1),W(2)} W(1) ∈ R2×3 , W(2) ∈ R1×2

a(1) = W(1)x x ∈ R3 , a(1) ∈ R2

z(1) = g(a(1)) z(1) ∈ R2

a(2) = W(2)z(1) a(2) ∈ R

y = σ(a(2)) y ∈ R

y

a(1)1
x1

x2

x3
a(1)2

z(1)1

z(1)2

a(2)1

L

W(1)

W(2)
w(1)
11

w (1)21

w(
1)
12

w (1)22

w
(1)

13 w(1)
23

g

g

w
(2)1

w
(2
)

2

s

Figure 2.9: Basic multilayer perceptron

The gradient of the loss with respect to the parameters of the first layer W(1)

has the following decomposition,9 represented graphically in figure 2.10:

9In the notation in equation 2.1, ∇W(1)L refers to the gradient of the loss L with respect to the
weight matrix W(1), the first right-hand side ∂L

∂W(1) is a scalar by matrix derivative, and all partial
derivatives after that are scalar by scalar derivatives.
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Figure 2.10: Back-propagation through a multilayer perceptron

This calculation is followed by an optimisation10 step, which uses the gradi-

ents calculated during back-propagation to improve the predictive performance of

the model by iteratively updating its parameters to minimise the loss function and

more closely approximate the target function. This type of iterative optimisation is

called gradient descent (Cauchy, 1847), and has the general form Θ←Θ+η∇ΘL ,

where η is a hyperparameter that controls the size of the update to the parameters

and is commonly called a learning rate. Gradient descent can be visualised as the

process of climbing down a function by taking steps in a specific direction. There

are hence two main decisions to make regarding the optimisation: how to calculate

this direction; and, once that direction is known, the size of step to take (η). The

gradient can be calculated on the full training set (i.e. batch gradient methods (No-

cedal and Wright, 1999)), but this can become costly with large datasets, even with

the computational advantages that back-propagation contributes to the gradient cal-

10In the context of neural network, the non-linear structure of the models makes analytic (or
closed-form) optimisation impossible, so this term will be reserved for gradient-based optimisation,
which is conventionally used in neural network training.
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culation. A common alternative is to use some type of online or stochastic meth-

ods, such as stochastic gradient descent (SGD) (Bottou, 1998), which estimates

the gradient from a single, or a small number of, sampled datapoints. The second

decision regards the learning rate, which can play an important role in the context

of (highly) non-convex function minimisation. A large learning rate, for instance,

can overshoot local minima,11 while a very small rate can take too long to con-

verge. To address this, an optimiser can use learning rates that are either dynamic,

like momentum methods (Qian, 1999; Sutskever et al., 2013) or decaying learning

rates found in modern SGD implementations; or adaptive, where individual learn-

ing rates for every parameter adapt over the training phase based on information

from the partial derivative of the loss with respect to the specific parameter, such as

the history of the (squares of the) gradients, as in AdaGrad (Duchi et al., 2011) and

ADADELTA (Zeiler, 2012), or the first and second moments of the gradients used

by the Adam optimiser (Kingma and Lei Ba, 2015).

The last part of the epoch is the validation phase, which consists of a subset

of the steps described in the training phase: the forward pass followed by the error

calculation. This phase is much shorter than training because it skips the error

propagation and optimisation steps, and is typically performed on a much smaller

dataset. The sole objective of the validation phase is to provide an indication of the

generalisation capabilities of the model when confronted with unseen data, which

is in some cases (i.e. early stopping) used to signal the end of training.

11Unlike convex functions, which have a single global optimum, non-convex functions can have
multiple local optima, which correspond to points where the function takes a maximum or minimum
value relative to neighbouring points in the function.
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2.1.8 Post-training
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Figure 2.11: Steps after model training is concluded

Upon conclusion, model training produces a set of final parameters, Θ̂, that con-

stitute its best approximation to the target function. The final trained model, M
Θ̂

,

can be used in two scenarios (shown in figure 2.11): inference and transfer. For

inference, the model’s predictive performance is typically evaluated on a held-out

test set, and the model is subsequently used to make predictions on unseen data. In

the transfer scenario, the trained model is used as part of a different learning algo-

rithm. A common transfer scenario, especially in the realm of NLP, is known as

representation pre-training, where the trained model produces data representations

to be used as input to another model. In this case, the model has to be evaluated not

in terms of the task it was trained to solve, but in the quality of representations that

it produces.

A trained model does not need to be static. Data changes over time, text data,

for instance, can evolve through the incorporation of new terminology, stylistic

changes, or the emergence of new linguistic domains. The idea that a trained model

can continue learning has been explored under different names, such as never-

ending learning (Mitchell et al., 2018), which optimises a joint performance metric

over a set of learning tasks through cumulative self-supervised learning over a sus-

tained period of time; or lifelong learning (Parisi et al., 2019), which learns from
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a “continuous stream of information” while avoiding catastrophic-forgetting (Mc-

Closkey and Cohen, 1989; Goodfellow et al., 2015), where new information over-

writes patterns learned from earlier datapoints.

Another option to tackle trained model staticity, which is more widely used

in the NLP community, is model fine-tuning (also referred to as post-processing),

a family of techniques that modifies the parameters of a trained model to adapt

it or specialise it to a different domain or an evolving data distribution. Some

common fine-tuning techniques include specialisation, where the parameters of a

trained model are used as the initial parameters of a new model; or retrofitting,

which directly modifies the geometric placement of learned representations to rein-

force specific relations (Faruqui et al., 2015; Vulić et al., 2018).

2.2 Representing Language

Language is a structured system used to compose and communicate information.

Written language, or text, maps the utterances of spoken language into a graphical

system constructed through the ordered concatenation of a set of reusable symbols.

Text is therefore the foremost representation of natural language. As any other rep-

resentational system, text aims to preserve as much of the (semantic) information

contained in language as possible while mapping it into a compressed format con-

sisting of a limited set of symbols and compositional rules. Text is a representation

constructed by and for humans, it is tailored to humans’ cognitive faculties. Hu-

mans can reconstruct the ideas that are encoded into these representations through a

process of interpretation (i.e. translating the set of symbols into mental concepts or

abstractions) and extrapolation (i.e. contextualising these mental concepts to infer

the missing information).

Unlike humans, computers deal not with abstractions and concepts, but with

numbers and logical operations. Text in its natural form cannot be processed by

a computer, most text-based computational tasks require a process of numericali-

sation by which text is translated into numbers. The simplest way to numericalise

text is to convert every character in a string into its corresponding code from a
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predefined encoding, such as ASCII or UTF-8. While this process is efficient for

activities like editing text documents or printing text to a screen, these represen-

tations are devoid of the semantic information that is necessary for virtually any

meaningful NLP task.12 Operating on the semantics of language therefore requires

semantically rich representations, but building these representations for machines

that lack real-world contextual information and common sense requires rethinking

the abstraction process.

Humans typically learn to read alphabet-based languages by first memorising

the individual characters and then the words that can be formed by them. Both

symbols (graphemes) and words are treated as distinct tokens from a finite set, an

alphabet (or character set) for symbols, and a vocabulary for words. Characters

and character groups are associated with sounds, and words are associated with

a meaning.13 Words are used as the semantic and grammatical building blocks

of language. Humans do not learn all possible combinations of words as distinct

elements, but rather learn the words and their compositional rules to create larger

structures like phrases, sentences, paragraphs, or documents. The order in which

words are combined is also fundamental in the construction of higher level concepts.

The first decision when representing text is the base granularity to represent.

Using words as the basic building blocks will have different computational and in-

formational implications than using characters, n-grams, or phrases. Once the gran-

ularity is chosen, the simplest representation technique is indexing, which treats

every token (e.g. word) as an element in an ordered dictionary (e.g. vocabulary)

and replaces every token by its corresponding index in that dictionary. This repre-

sentation requires a simple replacement operation which can be easily reversed to

recover the original input. Nevertheless, the use of numeric indices14 brings about

12It is worth noting that character-level neural network models have achieved important results
in tasks like text classification (Zhang et al., 2016) and neural language models (Bojanowski et al.,
2017; Kim et al., 2016), among others, these successes should not be attributed to the semantic
information contained in individual characters, but rather to the compositional capabilities of the
neural network models that are used to process them.

13In logographic languages, characters can have an associated meaning. However, the current
discussion is centred on alphabetic language and so character-level semantics will not be considered.

14Hash maps, which will not be discussed here, can be used as an alternative to numeric indexing,
but they bring about an additional set of complications, since their mappings are irrecoverable and
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additional artifacts related to the properties of integers, such as their inherent order-

ing and their arithmetic operations, which are not defined for tokens of language.

To exemplify, there is no linguistic notion of a phrase being greater than another,

or of what results from multiplying two words; and words with numerically close

indices should not necessarily be considered semantically similar.

Some of the downsides of indexing are addressed by one-hot encodings,

which replace integer indices with vectors whose dimensionality equals the number

of elements in the token dictionary, where every dimension contains a 0 except for

the dimension whose position matches the index of the token. A one-hot encod-

ing of the fourth token in a dictionary would therefore be
[
0 0 0 1 0 ... 0

]
.

The use of a positional system removes unwarranted relationships between tokens

due to the fact that all of these vectors are orthogonal and equidistant to each other.

Currently, one-hot encodings are used, at least as a first representation step, in most

NLP applications and learning algorithms. They owe this popularity to their geo-

metric properties (i.e. orthogonality and unit norm) and their ability to cast a lookup

function as a matrix operation, which is extremely useful to interface with (matrix-

based) machine learning architectures. But one-hot encodings are not without their

shortcomings. The structure of these vectors makes them informationally dull, since

their strict orthogonality and unit norm requirements make them incapable of rep-

resenting any manner of similarity or relation between tokens. Additionally, incor-

porating new elements to the dictionary will affect the dimensionality of all existing

vectors.

The dimensions of a representation vector do not need to represent tokens, one-

hot encodings can be extended to represent elements in terms of their constituting

parts. This family of vectorised representations treats every dimension as a feature

from a shared feature dictionary. Feature vectors are binary vectors that can rep-

resent discrete elements, such as words or n-grams, in terms of (presence-absence

of) a set of (typically) hand-crafted linguistic features, such as whether they are nu-

meric, their POS tag(s), or their position in a sentence, as shown in the example in

can result in collisions, making them unsuitable for many applications.
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Table 2.1: Example of manually constructed feature vectors for the words in the phrase
Calling number 8. Features include bi-grams, positional information (first
or last word), suffixes, and whether the word is numeric

uppercase SUFFIX_ing numeric <START>_calling calling_number number_8 8_<END>

Calling 1 1 0 1 0 0 0

number 0 0 0 0 0 1 0

8 0 0 1 0 0 0 1

table 2.1. Alternatively, a bag-of-features representation considers each element as

a collection of features that may occur several times. The most common example

of this is the bag-of-words method, which represents a phrase or document in terms

of the frequency counts of its constituting words (or other importance-weighted

frequency measures such as term frequency-inverse document frequency15 (Harris,

1954)). These two representational approaches are able to represent any number of

elements as sparse vectors (i.e. made up mostly of zeros) without modifying their

dimension, since the features they use are shared across all elements, which makes

them capable of representing combinatorial structures like documents. However,

the effect that specific sets of features have on a particular task is not entirely pre-

dictable, even when these features are engineered from solid linguistic principles.

These representations also come at an informational cost, where in many cases the

original input cannot be fully recovered from its representation, either because the

feature dictionary fails to cover the entirety of the information in the input (e.g.

words in a document that get pruned from the bag-of-words dictionary), or because

the process of representation destroys relevant information (e.g. word order in bag-

of-words).

Distributed representations, first described by Hinton et al. (1986), shift

away from the constraint that every dimension in a representation vector must cor-

respond to a concrete element (e.g. token or feature), instead replacing it with the

idea that large numbers of tokens or features can be represented as “patterns of

15Term frequency-inverse document frequency, factors the counts of a word in a document to-
gether with the number of documents in the dataset that contain the term, which weights down
words that appear in many of the documents, considering them uninformative in terms of distin-
guishing among different documents.
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activity”16 in lower dimensional17 dense vectors (in contrast with the sparse vec-

tors produced by the earlier vectorisation approaches). These representations form

a shared, low-dimensional, continuous space that can accommodate an arbitrary

number of elements. The dimensions of these vectors are abstract, which eliminates

the need for feature-engineering. But the complex dynamics between these abstract

features have no well-defined human interpretation. This is the greatest paradigm

shift when moving from feature-engineering to feature learning: the most efficient

representations that can be fed to a machine to solve a particular task need not hold

any resemblance with the representations humans are used to working with.

Distributed representations are typically derived by performing some type of

dimensionality reduction on higher dimensional representations, which aims to cap-

ture meaningful information into a lower dimensional representation while preserv-

ing the original geometry of the data. Dimensionality reduction techniques can

be divided into linear and non-linear, and further subdivided into supervised and

unsupervised, as described by Sugiyama (2016). Linear dimensionality reduction

maps the original input x ∈ RD to a lower dimensional space RH through a linear

transformation f : RD 7→RH defined as f (x) = Px, where P∈RH×D is a projection

matrix. The best-known method in unsupervised linear dimensionality reduction is

Principal Component Analysis (PCA), which orthogonally projects the data onto

a principal subspace RH , where the H principal components are the directions that

preserve the most variation in the data. PCA is an unsupervised method given that

it is optimised in terms of a reconstruction error, which is the cost of recovering

the original data from the lower-dimensional representation. Linear dimensional-

ity reduction can also be supervised, as in the case of Fisher’s linear discriminant

classifier, which takes in input-target pairs, {(xi,τi)}, to find a linear transformation

16Activity, in this context, refers to the values across all dimensions of the vector representation,
and is meant as an analogy with the patterns of electrical activations of neurons in the brain.

17Distributed representations are considered to be lower dimensional when compared to sparse
representations. In NLP applications, it is common for the size of a vocabulary or feature dictionary
to be in the tens or hundreds of thousands, or even in the millions (Mikolov et al., 2013a), while the
number of dimensions in distributed representations typically range in the hundreds (e.g. 300 for
Word2Vec word vectors (Mikolov et al., 2013a), or 768-dimensional text representations in BERT
representations (Devlin et al., 2018)).
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that maximises class separation, i.e. a projection that brings together datapoints

belonging to a class while separating them from datapoints from other classes.

Neural networks with at least one hidden layer and a non-linear activation

function are currently the most widely used non-linear dimensionality reduction

models. The hidden layer in a neural network learns a non-linear mapping of the

input x to a (typically)18 lower dimensional space RH . By optimising this mapping

with respect to a loss function the expectation is that the neural network learns a

compressed representation of the input that is informationally optimal to solve the

task it is being trained for. This process is sometimes referred to as the information

bottleneck method (Tishby et al., 1999). I refer to the representations learned by

neural networks as embeddings, to distinguish them from other distributed repre-

sentations.

Autoencoders are a clear example of neural network models that perform un-

supervised dimensionality reduction. An autoencoder is made up of two processing

blocks: an encoder learns a mapping f : RD 7→ RH from the input x into a latent

space h = f (x), and a decoder learns a reconstruction function r : RH 7→ RD that

attempts to recover the original input x from this latent representation (or code)

h through the function x̂ = r(h). These unsupervised models are optimised with

respect to a reconstruction loss L (x, x̂) where the input doubles as the target. In

contrast, supervised neural networks learn a mapping of the input that simplifies

some associated learning task. In a classification task, for example, the intuition is

the same as with Fisher’s linear discriminant: to learn a mapping of the input that

encodes members of the same class close to one another while separating members

of distinct classes, where the non-linear quality of these models allows them to learn

more complex mappings.

The mappings learned by neural networks are informationally (near-)optimal19

only in terms of the learning task, which means that these representations offer no

18Overcomplete hidden layers, common in denoising autoencoders, have a higher dimensionality
than the input. The current discussion, however, focuses on the undercomplete version of neural
networks.

19Neural networks usually optimise a non-convex function, so there is no guarantee of global
optimality from a trained model.
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informational guarantees outside of this narrowly defined task. However, if the task

that the neural network is trained for is general enough, such as the reconstruction

objective of autoencoders or language modelling, the model can potentially learn

representations that can be reused or transferred to solve a different task than the

one they were optimised for. Throughout this thesis I make a terminological dis-

tinction between these two representational paradigms and refer to the process of

learning a mapping for a narrowly defined task as feature learning, while I use the

term representation learning, as originally proposed by Bengio et al. (2013), for

the mapping that seeks to learn more general representations that can be transferred

to other tasks or domains. Representation learning in NLP is usually seen in the

form of unsupervised pretraining, which is the process of using large unlabelled

datasets to learn embeddings that can be exploited when solving downstream tasks.

These embeddings are most commonly used to provide an input representation for

words (Mikolov et al., 2013a; Pennington et al., 2014), phrases (Devlin et al., 2018),

documents (Le and Mikolov, 2014b), etc. that is, in theory, imbued with semantic

and syntactic information that can aid in solving the new task. Pretrained embed-

dings have been empirically shown to improve performance on a wide variety of

NLP tasks, and are used as input representation for a large proportion of the state-

of-the-art models in NLP (Brahma, 2018; Devlin et al., 2018; Bahuleyan et al.,

2018; Lin et al., 2017).

As described in the previous section, the structure of the input in an NLP learn-

ing algorithm depends on the type of data, the task definition, and the choice of text

granularity. The input structure, together with the learning task, are the most im-

portant factors for the design of a neural network architecture. The multilayer per-

ceptron (MLP) is the most basic neural network architecture, and is also known

as a feedforward neural network because processing happens in a single direc-

tion, without feedback connections. An MLP consisting of a single hidden layer

is defined as the composition of functions y = f (2)( f (1)(x)), where each function

f (`) is a layer defined as a parametric function f (`) = g(W(`)x(`)) that applies an

affine transformation to the input (of that layer) x(`) of the form a(`) = W(`)x(`) (the
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bias term is obviated here for notational simplicity) which is then passed through

a non-linear activation function g(`). The full expression for a two-layer MLP is

then y = σ(W(2)g(1)(W(1)x)), where Θ = {W(1),W(2)} is the set consisting of the

trainable parameters of all the layers of the network, and g and σ are non-linear

functions.

The activation functions for each layer can be different, but they generally

come from a limited family of element-wise non-linear functions. Two com-

mon choices for activation functions are rectified linear unit (ReLU), ReLU(x) =

max(0,x), or hyperbolic tangent (tanh), tanh(x) = ex−e−x

ex+e−x , in part because they have

simple derivatives that simplify the gradient calculations:

ReLU′(x) =

0 if x < 0

1 otherwise

tanh′(x) = 1− tanh2(x)

The choice of activation function for a hidden layer usually follows common

heuristics (i.e. popular choices for a particular architecture or problem domain), or

empirical comparisons. The output function σ , however, is different from hidden

layer activation functions in that it is directly connected with the definition of the

loss function. For example, a regression problem, that predicts a numerical value

from an input by approximating an underlying (continuous) function, usually uses a

single unbounded real number as output, whereas a multi-class classification prob-

lem might require a vector of probabilities (i.e. bounded in [0,1] and summing to

1) over all classes.

A well-known theoretical result by Hornik et al. (1989), and further generalised

to non-continuous and non-smooth functions by Leshno et al. (1993), establishes

that a MLP with at least one non-linear hidden layer can approximate any measur-

able function with arbitrary precision. The characterisation of MLPs as universal

approximators only holds when the size of the hidden layer is sufficiently large,

although increasing the number of layers (depth) in the network can, in principle,
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reduce the number of parameters required for the approximation function. While

this result guarantees an approximation potential for MLPs, the approximation it-

self is dependent on the full learning algorithm. Architectural variations of these

basic neural networks can simplify the approximation process by incorporating pri-

ors that provide information on the hierarchical or compositional structure of the

data, the levels of abstraction or amount of compression required by the task, etc.

In NLP, MLPs have been successfully used for tasks like text classifica-

tion (Joulin et al., 2017), embedding words (Mikolov et al., 2013a; Bojanowski

et al., 2017) and documents (Le and Mikolov, 2014a), among others. The structure

of the MLP only allows it to process a fixed size input consisting of a vector (data-

point) or matrix (batch of datapoints) of fixed dimensionality, which requires text to

be represented in a static format such as the bag-of-words representation discussed

above. Despite the current state-of-the-art being dominated by more complex ar-

chitectures, MLPs are still exploited as a lightweight alternative that can efficiently

train on large datasets in reasonable computational time.

Convolutional neural networks (CNNs) (LeCun, 1989) are an architectural

variation of feedforward neural networks that effectively reduce the number of pa-

rameters of the network by replacing the (first few) fully connected layers of an

MLPs with feature maps. A feature maps constructs a lower-dimensional represen-

tation of the input by extracting its local salient features. This mapping is done by

scanning the input with a fixed-size kernel (or filter) function that uses a shared set

of parameters to perform a convolution operation followed by a non-linear activa-

tion function on a region of the input. A subsequent pooling operation is performed

on the resulting activations to return a single value to describe that region. The most

common pooling functions include taking the maximum value (max-pooling (Zhou

and Chellappa, 1988)) or an average over the activations. Feature maps can be

stacked to produce increasingly abstract representations of the input. CNNs have

been most commonly used in the field of computer vision, since they can process

(fixed-size) images and extract localised features, like lines, and compose them into

larger structures, like shapes or objects, in low dimensional representations, with the
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added benefit that these features are invariant to transformations (e.g. translation or

scaling).

The fixed input size restriction makes the application of CNNs to NLP less

obvious. While CNNs could, in principle, be used to process a bag-of-words rep-

resentation for a piece of text, the concept of a local feature is not defined for this

input since bag-of-words disregards ordering information from the original text and

vicinity is only defined in terms of the term order in the vocabulary, which is not

necessarily meaningful. To exploit the compositional capabilities of CNNs, text

needs to be represented in a way that preserves order or relationship information.

The most widely used technique to address this is to represent text as a sequence

of tokens (usually words or characters) of fixed length, where longer sequences get

truncated and shorter sequences get padded by filling the empty slots at the end of

the sequence with a generic token (<PAD>). CNN models have achieved state-of-

the-art performance on tasks like text classification (Kim, 2014; Zhang et al., 2016;

Conneau et al., 2017; Johnson and Zhang, 2017), NLI (Mou et al., 2016a), language

modelling (Dauphin et al., 2017), and machine translation (Gehring et al., 2017).

Many real-world problems have an underlying temporal aspect. Feedforward

neural networks can be extended to model time by bestowing them with memory,

which can be modelled by allowing information to flow from one timestep to the

next in terms of a recurrent connection between the hidden layers at times t and t +

1, the resulting architecture is called a Recurrent Neural Network (RNN) (Elman,

1990). The basic implementation of an RNN can be realised by introducing a set

of shared parameters that connect the hidden layers at consecutive timesteps, these

parameters are known as hidden-to-hidden connections (hh), Whh. Every hidden

layer is therefore defined in terms of the input at time t and the hidden layer at time

t−1: h(t)= f (x,h(t−1);Θ). The hidden layers in an RNN contain information about

the full sequence up to that timestep. Since there is an inherent loss of information

in mapping full sequences of arbitrary length into a fixed dimensional vector, the

network must learn to use this hidden layer efficiently by only keeping track of the

aspects of the sequence that are most relevant in solving the current training task.
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The gradient calculation for RNNs must account for the different timesteps of the

input. This is typically done by a process of unrolling the RNN, where all timesteps

are put together in a single computational graph and all hidden layers are stored in

memory to perform back-propagation on the unrolled RNN by treating it as a very

deep network where every timestep gets interpreted as a layer in the network. This

process is called back-propagation through time (BPTT) (Werbos, 1990).

The basic RNN architecture (Elman, 1990) has three important inherent issues:

• The computational cost of storing the parameters for all timesteps

• Vanishing or exploding gradients, which are a byproduct of repeatedly mul-

tiplying by the same parameters when modelling long sequences with RNNs.

The exploding gradient problem has been solved by gradient clipping (Pas-

canu et al., 2013), which consists of limiting the size of the norm or the ele-

ments of the gradient to a set threshold before updating the weights. Various

solutions have been proposed to address the vanishing gradient problem that

involve modifying the architecture or adding a regularisation term (Pascanu

et al., 2013), but at the time of writing there is no agreed upon solution.

• Downweighting or “forgetting” long-term dependencies, given that the use

of a single set of memory parameters will cause the interactions between in-

puts that are far apart in the sequence to be weighted down in comparison

to those closer together. Architectural variants of RNNs called gated RNNs

refine the modelling of long-term dependencies by introducing a gating mech-

anism in the hidden layers that is selective about the information that is re-

tained and that which gets “forgotten”. The most widely used gated RNNs

are the gated recurrent unit (GRU) (Cho et al., 2014) and the LSTM (Hochre-

iter and Schmidhuber, 1997). An additional variant to improve dependency

modelling is to make the RNNs bidirectional by concatenating two hidden

layers, where one layer has connections from the past to the future, and the

second has connections from the future to the past, which allows the context

to account for both the previous and the next elements of the sequence when
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processing the current input.

The sequential structure of language benefits from the temporal abstraction

in RNNs, since these networks are equipped to accommodate arbitrarily long se-

quences and their encoded memory can learn to represent dependencies between

different timesteps. RNNs, and specifically LSTMs, have been the standard archi-

tecture for NLP, where they have achieved state-of-the-art results in several tasks

such as NER (Akbik et al., 2018; Huang et al., 2015), POS tagging (Bohnet et al.,

2018a; Ling et al., 2015), sentiment analysis (Howard and Ruder, 2018; Brahma,

2018), and language modelling (Melis et al., 2020).

Even though gated RNNs make an improvement on the modelling of long-term

dependencies, their sequential processing still retains a bias towards proximal ele-

ments in the sequence. To better model very long sequences and capture specific

interactions between elements in the sequence regardless of their position, Bah-

danau et al. (2015) incorporate an attention mechanism into the modelling of the

sequence which combines hidden layers with a set of attention weights that explic-

itly model dependencies between elements in a sequence. The original formulation

of attention by Bahdanau et al. (2015) uses these weights to learn an alignment

between two sequences in the context of a machine translation task, but the self-

attention mechanism proposed by Lin et al. (2017), which learns attention weights

between the elements of a single sequence, has been more widely adopted for other

NLP tasks. While attention mechanisms have proven to be beneficial when incor-

porated to RNN architectures in tasks like machine translation (Bahdanau et al.,

2015) or text classification (Bahuleyan et al., 2018), they appear to achieve their

full potential when combined into attention networks. The Transformer architec-

ture (Vaswani et al., 2017) replaces recurrence with stacks of self-attention layers

for sequence modelling. Transformer-based models have recently displaced RNNs

as the state-of-the-art in several NLP tasks like language modelling (Ma et al., 2019;

Wang et al., 2019d), NLI (Yang et al., 2019; Devlin et al., 2018; Radford et al.,

2018), question answering (Yang et al., 2019; Devlin et al., 2018), machine transla-

tion (Edunov et al., 2018), and sentiment analysis (Yang et al., 2019), among others.



Chapter 3

Word Representations: Engineering,

Learning, and Evaluation

Language disguises the thought; so that from the external form of the

clothes one cannot infer the form of the thought they clothe, because the

external form of the clothes is constructed with quite another object than

to let the form of the body be recognized.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

This chapter aims to provide a panoramic view of word representations as they

are currently employed in the NLP field, from the way they are constructed and eval-

uated, to the way the different models compare to each other in terms of their under-

lying architecture and their empirical performance. The computational processing

of natural language requires dealing with numeric representations of language, for

which words are commonly used as the base granularity due to the ease of pro-

cessing them as discrete tokens which are also semantically complete structures.

Ideally, computational representations of words should reflect lexical, semantic and

syntactic information, expressed in terms of a finite set of numeric features that al-

low this information to be processed and transferred to solve different applications.

Different methods and techniques have been proposed to construct or learn useful

numeric representations from these sources of information.

As discussed in section 2.2, mapping text to numbers is an inherently lossy
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process. Nevertheless, information loss can be beneficial in the construction of

representations, since it can filter out unnecessary information. Given that some

of the information in these representations might be useful for one task but not for

another, evaluating the informational content in word representations is not straight-

forward and remains an open research question. In this chapter I present the main

approaches to the construction and learning of numeric word representations, as

well as a set of baseline word representation models that are representatitve of these

approaches. I also introduce the base experimental framework that will be used for

the remainder of this thesis. The empirical evaluation portion of this framework

comprises a suite of some of the most relevant metrics used to evaluate word rep-

resentations. These metrics, which include an analysis of word pair distances that

I proposed, strive to provide an insight into the informational content of different

word representations, as well as their relative strengths and shortcomings.

3.1 Sources of Lexical Information
Word representation models have commonly relied on three main sources of lexical

information: morphology, lexicons, and syntactic context.

Linguistic morphology is the study of the internal structure and formation of

words.1 This refers to the information that is contained in the surface form of a

word, i.e. the sequence of textual characters that represent a word. Morphological

information can be linguistically informed, such as syllables, which are determined

by the sonoricity of spoken words, and morphemes, which are units of grammatical

function. As an example, the word majority contains the syllables ma, jor, i,

and ty. The same word has a morpheme decomposition into a stem major and a

suffix -ity. Alternatively, morphological information can also come from arbitrar-

ily constructed units, such as character n-grams, e.g. the non-overlapping bigrams

ma, jo, ri, and ty. Morphological units can also be learned word segments, such

as those produced by the Byte Pair Encoding (BPE) (Sennrich et al., 2016b) or the

1The definition of morphology used here is shared by authors like Kornai (2001) and Aronoff
and Fudeman (2011), but differs from the more restricted concept of morphology as studying the
minimal meaningful units of language presented by Kracht (2007).
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WordPiece (Wu et al., 2016a) algorithms. BPE iteratively merges the most frequent

pairs of character n-grams (bytes) into a single symbol that gets added to the vo-

cabulary. The WordPiece model iteratively learns a language model over the word

units in a vocabulary and adds the most likely word unit that results from combin-

ing two units from the current vocabulary. For a word like organophosphorus,

which is likely to be rare and therefore not included in a word-level vocabulary, the

BPE segmentation could be _organ, oph, osph, and orus, while its WordPiece

segmentation might be organ, ##op, ##hos, ##ph, and ##orus. These mor-

phological word segmentations will be referred as subwords for the remainder of

this discussion. A final source of morphological information that is not dependent

on subwords is what I will refer to as word form, which uses a small set of symbols

to construct a prototypical surface form for words. These replacements can include

replacing lowercase letters with x, uppercase letters with X, and numeric characters

with #, which represent Apple with the word form Xxxxx, and USB3.0 with

XXX#.#. Morphological information can help capture regularities between words

(e.g. common suffixes), minimise the difference between misspelled words (e.g. ma

· jo · ri · ty and ma · yo · ri · ty), and can help deal with words that are not in

a predefined vocabulary.

Lexicons in general refer to databases of lexical knowledge that may contain se-

mantic, syntactic, and relational information about words.2 Semantic lexicons,

which are frequently used in NLP, are dictionary-like resources that store words to-

gether with their corresponding semantic information. Semantic lexicons can store

information such as definitions, semantic relations between units like synonyms,

meronyms, hypernyms, or hyponyms (e.g. the WordNet lexical database (George

A. Miller, 1995) shown in figure 3.1), semantic frames (e.g. the FrameNet

database (Baker et al., 1998) shown in figure 3.2), or common-sense conceptual

relations (e.g. ConceptNet (Speer et al., 2017)). The lexical knowledge in lexicons

pertains to the words themselves, irrespective of their context of use, which can be

2Lexicons are technically made up of lexical units, which include root words, compound words,
and affixes, but for ease of exposition I will refer to these as words for the remainder of this discus-
sion.
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burn
noun.01

'pain that feels hot 
as if it were on fire'

cauterize
verb.01

sunburn
verb.01

burn
noun.02

tan
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burn
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Figure 3.1: WordNet knowledge base synsets and hypernyms for the word burn

burn

Frame 112: Cause_harm

An Agent or a Cause injures 
a Victim.

Parent: Cause_bodily_experience 
Child: Abusing 
Child: Violence 
Target: Corporal_punishment.

.
.

Frame 2824: Fire_burning

A Fire burns Fuel, resulting 
in damage and possibly 
complete  destruction of the 
Fuel.

Child: Emergency_fire 
Earlier: Catching_fire 
Later: Putting_out_fire.

.
.

Frame 2823: Fire_goint_out

A Fire goes out.

Earlier: Fire_burning 
Causative: Putting_out_fire 
Complex: Fire_end_scenario

Figure 3.2: FrameNet knowledge base frames for the word burn

helpful when constructing transferable word representations that can be used across

NLP tasks spanning multiple linguistic domains.

Context provides invaluable information about a word’s semantics and usage. From

the perspective of structuralist semantics (as described by Gasparri and Marconi

(2019)), the meaning of a word is defined in terms of the role of that word within the

structured system of language, as well as the relations it maintains with other words.

Within the structuralist linguistic tradition, the distributional hypothesis (Harris,
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1954), which will be discussed in more detail in chapter 4, posits that a word’s con-

text, understood as a word’s neighbourhood of surrounding words, is informative

enough to infer the meaning of that word. As an example, in the sentences She

took her dog out for a walk. and She took her puppy out for

a walk., the fact that dog and puppy appear in the same context should give

some notion of semantic proximity between the two words. Contextual informa-

tion is derived from the statistical usage of a word in real world language, and is

therefore not necessarily aligned with general linguistic consensus. In theory, by

the law of large numbers, the universal meaning of a word could be extracted by

processing all of the contexts in which that word has been used. In practice, how-

ever, this information is constrained by the size, style, and diversity of the language

corpus from which these meanings are extracted. The contextual information for

the word light, for example, would differ substantially when extracted from a

Physics textbook as opposed to a novel or an Art History textbook. Unlike mor-

phological and lexical information, contextual information does not provide hard

knowledge about a word’s meaning, but the more nuanced information obtained

from context is able to accommodate diverse uses of language and treat a word’s

semantics as an evolving continuum. The dependence of contextual information on

specific language corpora can also provide domain-specific information which can

be desirable for certain NLP applications.

3.2 Word Representation Engineering and Learning

To construct useful representations, the information about a word’s morphology,

semantic relations, and context needs to be processed, selected, contextualised,

pruned, and transformed into usable features. A feature in this context refers to

a single unit of information that is used to build a representation. For the purpose of

this discussion, a representation can be understood as a vector of numbers, where

every dimension of the representation vector is referred to as an individual feature.

There are a wide variety of representational approaches that convert the aforemen-

tioned sources of linguistic information into the features used to represent a word.
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Representational approaches can be split into two broad categories: feature

engineering, which leverages expert knowledge, such as morphological and lex-

ical knowledge from pre-existing resources, and feature learning, which refers to

the process of statistically tuning or selecting optimal features for a specific task.

3.2.1 Feature-Engineered Word Representations

Feature engineering has been informally defined in different ways in the literature

and is frequently conflated with the concepts of feature extraction, feature trans-

formation, feature encoding, basis functions etc. (Goldberg, 2017). This term has

commonly been used to refer to a preprocessing step by which the features from the

input data are modified in different ways (e.g. normalising to get all values for a

feature in the range of [0,1], or [−1,1] with a mean of 0). In this discussion, how-

ever, feature engineering is taken as the process of hand-crafting features out of

domain knowledge. This aligns with the componential view of lexical semantics

(as described by Gasparri and Marconi (2019)) which describes word meaning in

terms of semantic components, e.g. the word leg can be described by semantic

primes such as IS_ENTITY, IS_PART_OF, IS_NOUN, etc.

A feature-engineered word representation extracts features from the lexical

information that is deemed to be most relevant to solve a particular task. This pro-

cess typically requires heuristics and fine-tuning to select a useful combination of

features. I lay out one possible way to engineer an initial set of features for words

in the following algorithm:

1. Pre-select lexical knowledge resources to use

2. Define a word vocabulary

3. For every word in the vocabulary, query the lexical resources to obtain its

lexical information, e.g. POS tags, hyponyms, word category, etc.

4. Look up the existing feature dictionary for every extracted piece of informa-

tion, if the piece of information is not already in the feature dictionary add it

as a new feature
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5. Extract relevant morphological information: full word, subwords, word form,

character n-grams, etc.

6. Look up extracted morphological information in the feature dictionary, add

new features when appropriate

7. Given the full dictionary of features, prune any feature that appears in fewer

words than a set threshold

Feature-engineered word representations are vectors of numbers where every

dimension corresponds to a feature from the feature dictionary, and its value can

indicate the presence or absence of the feature (0 or 1), the feature counts (e.g. how

many times a subword appears in a word), a feature’s normalised frequency, etc.

An example of these features is provided in table 3.1. Since feature dictionaries

tend to be large, oftentimes containing tens to hundres of thousands of features, and

words are commonly represented by only a small number of those features, these

vector representations have a high dimensionality and tend to be sparse, i.e. made

up mostly of zeros. Given the sparsity of these vectors, and the fact that some of

the features will only contain non-zero values for a small number of words, it is

common for these representations to undergo a feature selection process. Feature

selection consists of both the selection of information sources from which the

features are obtained, as well as the pruning strategy used to reduce the size of the

feature dictionary.

Feature selection is an important step for computational reasons, since very

high-dimensional feature vectors are more computationally expensive to process.

However, reducing the number of features can also have the counterintuitive ef-

fect of making the representations more informative by removing what Manning

et al. (2008) describe as noise features. Even though the individual features might

be grounded in sound linguistic theory, the combination of such features that is

most effective in terms of solving an NLP task can vary substantially from task to

task. This can be attributed to the fact that representations, in the context of ma-

chine learning, are not processed in terms of their individual features, but rather
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Table 3.1: Example of manually constructed feature vectors for the words in the phrase
Calling number 8. Features include bi-grams, positional information (first
or last word), suffixes, and whether the word is numeric

uppercase SUFFIX_ing numeric <START>_calling calling_number number_8 8_<END>

Calling 1 1 0 1 1 0 0

number 0 0 0 0 1 1 0

8 0 0 1 0 0 1 1

as a complex interaction of all of these features. Such interactions between large

numbers of features are mostly incomprehensible for humans, so selecting effective

combinations of features requires resorting to heuristics, fine-tuning, and empirical

validation.

3.2.2 Learned Word Representations

Feature engineered representations have the downside of being high-dimensional,

sparse, and requiring expert knowledge. Data-driven word representations ap-

proaches offer an alternative, where representations are learned by exploiting lexi-

cal information (e.g. word context distributions) from patterns of word repetition

in data. Learning word representations from data entails a shift in the representa-

tional paradigm, where words are no longer represented by high-dimensional sparse

vectors of discrete and interpretable features, but rather by dense vectors of latent

features, commonly referred to as distributed representations, as described in chap-

ter 2.

Distributed representations of text are typically implemented as semantic

proximity models, which Deerwester et al. (1990) describe as models that con-

struct a semantic space where similar items are placed in close geometric proxim-

ity. These models capture general patterns from the data across all of their latent

features, which means that the individual features of these representations are no

longer interpretable. However, this loss of interpretability can be beneficial when

constructing representational similarity. As mentioned in the previous section, fea-

ture vectors tend to be very sparse, which can result in a lot of the representa-

tions being orthogonal (i.e. they share no non-zero elements) which would be inter-
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preted as maximal dissimilarity. As an example, the sentences The press was

inquisitive and Reporters were asking questions are entirely or-

thogonal in terms of their bag-of-words representations given that they have no

words in common, even though they are semantically very similar. Distributed rep-

resentations, on the other hand, provide a spectrum of similarity between represen-

tations in terms of their geometric distance, where this distance is a function of the

statistical similarity between the represented texts.

Distributed word representation learning most commonly relies on two sources

of statistical information: word-document and word-word co-occurrence counts.

Word-document statistics are usually described in terms of a matrix Xw-d ∈ RV×D,

where V is the size of the vocabulary and D is the number of documents in the

dataset. In this matrix, every row corresponds to a word in the vocabulary and every

column corresponds to a document, where each cell [Xw-d]i j contains the counts3

for word i in document j.

Word-document matrices are commonly used in the context of topic mod-

elling, which is the process of extracting abstract topics from text data. Latent

Semantic Indexing (LSI) as presented by Deerwester et al. (1990), also found in the

literature as Latent Semantic Analysis (LSA), is an early topic modelling method

that uses Singular Value Decomposition (SVD) to factorise the word-document ma-

trix X into three matrices X = WΣD>, where W and D are two orthogonal ma-

trices and Σ is a diagonal matrix that conains the set of singular values. In SVD,

the largest singular values account for the most variance in the original matrix. A

rank-k approximation X ≈ X̂ = WkΣkD>k minimises the information loss from the

original matrix by only preserving the k largest singular values. Every row of the

resulting matrices Wk and Dk can be interpreted as representing a single word and

document, respectively, in terms of abstract topics. The ideas from LSI were fur-

ther expanded to consider that documents can not only come from one of these

abstract topics, but rather from a distribution over topics in the probabilistic Latent

3The cells of word-document matrices can alternatively contain presence-absence (0 or 1), nor-
malised frequencies, or Term Frequency - Inverse Document Frequency (TF-IDF) scores of the
words in a document.
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Semantic Indexing (pLSI) model (Papadimitriou et al., 1998). More recently, Blei

et al. (2003) proposed the Latent Dirichlet Allocation (LDA) topic model, a genera-

tive model of topic distributions in documents that assumes that a document comes,

not from a single sampled topic, but rather from a distribution over topics, mean-

ing that a document comes from multiple topics and every word in the document

is obtained by conditioning on a topic sampled from that topic distribution. Even

though these models have been mostly used to produce document representations

for tasks like text classification, they also produce distributed word representations

in the same process which, like the learned document representations, are expressed

in terms of abstract topics extracted from the data. The lda2vec model4 proposed

by Moody (2016) applies the topic modelling approach from LDA to explicitly learn

distributed word, document, and topic representations that live in the same embed-

ding space, such that words or documents that are closely associated with a topic

will be embedded close to the embedding of the corresponding topic.

Word-word co-occurrence models attempt to capture information about a

word’s context, understood here as its neighbouring words. A word’s neighbour-

hood is most commonly implemented as a context window of fixed length C, mean-

ing the C words appearing directly before and after a centre, or focus, word. There-

fore, two words co-occur if they appear within each other’s context windows. Word-

word co-occurrence can be recorded for the full dataset or corpus into a single word

co-occurrence matrix Xw-w ∈ RV×V , where V is the size of the vocabulary. In this

matrix, every row and column correspond to a word in the vocabulary and every

cell [Xw-w]i j contains the counts5 (or frequencies) for word wi and word w j.

Unlike topic modelling approaches which focus on document representations,

word-word co-occurrences are typically exploited in the learning of word repre-

sentations, as they contain no document-level information. As mentioned in chap-

4lda2vec is modelled after the Skip-gram model, but only uses a single embedding unit, and
uses the idea of continuous Bag-of-Words (CBOW) and vLBL of constructing a context vector by
combining (averaging or summing over) the individual embeddings of the words that make up the
context.

5Word-word co-occurrence is can also be weighted by the distance between two co-occurring
words, e.g. in the sentence the cat sat, even though the and sat co-occur, they can be
recorded as co-occurring less strongly than the and cat.
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ter 2, these statistical distributed representations of words are most commonly re-

ferred to as word embeddings. An early example of word embeddings based on

these word co-occurrence matrices is the hyperspace analogue to language (HAL)

model (Lund and Burgess, 1996), which uses PCA to obtain the M principal com-

ponents of a word co-occurrence matrix6 to produce word embeddings. The word

co-occurrence matrix used by HAL is constructed by placing the previous (left)

context of a word in the row for that word and the future (right) context in the col-

umn for that word, where co-occurrence is weighted by context distance, and the

full matrix is constructed by concatenating the rows and columns for every word,

hence producing vectors of size 2V . Lebret and Collobert (2014) propose a simi-

lar approach, where the Euclidean distance is replaced with the Hellinger distance,

which measures the difference between two probability distributions P and Q and is

calculated as Hellinger(P,Q) = 1√
2
||
√

P−
√

Q||= 1√
2

√
∑i
√

pi−
√

qi, in the PCA

processing of word co-occurrence probability7 matrix to produce HellingerPCA

word embeddings.

The GloVe model proposed by Pennington et al. (2014), arguably one of the

most widely used word embedding models to this day, gets its name from train-

ing on a global word co-occurrence matrix. Pennington et al. (2014) use the term

global to distinguish corpus-level word co-occurrence from the local contexts used

in other models such as Word2Vec (Mikolov et al., 2013b,a). Given that cells in

this matrix contain word-word co-occurrence counts, in this model the probability

that a word w j appears in the context of word wi is expressed as the normalised

counts p(w j|wi) =
[Xw-w]i j

∑k∈V [Xw-w]ik
. The GloVe model makes the assumption that, given

two words wi and w j, and a context word wk, the ratio of the probabilities for each

word given the context p(wk|wi)
p(wk|w j)

provides information about the relationship between

words wi and w j with respect to word wk. A large ratio implies that wk is closely

related to wi, but not to w j, a small ratio implies the opposite, and a ratio close to 1

6Lund and Burgess (1996) report the best empirical performance when using the M = 100 or
M = 200 principal components of the word co-occurrence matrix.

7The value of every cell in this matrix is the number of times a word appears in a given con-
text, divided by the number of times any word appears in that context, hence it is described as the
probability of a word given a context.
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means that wk is as related (or unrelated) to wi as it is to w j. These ratios are then

expressed in terms of a word embedding vector ux = [U]x, and a context embedding

vector vx = [V]x:

p(wk|wi)

p(wk|w j)
=

F(u>i vk)

F(u>j vk)
(3.1)

where U,V ∈ RV×M are the word and context embedding matrices, respectively,

V is the vocabulary size, M is the dimensionality of the embeddings, and F is an

encoding function.

By approximating this ratio of probability distributions, the embeddings u and

v are expected to capture the semantic information in the co-occurrence matrix,

where the resulting embedding for a word w is the sum of its two embeddings:

w = uw + vw. The embeddings are learned by optimising a weighted least squares

cost function:

J =
V

∑
i, j=1

f ([Xw-w]i j)(u>i v j +bi + b̂ j− log[Xw-w]i j)
2 (3.2)

where bx and b̂x are bias terms, and f is the following piecewise weighting function:

f (x) =

(x/xmax)
α if x < xmax

1 otherwise

where xmax is a cutoff point, and α controls the curvature of the function before

the cutoff point. This weighting function deals with the zeros in the co-occurrence

matrix, since the logarithm of zero is undefined, and prevents overweighting very

frequent and very rare co-occurrences.

Models that, like GloVe, use two interacting and independently varying linear

units are referred to as bilinear models. Bilinear models have been commonly used

in language modelling-based word embedding learning. More specifically, bilinear

models have been used as an efficient solution to neural language models8 (Bengio

et al., 2003), which describe the probability of a target word w appearing after

8Neural language models will be discussed in more detail in chapter 4.
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a history of t − 1 words h = 〈w1,w2, . . . ,wt−2,wt−1〉 in terms of a parameterised

function of the word and history f (w,h;Θ). This next word prediction objective is

a type of multi-class classification problem, where the target is a word from the full

vocabulary V , which can be expressed as a softmax function:

p(w |h) = exp( f (w,h;Θ))

∑w′∈V exp( f (w′,h;Θ))
(3.3)

In bilinear models, the function f describes the relationship between the el-

ements in a conditional distribution, which in this case are the word w and the

history h, in terms of an interaction (typically a dot product) between their respec-

tive distributed representations. The original log-bilinear language model proposed

by Mnih and Hinton (2007) uses a single embedding matrix U ∈ RV×H , where V

is the size of the vocabulary, H is the embedding dimension, and ux = [U]x ∈ RH

is the embedding vector for word x which corresponds to a row in the embedding

matrix. The embedding matrix U is used to embed the target word uw and the em-

bedding for the history is given by summing over the embeddings of its individual

words9 h = ∑
t−1
i=1 ui. Mnih and Teh (2012) extend this log-bilinear language model

by adding a second embedding matrix V ∈ RV×H used to embed the target word

vw = [V]w ∈ RH , and the history embedding is calculated by a weighted sum over

the embeddings of the words in the history h = ∑
t−1
i=1 Ciui, where the weighting ma-

trix C contains position-dependent context weights, and the word embeddings come

from the first embedding matrix ux = [U]x ∈ RH .

By extending the idea of a word’s history to the more general concept of a

word’s context, bilinear models can be applied to word co-occurrence statistics.

The language modelling objective then becomes predicting a focus word10 f given

its context C of co-occurring words. The Skip-gram model proposed by Mikolov

et al. (2013a) flips the language modelling objective around and seeks to predict

each of the context words wc,c ∈ C individually given the focus word w f :

9The formulation by Mnih and Hinton (2007) includes an interaction matrix as well as additional
bias terms which are omitted here for ease of exposition and to allow for a clearer comparison with
other models.

10The change in terminology, from target word to focus word is done to keep the discussion
consistent with the terminology used in the literature.
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p(wc |w f ) =
exp(v >c u f )

∑w∈V exp(v >w u f )
(3.4)

where w ∈ V is a word from the vocabulary, and uw and vw are the input and output

embeddings for word w, respectively. The input embeddings u f , i.e. the embed-

dings for the focus words, are then used as the learned word embeddings. The

Skip-gram model is described in more detail in chapter 4. Mikolov et al. (2013a)

also proposed the CBOW model, which predicts a focus word from a context em-

bedding calculated as the average of the embeddings of the words appearing in the

context c = ∑c∈C uc. However, since the CBOW model uses a single embedding

matrix it is not included in this discussion on bilinear models.

Despite their different architectures and training regimes, these word co-

occurrence models process the same information. Levy and Goldberg (2014) show

that both the Skip-gram (Mikolov et al., 2013b) and log-bilinear noise-contrastive

estimation (NCE) (Mnih and Kavukcuoglu, 2013) models can be cast as a weighted

factorisation of word co-occurrence matrices. In their derivation, Levy and Gold-

berg (2014) describe the matrix factorised by the Skip-gram model as the Pointwise

Mutual Information (PMI) matrix, and the one factorised by the log-bilinear NCE

model as a log-conditional-probability matrix, both of which are defined in terms

of word co-occurrence counts.

Word co-occurrence neural language models remain among the most widely

used word embedding models in NLP pipelines. Fine-tuning and understanding the

linguistic and informational properties of this family of word embedding models

remain active areas of research.

3.3 Word Representation Evaluation
There is no consensus as to what constitutes an ideal word representation. Despite

the lack of an objective and universal evaluation metric, certain general character-

istics can help determine the quality of word representations. There are two main

outlooks to measure these representations: the linguistic and the pragmatic. The

linguistic aspect refers to the syntactic and semantic information that is captured
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by these representations. The pragmatic aspect focuses on how useful these rep-

resentations are in terms of solving concrete tasks or applications. These aspects

conform what Schnabel et al. (2015) describe as the intrinsic and extrinsic evalu-

ation of word representations, respectively.

There is no single way to empirically evaluate the intrinsic characteristics of

word representations. For this reason, specific aspects of these representations have

been used to probe for syntactic and semantic information. The most widely used

intrinsic evaluation metrics gauge the internal linguistic structure of the semantic

space by focusing on one or more of the following aspects:

• Semantic relations in the representation space, analysed in terms of how

closely the geometric properties of the space mimic human notions of se-

mantic relations. This aspect of the representation space has been evaluated

through the correlation between human-assigned similarity scores between

pairs of words and the geometric distance between their corresponding (vec-

torial) representations. This evaluation requires a dataset of human anno-

tated similarity scores between pairs of words, such as the word similarity

(and word relatedness) datasets created by Finkelstein et al. (2002), Hill et al.

(2015), Gerz et al. (2016), among others.

• Coherence of the semantic space, described by Schnabel et al. (2015) as the

property of the representation space that places semantically related words

within a close vicinity of each other. Unlike the preservation of semantic re-

lations, which looks at relations between pairs of words, the coherence of the

space analyses local neighbourhoods (i.e. clusters) of words in representation

space. As a way to measure this, Schnabel et al. (2015) propose an intruder

detection task, where given a query word, two related words, and an intruder

word, in a coherent representation space the two nearest neighbours to the

query word should be the related words, and the intruder should appear out-

side of that neighborhood. Other evaluation metrics that focus on semantic

space coherence include analysing the stability of word representation models

in terms of the overlap between word neighbourhoods in different represen-
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tation models (Wendlandt et al., 2018), or the spatial distribution of word

classes (Sasano and Korhonen, 2020), among others.

• Geometric mapping of linguistic properties consists of probing the repre-

sentation space for a specific set of linguistic features. One potential way to

measure this is by considering linguistic properties as canonical translations

in representation space. An example of this type of evaluation is the ana-

logical reasoning test proposed by Mikolov et al. (2013b), where the relation

between words a and b is analogous to that of c and d, i.e. a is to b as c is

to d, and the test is to determine whether this relations hold in representa-

tion space by performing vector algebra on the word representations. As an

example, consider the relation man : king :: woman : queen, the vector

representation uqueen should be close to the result of uking−uman+uwoman.

Alternatively, linguistic features can be evaluated at the lexical level, as done

by QVEC (Tsvetkov et al., 2015), an evaluation scheme that compares every

word representation with a linguistically ideal representation11 for the same

word (i.e. a vector of canonical linguistic features for that word), and the

quality of a word representation is measured by how well the individual di-

mensions of the word representation can be aligned with the features in the

canonical representation.

• Semantico-spatial ambiguity12 concerns the concurrent mapping of multi-

ple senses of a word to the representation space. Even though, as argued

by Yaghoobzadeh and Schütze (2016) and Gladkova and Drozd (2016), word

representations should ideally capture all senses of a word, capturing and

measuring these senses can be a considerable challenge, especially given

that certain senses might be overrepresented in a dataset. As exemplified

by Gladkova and Drozd (2016), depending on the domain of the text data,

11Wang et al. (2019c) and Bakarov (2018) stress the importance of multifacetedness, i.e. the in-
corporation of linguistic aspects such as morphological or syntactic properties, into the construction
of word representations.

12Semantico-spatial ambiguity is closely related to the idea of meaning conflation discussed
by Camacho-Collados and Pilehvar (2018).
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the dominating sense for the word Apple might be fruit rather than

corporation. Evaluation methods have been proposed to gauge how

word representations capture polysemy, such as the analysis of the nearest

neighbours of polysemous words (Athiwaratkun et al., 2018), or the human-

assigned contextual similarity scores proposed by Huang et al. (2012). These

methods, however, can be thought of as being mostly qualitative and have not

been widely adopted in the NLP community. Quantitatively evaluating the

capture of multiple senses in word representations remains an open research

question. In regards to this, Gladkova and Drozd (2016) suggest to “embrace

ambiguity as an intrinsic characteristic of word embeddings”.

Evaluating word representations extrinsically has a broader definition which

can be summarised as the performance gain obtained by using a given set of word

representations to represent the input to an unrelated downstream NLP task. Un-

related in this context pertains to the difference in either data domain or training

regime. In other words, these word representations are evaluated in terms of their

contribution to solving a task they were not explicitly trained to solve. Downstream

task refers to a task that is attempted after the word representations are fully con-

structed. The expectation with the extrinsic evaluation process is that the linguistic

information captured by the trained word representations is transferrable to other

NLP tasks and should therefore improve the performance of any model that can

benefit from such information. In this sense, any NLP task that takes words as in-

put can be used as an extrinsic evaluation method. While extrinsic evaluation gives

a notion of the practical utility of a word representation model as a representa-

tion technique, the diversity of learning algorithms, training regimes, and model

complexities used for different downstream tasks can obfuscate the comparison of

different word representations. I argue that a fair extrinsic evaluation metric for

word representations should, in principle, have a minimal reliance on the training

regime and trainable parameters, and should be based on a task definition that relies

as much as possible on the word representations themselves. While this might not

be the best indication of the performance of word representations in a wider range of
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real world applications, it can provide a clearer comparison between representations

that is focused on their encoding of semantic features.

Current evaluation metrics focus on a set of informational aspects and prop-

erties present in word representations. Each metric on its own offers limited in-

sight into the quality of these representational models. As noted by Tsvetkov et al.

(2015), Schnabel et al. (2015), and Chiu et al. (2016), in many cases a model’s per-

formance on an extrinsic task does not correlate with its intrinsic evaluation scores,

or even with its performance on other extrinsic tasks. The partial views of a word

representation model provided by these different evaluation metrics can be com-

bined in what Gladkova and Drozd (2016) describe as an exploratory approach to

word representation quality in order to better understand the relative strengths and

weaknesses of different representational approaches.

3.4 Empirical Comparison of Word Representations

Throughout this research I explore the principles and limitations of different fam-

ilies of word representation models, including widely adopted models, as well as

variations and novel models of my own design. In order to gain a better insight into

the comparative advantages of these models, I propose the following experimen-

tal conditions which are designed to provide an even ground on which to compare

different word representations. This relies on keeping as many of the experimental

variables fixed as possible to minimise the variability between models. Some of the

most important conditions to account for are the dataset used to train or construct

the models; the complexity of the model architecture, which in the case of word

representations involves, among other things, the choice of vocabulary; and finally,

the testing conditions used to compare these models, which need to be diverse and

representative enough to provide a thorough and detailed evaluation of the different

models. These experimental conditions remain constant throughout the experiments

presented in this thesis.
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3.4.1 Dataset

The BNC is designed to be representative of British English usage and consists of

transcribed speech and written text produced between 1960 to 1993. The data is

obtained from a variety of sources such as lectures, bestselling books, news com-

mentaries, arts and science books and periodicals, business meetings, etc. The full

XML edition of the BNC comes segmented into 6 million sentences and approx-

imately 100 million tokens, and contains linguistic annotations such as POS tags,

head words, multi-words, and speech turns, a sample of which can be seen in listing

3.1. This choice of dataset is meant to provide a diverse set of examples of English

usage, in line with the argument made by Lai et al. (2016) that the domain of the

corpus can have a significant impact on the resulting representations.

Listing 3.1: BNC XML sample sentence

<s n="758">

<w c5="NP0" hw="dougal" pos="SUBST">Dougal </w>

<w c5="VBD" hw="be" pos="VERB">was </w>

<w c5="AJ0" hw="pleased" pos="ADJ">pleased </w>

<w c5="PRP" hw="with" pos="PREP">with </w>

<w c5="PNP" hw="it" pos="PRON">it</w>

<c c5="PUN">.</c>

</s>

Due to computational limitations, I reduce the full corpus by randomly se-

lecting 10% of its tokenised sentences, which amounts to 601,818 sentences and

11,126,083 tokens. Sentences in this subset contain between 0 and 1,452 tokens,

with an average length of 18.5 tokens. Hereforth, all mentions to the dataset will

refer to this subset of the full corpus. The use of a small subset of the dataset

responds to the need to train large numbers of models on limited computational

resources. This dataset of 11 million tokens falls within the range of 10-100 mil-

lion words that Zhang et al. (2020) describe as being sufficient to encode syntactic

and semantic features into language model-based representation models.13 I do,
13Zhang et al. (2020) limit this range to the learning of text representations. They also mention that
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Table 3.2: 10 most frequent words in the BNC XML dataset (subset 10%)

Word Counts Frequency
the 601,852 0.0609
of 303,678 0.03074
and 261,012 0.0264
to 260,550 0.0264
a 215,176 0.0218
in 194,470 0.0197
that 111,673 0.0113
it 105,349 0.0107
is 99,452 0.0101
was 87,992 0.0089

nonetheless, acknowledge the wider consensus that training on larger datasets has

been shown to produce better word representations (Pennington et al., 2014; Lai

et al., 2016), and leave the exploration of larger scale model training as future work.

3.4.2 Vocabulary

After removing punctuation marks, the 10% subset of the full dataset contains

9,879,226 words14 and a corresponding vocabulary of 141,044 unique words. This

vocabulary is subsequently pruned by removing any word that appears fewer than 5

times in the dataset, resulting in a vocabulary of 45,769 unique words. The pruned

vocabulary is made up of 32.45% of the unique words from the original vocabulary,

but mainains a coverage of 98.48% of the words in the dataset (9,728,672 out of

the full 9,879,226 words). This vocabulary will hereforth be referred to as the BNC

vocabulary. A sample of the ten most frequent and ten of the least frequent words

in the vocabulary are presented in tables 3.2 and 3.3, respectively.

Setting a frequency threshold on the vocabulary serves the double purpose of

reducing the complexity of the model,15 as well as removing very rare words which

Natural Language Understanding (NLU) tasks require considerably more data than representation
learning.

14The change in terminology from “token” to “word” is meant to make a distinction of the ele-
ments before and after cleanup (e.g. removing punctuation), although “word” in this context can
also refer to tokenised digits, accronyms, and other elements that are not filtered during cleanup.

15Given that many NLP models tend to be represented by matrices, where one of the axes repre-
sents every item in the vocabulary, reducing the size of the vocabulary effectively results in decreas-
ing the dimensionality of this matrix, and therefore the complexity of the model.
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Table 3.3: 10 of the least frequent words in the BNC XML dataset with a vocabulary cutoff
of 5 (subset 10%)

Word Counts Frequency
1/8 5 5e-07
easels 5 5e-07
cancellations 5 5e-07
knelle 5 5e-07
klan 5 5e-07
deplete 5 5e-07
lockable 5 5e-07
marmite 5 5e-07
patiño 5 5e-07
seelig 5 5e-07

typically include misspellings, acronyms, or overly specialised terms. Even though

removing these terms can have a positive effect on the model’s performance, the

choice of frequency threshold can also have a detrimental impact on model per-

formance, since a high threshold reduces a vocabulary’s coverage of the dataset.

Coverage refers to the proportion of text in the dataset that is covered by a vocab-

ulary, where any word in the dataset that is not part of the vocabulary is labelled

as an unknown or out-of-vocabulary (OOV) token. The number of OOV tokens in

a datasets entails a proportional loss of information, especially when considering

that rare words can contain fundamental semantic information. As an example, the

word marmite, from table 3.3, which would get pruned if the frequency threshold

was increased to 6, can serve as a strong indication that a piece of text is referring

to British food.

The frequency threshold of 5 used for this vocabulary was chosen because it

achieves a significant reduction in the computational complexity while preserving

an acceptable coverage of the dataset. This vocabulary remains constant throughout

the rest of the experiments in this thesis.

3.4.3 Baseline Word Representations

In order to get a view of the different families of representational approaches de-

scribed in this chapter, I compare a diverse set of word representations. This selec-
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tion aims to give a broad perspective of empirical advantages and disadvantages of

the different word representation paradigms. The word representations delineated

here are compared with the new models I propose in chapters 4 and 5.

3.4.3.1 Feature-engineered word representations

I implement these word representations as a presence-absence matrix Ffeatures where

the rows correspond to the words in the vocabulary, the columns correspond to the

distinct features from a feature dictionary, and cells contain binary values where

a 1 indicates the presence of a feature. I designed this feature dictionary to be

representative of the morphological, lexical, and semantic information sources

for word representations I described earlier. For the morphological features I use

WordPiece (Wu et al., 2016b) subword units, obtained by using the pre-trained

model from the HuggingFace library (Wolf et al., 2020), which obtains the min-

imal set of word segments that cover a text corpus. A wordpiece can be a full

word, if it is frequent enough, or a commonly occurring segment, like ##ing

(where ## marks the beginning of a word). In this feature dictionary, wordpieces

have the prefix sub_. For the lexical features I use the Linguistic Inquiry and

Word Count (LIWC) word level properties (Pennebaker et al., 2015), which pro-

vide information about word-level categories such as Health (liwc_health)

or Causation (liwc_cause). I complement the lexical knowledge with asso-

ciated POS tags (syns-pos), related hypernyms16 (syns-hyper_), and syn-

onyms (syns-lex_) queried from the WordNet (George A. Miller, 1995) knowl-

edge base. Finally, I extract semantic information from the FrameNet knowledge

base (Baker et al., 1998), which provides a word’s semantic frame (frame_), i.e.

the conceptual structure for a particular meaning of that word, where frames in-

teract with other frames in relations like cause, parent, target, etc. To reduce the

dimensionality and sparsity of this matrix, the feature dictionary is pruned by re-

moving any features that are present in fewer than 5 words from the vocabulary,

which results in a dictionary of 6,672 features. The number of features by cate-

16Hypernyms are more generic (or less specific) terms in a semantic field, such as animal is to
dog or cat.
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Table 3.4: Number of features per category after pruning the feature dictionary.

WordPiece subwords 3,019
LIWC features 813
FrameNet features 1,073
POS tags 4
Synonyms 40
Hypernyms 1,723
Total Features 6,672

Table 3.5: Present features for the words imbalance, match, and food

imbalance match
sub_##balance frame_Beyond_compare
sub_im frame_Compatibility
syns-lex_attribute frame_Evaluative_comparison
syns-lex_state syns-lex_artifact
syns-pos_noun syns-lex_change

syns-lex_cognition
syns-lex_competition
syns-lex_contact

food syns-lex_event
frame_Food syns-lex_group
syns-hyper_substance syns-lex_person
syns-lex_Tops syns-lex_possession
syns-lex_cognition syns-lex_quantity
syns-lex_food syns-lex_social
syns-pos_noun syns-lex_stative

syns-pos_noun
syns-pos_verb

gory are shown in table 3.4 and a sample of word features are provided in table

3.5. Despite the high dimensionality of the resulting feature-engineered word rep-

resentations, especially when compared to the distributed word embeddings used in

this thesis (200-768 dimensions), I avoided any dimensionality reduction on these

representations to ensure that all comparisons are made with the feature vectors

themselves.
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3.4.3.2 Word2Vec Embeddings

Input embeddings from a Skip-gram model (Mikolov et al., 2013a) pre-trained on

the Google News dataset, which is made up of around 100 billion words. These

pre-trained word embeddings, obtained through the Gensim library,17 have a dimen-

sionality of 300, and the model vocabulary comprises 3 million distinct tokens.18

To maintain a fair comparison, these embeddings are used with the BNC vocabu-

lary described in the previous section. Certain words in the pre-trained model are

embedded with a zero vector. In the interest of consistency I embed missing words

(i.e. words from the BNC vocabulary that do not have an associated embedding in

the model) in the same manner.

Even though the similarity-distance correlation scores contain a fixed set of

words, the BNC vocabulary is used in these evaluation metrics to construct a single

set of words that all models are evaluated on. Therefore, the intersection between

the training vocabulary and the similarity-distance correlation word pairs creates

the set of scores on which all models can be consistently evaluated. This allows

for a like-for-like comparison between pre-trained word embeddings and the new

embeddings that are trained for this research.

3.4.3.3 GloVe Embeddings

GloVe word embeddings pre-trained by Pennington et al. (2014) on a dataset made

up of the Gigaword5 corpus (4.3 billion tokens) and a 2014 Wikipedia dump (1.6

billion tokens), which are also taken from the Gensim library. Even though pre-

trained GloVe embeddings are available in different dimensionalities, to keep ex-

perimental conditions consistent the 300 dimensional embeddings are used in these

experiments. The vocabulary in this model is made up of the 400,000 most frequent

words. As with the Word2Vec embeddings, these embeddings are evaluated on the

BNC vocabulary, where missing words are assigned a zero vector embedding.

17https://radimrehurek.com/gensim
18The Word2Vec vocabulary includes multi-word tokens such as

Moroccan_Islamic_Combatant.

https://radimrehurek.com/gensim
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3.4.3.4 HellingerPCA Embeddings

Lebret and Collobert (2014) build their HellingerPCA embeddings from a word

co-occurrence matrix constructed from a dataset composed of a Wikipedia dump,

the Reuters corpus, and the Wall Street Journal corpus, where the resulting dataset

is made up of roughly 1.6 billion words. The pre-trained embeddings are made

available in three different dimensionalities (50, 100, and 200) through the author’s

website.19 The 200 dimensional embeddings are used for these experiments given

that it is the most similar dimensionality to the rest of the models used here. This

model has a vocabulary of 178,080 distinct words which results from pruning words

that appear fewer than 100 times in the dataset. As with the other models, these

embeddings are evaluated on the BNC vocabulary and missing words are assigned

the zero vector.

3.4.4 Evaluation

An empirical testbed that allows for a fair comparison of word representation mod-

els must evaluate different aspects of these representations under the same condi-

tions. The set of evaluation metrics used in this research is designed to provide a

view of the relative advantages of these models with respect to their extrinsic per-

formance and intrinsic properties.

Extrinsic: WMD Document Classification uses Word Mover’s Distance

(WMD) (Kusner et al., 2015), a distance metric between documents that is calcu-

lated by solving a transport problem based on the Earth Mover’s Distance (Rubner

et al., 1998), in which the word distribution of the first document (i.e. its normalised

word counts) has to be transformed into the word distribution of the second, where

the travel cost between two words is the Euclidean distance between their corre-

sponding embeddings. This extrinsic evaluation consists of a document classi-

fication task solved with a kNN classifier based on the WMD between document

pairs. The classification task is performed on the 20 Newsgroups dataset (Joachims,

1997), which contains 18,846 news articles from 20 relatively well-balanced classes

(or news groups). These experiments are carried out on the 11,314 news articles that

19http://www.lebret.ch/words/embeddings/200/

http://www.lebret.ch/words/embeddings/200/
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make up the training set of this dataset, obtained from the SciKit Learn (Pedregosa

et al., 2011) library.20 The kNN classifier is used with a constant value of k = 10.

As I discussed in section 3.3, an extrinsic evaluation that is unencumbered by train-

ing regimes and parameters can potentially give a more unbiased measurement of

the transferable information in a word representation model. For this reason, and

given that this task does not rely on any additional training and is based entirely on

word representation distances, I use WMD document classification as the extrinsic

evaluation task in this experimental framework.

Intrinsic: Similarity-Distance Correlation is the task of correlating the distances

between pairs of words with their corresponding human-assigned similarity score,

such that a stronger correlation indicates that higher similarity scores correspond

to smaller word representation distances. This intrinsic evaluation reports the

Spearman’s rank-correlation coefficient, or Spearman’s ρ , which measures the de-

pendence between two ranked variables, for three different word pair similarity

datasets. The first is WordSim353 (Finkelstein et al., 2002), a set of 353 word pairs

with a corresponding similarity scores. Agirre et al. (2009) identified some ambigu-

ity between the concept of similarity and relatedness in the original WordSim353

scores21 and proposed a split of the dataset into two distinct sets, WordSim353-Sim

(202 word pairs) and WordSim353-Rel (251 word pairs), for similar and related

word pairs, respectively. This split is used in these experiments. The second dataset

is SimLex-999 (Hill et al., 2015), a dataset consisting of 999 pairs of words which

presents the human annotators with a less ambiguous set of instructions that explic-

itly require similarity, and not relatedness, to be considered by the annotators. The

third dataset is called SimVerb-3500 (Gerz et al., 2016), which contains similarity

scores for 3,500 verb pairs. This combination of datasets is meant to evaluate the

presence of different types of word similarity. Any words that are missing from the

20https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.fetch_20newsgroups.html

21The crowdsourcing prompt for the human annotators lent itself to this ambiguity: “Assign a
numerical similarity score between 0 and 10 (0 = words totally unrelated, 10 = words VERY closely
related) ... when estimating similarity of antonyms, consider them “similar” (i.e., belonging to the
same domain or representing features of the same concept), not “dissimilar”.”

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
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vocabulary or have a zero vector are removed from the correlation score calculation.

Intrinsic: Word Pair Distance Distributions is an intrinsic evaluation metric

I designed to gain some insight into the underlying geometric properties of the

learned representation space. This evaluation consists of uniformly sampling 1,642

words from the vocabulary as base words and getting three additional sets of 1,642

word pairs: synonyms for the base words (extracted from the WordNet knowledge

base), contextual words (i.e. words appearing directly before or after the base word

in the BNC dataset), and a set of random words (i.e. sampled uniformly from the

vocabulary and unrelated to the base words). The distance distribution for every

set of word pairs provides a notion of how synonymic and contextual similarity re-

late to geometric distance in the representation space, with the random word pairs

serving as a baseline.

3.5 Results
The four word representation baseline models, Word2Vec, GloVe, HellingerPCA,

and Feature Vectors, are compared following the suite of evaluation metrics de-

lineated in the previous section. The results for the WMD kNN document classifi-

cation task, similarity-distance correlation, and word pair distance distributions are

presented in this section alongside some interpretation.

WMD Document Classification accuracies, with their corresponding error bounds,

are presented in table 3.6. For reference, given that the 20 Newsgroups dataset

is well balanced (i.e. similar proportion of samples per class), selecting classes

at random would have an expected accuracy of 5%. GloVe achieves the highest

accuracy by a significant margin, with the Feature Vectors performing substantially

worse than the rest of the models. Word2Vec and HellingerPCA obtain comparable

accuracies in the task (within error bounds).

To gauge the effect of the vocabulary size on model performance, a Word2Vec

model with the original vocabulary of 3 million tokens is evaluated on the WMD

kNN document classification task. The results in table 3.7 show that the vocabulary

size has a large impact on extrinsic performance, with the model with the larger vo-
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Table 3.6: WMD kNN document classification accuracies on the 20 Newsgroups dataset.
*Due to the computational cost of calculating distances for high-dimensional
vectors, the results for the feature vectors were calculated on a subset of 2,500
out of the 11,314 articles from the 20 Newsgroups dataset used for the rest of
the models.

Model Accuracy
Word2Vec 62.75% (± 0.89)
GloVe 66.78% (± 0.87)
HellingerPCA 61.79% (± 0.90)
Feature Vectors* 40.16% (± 1.92)

Table 3.7: WMD kNN document classification results on the 20 Newsgroups dataset -
Word2Vec vocabulary comparison (3M vs 45K words)

Model Accuracy
Word2Vec (3M words) 79.62% (± 0.74)
Word2Vec voc5 ( 45K words) 62.75% (± 0.89)

cabulary achieving considerably higher accuracies (∼17% increase) than the same

model with a reduced vocabulary. The large effect observed after restricting the

vocabulary on the performance of pre-trained Word2Vec embeddings points at the

informational value of rare words. As discussed in section 2.1.3, rare words can

provide information that is especially useful in tasks such as the document classifi-

cation task on which these results are reported. Therefore, pruning these rare words

can be detrimental to a model’s performance on these tasks. To prevent the pres-

ence or absence of rare words from dominating the comparisons between the models

presented in this thesis, model performance will be interpreted in terms of relative

performance where all word embedding models restricted to the same vocabulary.

Similarity-Distance Correlation results are presented in tables 3.8 and 3.9 for co-

sine and Euclidean distances, respectively. A correlation score that is closer to zero

indicates a weaker correlation, which in this task is interpreted as a poor capacity

to couple semantic similarity with geometric distance in a model’s representation

space. Larger negative values imply an inverse relation between the similarity score

and the geometric distance between word representations, which is what these rep-
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resentations are expected to capture, i.e. more similar words get represented closely.

These results show the inconsistencies between word representation evaluation

metrics. In contrast with the extrinsic evaluation, the GloVe model performs worse

than Word2Vec in every similarity-distance correlation dataset. This difference in

performance between GloVe and Word2Vec is even more apparent when looking at

the Euclidean distance scores in table 3.9.

Inconsistencies in correlation scores are most evident on the HellingerPCA

model, which obtains the strongest correlation score for WordSim353-Sim with co-

sine distance, but performs significantly worse than GloVe and Word2Vec on that

same dataset when measured with Euclidean distances. Even though Feature Vec-

tors are once again the worst performing in general, they do manage to outperform

HellingerPCA on both SimLex-999 scores (cosine and Euclidean), and outperform

HellingerPCA and GloVe on SimVerb-3500 with Euclidean distance, despite ob-

taining the weakest score on SimVerb-3500 with cosine distance. Unlike all other

models, which get better scores when calculating Euclidean distances, Hellinger-

PCA obtains weaker scores on Euclidean than on cosine distance, but also seems to

be the least affected by the change in distance metric. Some of the differences in the

results for Euclidean vs. cosine distances can potentially bear some relation with

the shape of the training objective of the different word embedding models being

compared. The dot products used in the Word2Vec and GloVe objective functions

are more closely related to the cosine distance than the Euclidean distance, while

the square root of the squared elementwise difference in the Hellinger distance is

more reminiscent of the Euclidean distance. However, this apparent “closeness” be-

tween the distance metric being used for the evaluation and the objective function

seems to be inversely proportional to the scores observed, where dot product models

seem to perform better on Euclidean distances and the Hellinger model appears to

achieve better scores when using cosine distance. A more thorough investigation,

which falls outside the scope of this research, is required to more fully understand

these differences.

Word co-occurrence models (Word2Vec, GloVe, and HellingerPCA) exhibit
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Table 3.8: Similarity-distance correlation results with cosine distance

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.5807 -0.4200 -0.3241 -0.2490
GloVe -0.5803 -0.3618 -0.3252 -0.1930
HellingerPCA -0.6070 -0.1755 -0.1729 -0.1325
Feature Vectors -0.2277 -0.1600 -0.1969 -0.1219

Table 3.9: Similarity-distance correlation results with Euclidean distance

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.7706 -0.6150 -0.4427 -0.3565
GloVe -0.6865 -0.5657 -0.3708 -0.2274
HellingerPCA -0.5932 -0.1740 -0.1635 -0.1297
Feature Vectors -0.4737 -0.1541 -0.2911 -0.2503

a similar trend in their performance across the different datasets: WordSim353-

Sim scores are the highest by a large margin, followed by WordSim353-Rel, then

SimLex-999, and SimVerb-3500 obtaining significantly worse correlation scores.

Feature Vectors differ from this trend in that they perform better on SimLex-999

than they do on WordSim353-Rel.

Word Pair Distance Distributions are shown in figure 3.3 for cosine distances for

random, contextual, and synonym word pairs, where the white dot represents the

mean of the distribution. For reference, means that are closer to zero indicate that

word pairs in that group are, on average, represented closer together. The expecta-

tion is that word representation models that encode substantial semantic information

will display larger distances in the random word pairs than in contextual and/or syn-

onym word pairs. The distributions of the Word2Vec and GloVe models exhibit a

pattern in line with my intuition that random pairs should be the most spread out

(i.e. largest distances), synonyms should be closest together in representation space,

and contextual pairs should be somewhere in the middle. While HellingerPCA and

Feature Vectors also place synonyms closest together, in both cases the distance

distributions of random pairs have smaller means than the distributions for contex-
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Figure 3.3: Cosine distance distributions between random, contextual, and synonymous
word pair sets

tual pairs. These patterns persist when analysing Euclidean distance distributions,

but given the sensitivity of Euclidean distance to vector norms, it is harder to draw

a clear comparison between models since the different distributions have different

scales.

Analysis

One of the most salient conclusions for these experiments is that, despite having de-

sirable properties like interpretability and the use of invariant linguistic knowledge,

Feature Vectors seem to consistently underperform data-driven word co-occurrence

models across extrinsic and intrinsic evaluation metrics. A possible interpretation

is that the continuum of semantic similarity that is facilitated by the dense vectors

of real numbers used by Word2Vec, GloVe, and HellingerPCA can more easily ac-

commodate the subtleties of real-world language, as opposed to the strictly binary

relations represented by Feature Vectors.

Another possible explanation for the poor performance of Feature Vectors is

that contextual information might be critical in the construction of a well-structured

semantic representation space. The construction of these Feature Vectors does not

involve any source of contextual information, which can also explain why the dis-

tances of contextual word pairs are shown to be placed further apart from each

other than random pairs in figure 3.3. The negative impact on performance of the
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lack of contextual information could also explain why HellingerPCA is the worst

performing word co-occurrence model, since HellingerPCA displays a similar trend

in word pair distance distributions to that of Feature Vectors, where contextual pairs

are placed further apart than random pairs.

These results also seem to suggest that differences in training conditions, such

as the linguistic domain of the training data, the amount of data that a model is

trained on, or the underlying architecture and representation dimensionality, can

have unexpected effects on different aspects of these representations. It is still not

fully understood why a word representation model can outperform another in a set

of tasks, but perform significantly worse in a different task. To understand these dif-

ferences better, training conditions for different models should remain identical, and

different experiments and ablation studies should be performed to measure changes

in performance when varying a single experimental variable.

Additionally, the comparison of vocabulary sizes for the same model highlights

a commonly overlooked fact: that vocabulary sizes must be accounted for when

comparing word representation models. Although it falls out of the scope of this

thesis, a thorough analysis of the effects of vocabulary size is required to more fully

comprehend the theoretical properties of word representation models.

As evidenced in the experiments in this chapter, existing word embedding

models trained on very large datasets such as Word2Vec or GloVe can obtain high

scores across several evaluation metrics. However, each individual model can ex-

hibit a significant variation between the scores obtained in different metrics. Ad-

ditionally, similar models trained on substantially smaller datasets appear to ob-

tain significantly lower scores, even when using similar architectures and training

regimes (see Chapter 4). In this research, I hypothesise that by incorporating lin-

guistic knowledge into the learning of word embeddings, models can improve their

performance on intrinsic and extrinsic evaluation metrics, as well as reduce the vari-

ability in the results obtained. My expectation is that, by making certain linguistic

relations more explicit during training, even models trained with relatively small

datasets can learn high quality word embeddings. This may have benefits when
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data is less readily available, such as in specialised or technical domains or low-

resource languages. However, identification of, and evaluation with, data from such

domains is outside the scope of this thesis.



Chapter 4

Knowledge-Augmented Word

Embeddings

A language is not just words. It’s a culture, a tradition, a unification of a

community, a whole history that creates what a community is. It’s all

embodied in a language.

Noam Chomsky, We Still Live Here: Âs Nutayuneân

Pre-trained word embeddings have become a pervasive input representation

strategy in NLP pipelines. Among the most widely used word embedding models

are those trained on large corpora of unannotated text using word co-occurrence

statistics, such as the Word2Vec (Mikolov et al., 2013b) and GloVe (Pennington

et al., 2014) models. Word co-occurrence models1 aim to learn vector representa-

tions of words such that proximity between two vectors is reflective of the semantic

similarity between the words these vectors represent. The expectation of these mod-

els is that semantically similar words, such as synonyms, get represented as nearby

points in vector space, while the representations of unrelated words fall outside of

each other’s geometric vicinity.

One of the main advantages of word co-occurrence models lies in the efficient

and unsupervised nature of their training process, which makes it possible to train

these models on very large datasets in a reasonable amount of time and with little to

1This family of models is also described by Turney (2010) as vector space models of word-
context.
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no manual intervention (e.g. no need for human-provided annotations). The quality

of the learned embeddings is reportedly determined by the size and linguistic di-

versity of the text corpus used to train them, since word embeddings can only learn

from the statistical information they see during training. These embeddings will

therefore be unable to effectively capture information about linguistic style or usage

that is not present, or frequent, in the training data. For example, word embeddings

that are trained on news articles will lack information on the linguistic patterns and

specialised language that occur in scientific publications, and vice versa.

Word embeddings that capture more diverse uses of language can, in princi-

ple, be used more effectively across NLP tasks and linguistic domains. Linguistic

knowledge can be exploited as a source of invariance to reduce the distance be-

tween linguistic domains. Approaches that seek to increase the transferability of

word embeddings by incorporating linguistic knowledge into statistical representa-

tion learning processes have recently become a topic of great interest (Bian et al.,

2014; Faruqui et al., 2015; Fried and Duh, 2015). These approaches, however, face

an ensuing trade-off between preserving the distributional information and incorpo-

rating external knowledge. In this chapter, I propose knowledge-augmented dis-

tributional learning, an approach that addresses this tradeoff by injecting linguis-

tic knowledge into the statistical learning of word embeddings through a synthetic

text data augmentation regime that is tailored to fit the statistical learning objec-

tive. This data augmentation approach is able to incorporate external knowledge

while retaining the distributional information of the original data. The knowledge-

augmentation approach presented in this chapter focuses exclusively on those lin-

guistic relations that are considered invariant according to the definition provided

by Keenan and Stabler (2010), i.e. those those relations which preserve the se-

mantic structure. In particular, the experiments carried out in this chapter focus

on synonyms, since they represent a linguistic relation that preserves semantic and

functional role by definition. The embeddings learned under this new knowledge-

augmented paradigm capture semantic information from real language data, while

at the same time enforcing lexical relations that are invariant across linguistic styles,
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but might not be fully represented in the training data.

4.1 Related Work
Despite the most recent shift towards Transformer and RNN language models for

pre-trained text embeddings (as described in chapter 3), word co-occurrence models

are still widely used in NLP pipelines for NLI (Kim et al., 2017), machine trans-

lation (McCann et al., 2017), paraphrase generation (Egonmwan and Chali, 2019),

text classification (Wu et al., 2018; Wang et al., 2018c; Cheng et al., 2018), among

others. The success of word embedding models like Word2Vec (Mikolov et al.,

2013b) and GloVe (Pennington et al., 2014) has prompted a large body of follow-

up research that attempts to understand the informational characteristics of these

models, as well as their limitations and potential ways to overcome them. The

knowledge-augmented distributional learning of word embeddings proposed in this

chapter lies at the intersection of two research avenues: knowledge injection into

word embeddings, and textual data augmentation.

4.1.1 Related Work on Knowledge Injection

This family of approaches incorporates information from external human-

constructed knowledge bases into a statistical learning process. The knowledge-

augmented distributional learning technique I propose in this chapter is related to

this family in that it incorporates external sources of linguistic knowledge into the

training objective. The existing approaches to integrate knowledge into the distri-

butional learning of word embeddings can be broadly categorised into two main

families:

Semantic Specialisation 2 Given a set of pre-trained word embeddings, this ap-

proach transforms (or fine-tunes3) the embeddings to reflect specific relations ex-

tracted from a knowledge base or ontology. The transformations performed on these

embeddings are commonly constrained to prevent catastrophic forgetting (Good-

2Term taken from Mrkšić et al. (2017)
3This family of approaches has also been called model fine-tuning (Vulić et al., 2018), however

this term might be confused with the concept of fine-tuning used in the BERT models (Devlin et al.,
2018), where the model learns a general-purpose text embedding which is subsequently specialised
to solve a specific NLP task.
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fellow et al., 2015), a phenomenon whereby subsequent training of a model re-

sults in washing away the distributional information contained in the original em-

beddings. Faruqui et al. (2015) first proposed the retrofitting post-processing ap-

proach, which pulls pre-trained vectors closer together in embedding space if their

corresponding words appear in a relationship in the knowledge base, while min-

imising the distance they move from their original position. Mrkšic et al. (2016)

and Mrkšić et al. (2017) build upon the ideas from retrofitting with a framework

they call Attract-Repel, where they use synonyms extracted from a knowledge base

to bring word embeddings closer together (attract), but they also introduce antonym

relations which are used to push word embeddings apart (repel), all of this while

maintaining a vector space preservation (regularisation) term. More recent work

by Vulić and Mrkšic (2018) extends the Attract-Repel framework to consider lex-

ical entailment, or hyponymy-hypernymy (is-a) relations, which unlike synonymy

and antonymy is an asymmetric relation that is enforced by setting a hierarchy over

word vector norms (e.g. the norm for the more general concept of animal is

larger than the norm of the vector for dog, which in turn is larger than the norm

of terrier). Vulić et al. (2018) continue this line of work by learning a general

mapping function from an Attract-Repel specialisation model in order to apply the

transformations learned from the “seen subspace” to unseen words (i.e. not ap-

pearing in the knowledge base). Kamath et al. (2019) and Glavaš and Vulić (2019)

apply this idea of a general specialisation function to the lexical entailment (is-

a) relation. Similarly to these fine-tuning approaches, the knowledge-augmented

approach I propose extracts semantic relationships, specifically synonyms, from a

lexical knowledge base and enforces said relationships in the learned word embed-

dings. Nevertheless, in my approach this enforcing occurs during the training phase,

and not as a post-training stage.

Knowledge-Constrained Objective Functions This approach consists of incorpo-

rating an additional (regularisation) term to an existing training objective, where

the added term enforces specific semantic relationships gathered from a knowledge

base. The prototypical knowledge-constrained function takes the form:
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L = Ldistributional +λLknowledge

where L is the total loss term, Ldistributional is a distributional loss term, and

Lknowledge is a loss term dependent on the incorporation of external knowledge. The

trade-off between the distributional information and external knowledge is managed

through a weighting coefficient λ that controls the relative importance of the loss

terms. Yu and Dredze (2014) use the CBOW Word2Vec training objective (Mikolov

et al., 2013a) as the distributional loss and define an additional relation constrain

objective as their knowledge loss, which is defined in terms of the probability that

two words are related with respect to a lexical resource. Bian et al. (2014) also use

the CBOW objective and incorporate auxiliary objectives based on a word’s syn-

tactic and semantic information such that, given a context word, the model needs to

learn to predict the focus word as well as its synonyms, POS tags, categories, hy-

ponyms, etc. Fried and Duh (2015) propose a loss function that combines the neural

language model by Collobert et al. (2011) with a relational distance term which is

defined as the distance between words in a knowledge base, where the embeddings

for the distributional and knowledge-constrained objectives can vary independently

but are forced to remain minimally different by an additional Lagrangian penalty

term. Liu et al. (2015) combine a Skip-gram objective with a penalty term based on

a set of ranked semantic inequalities, which are cast in terms of a triplet of word em-

beddings wi,w j,wk and a similarity function such that sim(wi,w j) > sim(wi,wk)

if the words i and j are more closely related (e.g. synonyms) than words i and

k. Nguyen et al. (2017) learn hierarchical embeddings by combining the Skip-gram

objective with two terms that minimise the distance between embeddings for pairs

of words in a hypernym relationship. Jiang et al. (2018) use the Skip-gram objec-

tive for both the distributional and knowledge-constrained terms, where the negative

samples in the knowledge-constrained objective are not randomly sampled from the

text corpus but are rather selected in terms of their “word reading difficulty” score

(from a pre-specified knowledge graph), where selecting pairs that are deemed to

have significantly different scores enforces words of similar reading difficulties to
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have similar embeddings. Lauscher et al. (2019) seek to provide information on

“true semantic similarity” to the BERT model by introducing an additional lexical

relation prediction term to BERT’s two language model objectives, which incorpo-

rates synonym and hyponym pairs as lexical constraints on the model. The addition

of synthetically constructed synonyms in my knowledge-augmentation approach

can be thought of as a knowledge-dependent term Lknowledge, and the augmentation

ratio plays a similar role to the knowledge weighting coefficient λ . The main differ-

ence between these models and my approach, however, is that my incorporation of

linguistic knowledge is achieved by modifying the training data itself, while leaving

the original Skip-gram objective unchanged. The intention behind my approach is

to artificially surface these linguistic patterns in the data without having to explicitly

modify the probabilistic modelling objective.

4.1.2 Related Work on Data Augmentation

The term “data augmentation” was initially used in the field of computer vision,

where it remains a widely used technique (Ciresan et al., 2010; Krizhevsky et al.,

2012; Wong et al., 2016). In general terms, it refers to the application of some

label-preserving transformation to the data such as rotations (Rowley et al., 1998),

image scaling (Wang et al., 2018b), or elastic distortions (Simard et al., 2003) (i.e.

parameterised deformations of an image to emulate oscillations of hand muscles

in handwritten digits). These transformations seek to increase the size and diver-

sity of the training data while preserving its semantic content. The main goal of

data augmentation is to improve the robustness of a model and help prevent overfit-

ting (Simard et al., 2003). Due to the syntactic and semantic rules of composition

that accompany language generation, the concept of a “label-preserving transfor-

mation” as a parametric function is not clearly defined for text data.

Given that text data augmentation strategies should abide by the intrinsic rules

of language and accommodate the semantic information of its constituting ele-

ments (e.g. word meanings, n-grams, phrasal verbs, etc.), one of the most com-

mon augmentation strategies consists of performing word or phrase replacement

operations. These replacements are typically guided by a lexical resource (e.g.
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dictionaries, paraphrase datasets, lexical knowledge base, etc.). Synonym swap-

ping is a commonly used replacement technique, since replacing a word with its

synonym usually preserves the original meaning of the text. This semantic in-

variance is a fundamental property of data augmentation, as mentioned by Zhang

et al. (2016). Synonym-augmentation has been exploited by Zhang et al. (2016)

and Coulombe (2018) to produce more label-preserving examples for text classi-

fication tasks. The contextual augmentation proposed by Kobayashi (2018) ex-

tends synonym replacement to the more general idea of paradigmatic relations (e.g.

actors and performances are not synonyms, but they can be substituted in

the context of the phrase the actors/performances were fantastic4),

where words are replaced by a predicted word from an RNN language model. The

type of knowledge-augmentation technique I use for the experiments in this chapter

is, in essence, a synonym replacement strategy, with the caveat that this replace-

ment is performed not on raw text, but directly on Skip-gram word pairs. This aims

to preserve the Skip-gram modelling process and minimise the noise introduced by

this augmentation strategy.

Numerous other augmentation techniques for text data have been devel-

oped in recent years. These techniques are not as closely related to my

knowledge-augmentation approach, but are included here for the sake of complete-

ness. Coulombe (2018) proposes two methods of text data augmentation through

paraphrasing based on regular expressions and syntax tree transformations. In the

context of question answering, Wei Yu et al. (2018) augment the size of their ques-

tion answering dataset through back-translation, a technique developed by Sennrich

et al. (2016a) which produces paraphrases by translating an input text into a pivot

language and subsequently translating it back to the original language. Dong et al.

(2017) also apply back-translation paraphrasing to augment the data in a question

answering task, together with two other paraphrasing methods: lexical and phrasal

paraphrases extracted from the Paraphrase Database (PPDB) (Pavlick et al., 2015),

and harvesting paraphrase rules (e.g. mapping the average size of __

4Example taken from Kobayashi (2018).
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to what be __ average size) from a corpus of question clusters. Raiman

and Miller (2017) propose a TypeSwap augmentation process which adds wrong

question answering examples by replacing named entities with other entities of the

same type, with which they aim to improve the model’s ability to prune wrong an-

swers. Xie et al. (2019) augment a text classification dataset with back-translation

paraphrasing and a word replacing regime informed by a word’s informativeness in

terms of its term frequency-inverse document frequency score. A less common ap-

proach in text data augmentation is the addition of noise as described by Coulombe

(2018), which amounts to modifying letters of words, changing the case of a letter,

adding or removing punctuation, or adding frequently misspelled words.

4.1.3 Positioning

The knowledge augmentation approach I propose in this chapter combines the two

families of approaches presented in this section, i.e. knowledge injection and data

augmentation, and aims to exploit the main advantages of each. Through a process

of linguistically-informed data augmentation, namely augmenting the text data used

to train a word embedding model through a process of synonym replacement, my

approach seeks to exploit the knowledge contained in linguistic knowledge bases

in a data augmentation framework that mostly preserves word distributions. This

approach constitutes an attempt to further narrow the gap between knowledge-based

representations and distributional learning.

4.2 Background
The distributional hypothesis (Harris, 1954) states that the meaning of a word can

be inferred from the context5 in which it appears. Harris (1954) defines the distri-

butional regularities of a word in terms of the words appearing in its context, where

the “difference of meaning correlates with difference of distribution”. This postu-

lates that words that are semantically similar will occur in similar contexts, an idea

more commonly associated with the dictum of Firth: “You shall know a word by the

5Harris (1954) talks about a word’s environment or neighbourhood, i.e. the set of words appear-
ing directly before and after that word. However, in line with more recent work, I will refer to these
concepts as context for the remainder of this thesis.
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company it keeps!” (Firth, 1962). Word co-occurrence models exploit this idea to

learn vector representations of words by employing an abstraction mechanism6 that

maps word co-occurrence statistics into a vector space, such that words that have

similar contexts are assigned vector representations that are close to each other.

The Word2Vec models proposed by Mikolov et al. (2013b) are two of the most

widely used word co-occurrence language models in NLP. The experiments in this

chapter explore the effects of my proposed knowledge-augmentation approach on

the Skip-gram model, a variant of Word2Vec that learns word embeddings by op-

timising a probabilistic objective which, given a focus word f , attempts to predict

its context words c ∈ C , where context C is defined as a context window consist-

ing of the C words appearing directly before and after the focus word. The Skip-

gram language model aims to maximise an objective7 that approximates the average

probability p(c | f ) over all focus-context word pairs in a dataset D , equivalent to

maximising the following quantity:

J = ∑
( f ,c)∈D

log p(c | f ) (4.1)

where D refers to the dataset containing all preprocessed focus-context word pairs.

For a sample sentence For many of the farmers involved, the

news is devastating., the context window for a context size of C = 3 when

farmers is the focus word looks as follows:

For many of the︸ ︷︷ ︸
Left context

focus word︷ ︸︸ ︷
farmers involved, the news︸ ︷︷ ︸

Right context

is devastating.

where this example would contribute the following word pairs to the Skip-gram

objective:

6Term taken from Boleda (2020).
7Mikolov et al. (2013b) describe the Skip-gram model’s probabilistic objective as

1
|F | ∑ f∈F ∑c∈C log p(c | f ), a near average (the normalising term 1

|F | should be 1
|F |×|C | for this

to be an average) log probability of context words given a focus word. Since maximising this term
is proportional to maximising p(c | f ), the latter is used in this discussion for ease of exposition.
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J = . . . log p(many |farmers)+ log p(of |farmers)+ log p(the |farmers) . . .

Due to the properties of discrete distributions, generalising this language model

to previously unseen data can become complex and require large numbers of param-

eters to provide accurate estimates, as described by Bengio et al. (2003). A possible

alternative is to use neural networks as smoothing functions, which can simplify the

estimation of these probabilities by distributing probability mass across neighbour-

hoods of similar words. Neural (probabilistic) language models, as first proposed

by Bengio et al. (2003), are an approach to language modelling that employ neural

networks to learn distributed representations of the words in a sequence. The prob-

abilistic model is then cast in terms of these learned representations. Bengio et al.

(2003) describe this for an n-gram language model:

p̂(wt |wt−1, . . . ,wt−N) = f (wt ,M(wt−1), . . . ,M(wt−N)) (4.2)

where M : RV 7→ RM is an embedding function that maps the one-hot encoding of

a word wi ∈ V (of dimensionality V = |V |) to a dense vector of dimensionality

M, and f is a function that produces a probability distribution over the words in a

vocabulary V .

Skip-gram is a special case of a neural language model that sets its predic-

tion task p(c | f ) as a log-bilinear language model, meaning that it defines the

probability of a context word given a focus word in terms of two interacting lin-

ear units. Mikolov et al. (2013b) term these input, u, and output, v, embeddings,

which can be thought of as single rows of the corresponding embedding matri-

ces U,V ∈ RV×M, such that the input and output embeddings for a word w are

uw = [U]w and vw = [V]w, respectively. The resulting probability distribution for a

context word c given a focus word f is therefore:

p(c | f ) =
exp(v >c u f )

∑v∈V exp(v >v u f )
(4.3)
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where v is a word from vocabulary V .

The intended interaction between these two embedding units is that, given two

words, the dot product between the input embedding of the first and the output

embedding of the second should be large if they frequently appear in the same

context, and small if they do not usually co-occur. The normalisation term then

ensures that this interaction has the characteristics of a probability mass function:

0≤ p(c | f )≤ 1

∑
v∈V

p(v | f ) = 1

An issue with this setup is that, for every prediction made by the model, the

normalisation constant or partition function ∑v∈V exp(v >v u f ) requires a sum over

all elements in the vocabulary. Since vocabularies can consist of tens or hundreds

of thousands, or even millions of words, this operation can become prohibitively

expensive to compute. To produce an efficient estimate of this normalisation con-

stant, Mikolov et al. (2013b) implement a concept they call negative sampling,

which is closely related to the idea of noise-contrastive estimation (NCE) pro-

posed by Gutmann and Hyvärinen (2010).

The main idea behind NCE is that the normalisation constant can be approx-

imated by learning to distinguish the data from some noise signal. Given an un-

normalised probability density function p0
D(·;α), the normalised version of the

log of that distribution can be defined as log pD(·;α) = log p0
D(·;α) + c, where

c =− logZ(α) and Z(α) is the normalisation constant. The parameters for the nor-

malised distribution Θ = {α,c} are obtained by maximising the following objective

function over the full set of observations in the dataset:

J(Θ) =
1

2|D | ∑
x∈D ,s∼ps(·)

logσ [G(x;Θ)]+ log(1−σ [G(s;Θ)]) (4.4)

where x is a sample from the dataset D , s is a noise sample from the noise dis-

tribution ps(·), σ(x) = 1/(1+ exp(−x)) is the sigmoid function, and G(m;Θ) =
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log pD(m;Θ)− log ps(m;Θ). To maximise this objective, G(x;Θ) should be large

and G(s;Θ) should be small, which happens when there is a high probability

that x comes from the data ( pD (x;Θ)
ps(x;Θ) > 1) and s comes from the noise distribution

( pD (s;Θ)
ps(s;Θ) < 1).

As described by Mikolov et al. (2013b), the aim of the Skip-gram model is not

to closely model the softmax probabilities, but rather to learn high-quality vector

representations, which justifies using a simplified version of the NCE as the normal-

isation constant estimator. This simplified estimator, which Mikolov et al. (2013b)

call negative sampling, uses K negative samples8 to contrast between focus-context

word pairs that come from the dataset and negative word pairs which are artificially

constructed. This idea comes from the approach by Mnih and Teh (2012) and Mnih

and Kavukcuoglu (2013) where noise samples are K times more frequent than data

samples. Negative word pairs are made up of the focus word provided as input and

a word r that is randomly sampled from a noise distribution ps(·). Mikolov et al.

(2013b) set the noise distribution used for the negative samples to be the unigram

distribution puni(·) (i.e. the frequency of a word in the dataset) raised to the 3/4th

power, ps(·) = puni(·)3/4. The resulting negative sampling objective for a single

focus-context word pair ( f ,c) is:

JNEG( f ,c) = logσ(v >c u f )+
K

∑
i=1

Er∼ps(·)

[
logσ(−v >r u f )

]
(4.5)

In line with the distributional hypothesis, this objective enforces the learning

of word embeddings that place words with similar contexts in nearby regions of

the learned embedding space. The distributional learning process of the Skip-gram

model fits into the structuralist tradition of linguistics, which posits that a word’s

meaning is determined by its relations with other words within a lexical field or syn-

tactic structure (Gasparri and Marconi, 2019). However, the number and linguistic

diversity of said relations can be limited in training datasets. Since Skip-gram word

embeddings are learned entirely on distributional information, their quality depends

8The choice of K is a hyperparameter, where a larger value reportedly results in a more accurate
estimate at the expense of longer computational times (Gutmann and Hyvarinen, 2012).
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on the contexts they observe for every particular word in the training data, which

can make the learned embeddings domain specific, meaning that they only capture

the regularities of a limited use of language.

In linguistics, the relational approach to lexical semantics offers a possible so-

lution to the problem of domain dependence. Relational semantics is a sub-field

of structuralist semantics9 that describes word meaning in terms of a structured hi-

erarchical network of semantic relations, otherwise known as a lexical knowledge

base. The relations between words in these lexical knowledge bases are hard-coded

from agreed upon word senses. The rigidity of these networks implies that they

contain little to no information about a word’s stylistic usage, yet they do provide

a fixed set of relations that hold regardless of the linguistic domain from which

a particular word is extracted. An instance of one such network is the WordNet

knowledge base (George A. Miller, 1995), which is used for the experiments in this

chapter. WordNet represents words as tuples consisting of a form (i.e. the string

for the word), and a sense (i.e. a distinct meaning), where the connections between

words are given by linguistic relations. For the relation of polysemy, a single form

can take two or more senses, while in synonymy two or more forms share a sin-

gle sense. Other relations in WordNet include hyponymy (and hypernymy) which

are hierarchical broader-narrower (or supertype-subtype) relations, and meronymy

(and holonymy) which are part-of relations, among others. It is important to note

that WordNet, as well as other existing lexical knowledge bases, is created and

maintained by humans and is therefore prone to contain errors or incomplete infor-

mation, where very rare, specialised, or neologistic words might not be correctly

documented or not appear at all.

In the context of training word embeddings, a combination of the distributional

and relational approaches has the potential to produce embeddings that capture in-

formation about a word’s usage as well as semantic relations for that word that

transcend the specific linguistic style of the training corpus. This process can poten-

tially produce more transferable word embeddings that are useful across linguistic

9According to the taxonomy provided by (Gasparri and Marconi, 2019).
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domains and applications.

The integration of the distributional and relational approaches, however, im-

plies a trade-off between preserving the distributional information and incorporating

domain-invariant linguistic relations. The knowledge-augmented distributional

learning approach I propose in this chapter aims to minimise this ensuing infor-

mational trade-off by incorporating information about semantic relations between

words extracted from a knowledge base into the Skip-gram’s distributional learning

process. The main idea behind this approach is that, by following the assumption

made by Harris (1954) that “difference of meaning correlates with difference of dis-

tribution”, words that share a meaning or sense should also have similar contex-

tual distributions. For instance, a training corpus sourced from a small selection of

linguistic domains might not contain enough examples of neglect to robustly pre-

dict its context, i.e. p(· |neglect), but the word ignore might appear frequently

enough in this corpus to accurately model its context, p(· |ignore). Since the

words neglect and ignore have shared senses (i.e. are related by synonymy) in

a lexical knowledge base like WordNet, the contextual information for ignore can

be used to complement the contextual modelling of neglect under the assump-

tion that the contextual distributions for both words should be similar. In this way,

this corpus can be augmented with the relations sourced from a lexical knowledge

base to explicitly enforce the semantic similarity of that pair of words. Augmenta-

tion from lexical knowledge bases can provide information for very rare words that

might not be sufficiently represented even in large corpora. Additionally, augmen-

tation will not boost the relevance of frequent misspellings, which could come as a

byproduct of increasing the size of the training corpus.

A simple augmentation procedure for the sentence:

We ignore the majority of sounds present in the world.

would replace ignore with its synonym neglect and add the resulting sentence

to the dataset:

We neglect the majority of sounds present in the world.
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This, however, introduces a series of artifacts to the Skip-gram learning al-

gorithm that might unnecessarily increase the noise in the augmented dataset and

bias the data’s co-occurrence statistics. One issue with this procedure is that

it duplicates word pairs that are not related to the augmentation process, e.g.

p(sounds |present) for focus word present. Another unwanted artifact is

that, in the new sentence, the substituted word now appears in the context of other

words that it did not appear with in the original dataset, e.g. when the focus word

is majority, neglect becomes part of its context in the new sentence. This

is an issue because the aim of the augmentation process is to bring the contextual

distribution of the two synonyms, e.g. p(· |neglect) and p(· |ignore), closer

together without needlessly modifying the context distribution of other words, e.g.

p(· |majority). To minimise the noisiness of the augmentation procedure, I only

replace words after the Skip-gram word pairs have been constructed, and the sub-

stition is only performed on focus words. For the example sentence We ignore

the majority of sounds present in the world., a context size of

C = 3, and focus word ignore, the resulting word pairs would be:

Original pairs

(ignore, We)

(ignore, the)

(ignore, majority)

(ignore, of)

Augmented pairs

(neglect, We)

(neglect, the)

(neglect, majority)

(neglect, of)

Word pairs where the focus word is not augmented with a synonym do not

generate any additional word pairs. This augmentation mechanism is designed to

exploit the assumption that semantically similar words should have similar con-

textual distributions. Defining a contextual distribution as the probability that a
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context word c appears in the context of a word w, such that p(c |w), this assump-

tion that synonyms, like ignore and neglect, should have similar contextual

distributions can be described as p(w |neglect)≈ p(w |ignore) for any w. The

augmentation process I propose here seeks to produce an augmented contextual dis-

tribution, e.g. p̃(· |neglect), that is closer to the contextual distribution of a syn-

onymous word, which can be expressed in terms of Kullback-Leibler divergences,

KL[p̃(· |neglect)||p(· |ignore)]< KL[p(· |neglect)||p(· |neglect)].

With respect to the Skip-gram model, the decision to only replace focus words

forces the input embeddings of the synonym uneglect and source words uignore to

come closer together in embedding space, while it avoids the noisy interactions that

would come with modifying the output embedding of the synonym vneglect. For

instance, following equation 4.3, the objective for the augmented word pair made up

of neglect as the focus and majority as the context word would be as follows:

p(majority |neglect) =
exp(v >majorityuneglect)
∑v∈V exp(v >v uneglect)

(4.6)

Even though this augmentation regime attempts to preserve the distribu-

tional information that is captured during the learning process, augmenting the

data introduces a certain level of noise by adding examples that do not natu-

rally occur. The synonym replacement scheme is also inherently noisy, since

for a word with multiple synonyms there is no clear way to automatically de-

cide which synonym is most appropriate. For example, given the sentence We

ignore the majority of sounds present in the world., pos-

sible synonym replacements for the word world, include ...sounds present

in the globe and ...sounds present in the existence, where the

second example would very rarely occur in the real world. One more consideration

is that, while the context distributions for synonyms should in theory be similar,

making them too similar can wash away semantic and stylistic information about

the words being represented. For instance, while world and globe can share

senses, they can appear in different contexts and carry different connotations. The

experiments in this chapter explore different ratios of augmented to natural (i.e.
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coming from the original dataset) to limit the amount of noise that the augmenta-

tion regime contributes to the distributional learning process.

As an additional measure to preserve distributional information when train-

ing word embeddings on an augmented dataset, I propose an embedding space

partitioning technique, which ensures that the augmentation regime only affects a

subspace of the full embedding space. This partitioning technique consists of con-

straining the error propagation of augmented examples to only a subset of all the

available dimensions of the input embedding space. In practice, this is achieved

by replacing the gradient of the Skip-gram negative sampling objective with re-

spect to the input embedding for a synonym, ∇usynJNEG, with a modified gradient

∇̃usynJNEG where the gradients calculated during back-propagation of the unaug-

mented dimensions are set to zero, while the gradients of unaugmented word pairs

remain unchanged, ∇uwordJNEG. The modified gradient is shown in the following

equation:

∇̃usynJNEG =



∂JNEG
∂ [usyn]1
∂JNEG

∂ [usyn]2
...

∂JNEG
∂ [usyn]B

∂JNEG
∂ [usyn]B+1

= 0
∂JNEG

∂ [usyn]B+2
= 0

...
∂JNEG

∂ [usyn]M
= 0


where [usyn]i is the ith dimension of the input embedding, B is the dimensionality

of the augmented subspace, and the augmented dimensions are coloured in green.

Embedding space partitioning is explored as an addition to the knowledge-

augmented distributional learning of word embeddings. This approach seeks to re-

tain more distributional information in the model by localising the effect of the data

augmentation, such that the dimensions of the learned embedding that are unaf-

fected by the augmentation will only contain information about the original dataset.
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The experiments in this chapter analyse the effects of this informational constraint

by varying the dimensionality of the augmented subspace, i.e. the value of B.

4.3 Learning Algorithm
This section delineates the general experimental framework used to train and eval-

uate the knowledge-augmented word embedding models proposed in this chapter.

4.3.1 Task, dataset, and architecture definition

While the overarching goal of these experiments is to learn distributed word embed-

dings, the main learning task is based on a Skip-gram language model (Mikolov

et al., 2013a), where the aim is to predict a context word c ∈ C for a given focus

word f with context window C :

p(c | f ) (4.7)

The dataset used for this task is the BNC dataset described in section 3.4.1.

Due to computational constraints, the experiments in this chapter are carried out on

a subset of 10% of the sentences randomly sampled from the full dataset (the subset

data is identical in all experiments). The construction of this subset is also detailed

in section 3.4.1. The architecture for these experiments is the Skip-gram model

with negative sampling as described by Mikolov et al. (2013b).

4.3.2 Preprocessing

The Skip-gram training regime works with word pairs, which requires the raw

dataset to be fully tokenised up to the word-level. Aside from basic tokenisation, I

perform a series of additional steps to shuffle the data, reduce variability among the

tokens (e.g. removing uppercases), and remove unnecessary tokens (e.g. punctua-

tion marks). The resulting preprocessing pipeline consists of the following steps:

1. Concatenate all BNC documents into a single continuous raw text corpus

2. Tokenise sentences following BNC XML tags

3. Remove XML information since BNC tags are not used in these experiments
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4. Shuffle sentences (since the BNC data is organised into topics, shuffling en-

sures that this training corpus has interspersed sentences from all topics) and

retain a subset of 10% of the sentences in the data (601,818 sentences)

5. Tokenisation and POS tagging of words for every sentence in the dataset

using the spaCy NLP library (Honnibal and Montani, 2017), where POS tags

will be used to detect punctuation marks and will also inform the data aug-

mentation process (i.e. only certain types of words, like adjectives or verbs,

will be replaced)

6. Convert to lower case to minimise token variations, which helps reduce the

size of the vocabulary by, for instance, mapping Her and her to the same

token

7. Remove punctuation after tokenising and tagging in order to avoid removing

punctuation symbols from acronyms or numbers

8. Convert numeric tokens to a generic format, e.g. 12.45 is converted to

##.##, which is done to preserve the structure of numeric tokens (e.g. dif-

ferentiate between amounts and dates) while reducing their variability, since

storing every numeric token as a distinct token can cause the vocabulary to

grow substantially

9. Prune sentences containing a single word since they have no contextual in-

formation (37,201 sentences removed)

Listing 4.1 shows a sample sentence after preprocessing.

Listing 4.1: Sentence In fact, we ignore the majority of sounds

present in the world. after preprocessing

[

["in", "ADP"],

["fact", "NOUN"],

["we", "PRON"],

["ignore", "VERB"],
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["the", "DET"],

["majority", "NOUN"],

["of", "ADP"],

["sounds", "VERB"],

["present", "ADJ"],

["in", "ADP"],

["the", "DET"],

["world", "NOUN"]

]

4.3.3 Vocabulary construction

The vocabulary used in these experiments is based on the 10% subset of the full

BNC dataset (hereon referred to simply as the dataset) and follows the pruning pro-

cedure described in section 3.4.2 to remove very infrequent words for which there

might not be enough information or which might include misspellings or overly

specific terminology. The previously mentioned pruning uses a frequency thresh-

old of 5, meaning that any word that appears fewer than 5 times in the dataset gets

pruned from the vocabulary. This choice of frequency threshold is motivated by

its reduction of vocabulary size, where the resulting vocabulary is left with 45,769

unique tokens, which amounts to 32.45% of the 141,044 unique tokens in the full

dataset. This reduction in vocabulary is achieved while maintaining an acceptable

coverage over the training data, since the pruned vocabulary covers 98.48% of the

9,879,226 non-distinct tokens in the full dataset. The vocabulary, hereafter denoted

by V , is stored as a table containing the word together with its index, counts, and

normalised frequency.

4.3.4 Datapoint construction

Given a dataset tokenised into sentences, and sentences tokenised into words, where

words are tagged with their POS tags, the next step is to construct Skip-gram word

pairs. These word pairs are constructed by setting a focus word f and fixing a con-

text window of size C around it (i.e. the C words appearing directly before and after
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the focus word). Any word falling within that window is a context word c, and word

pairs are made up of every combination of focus-context words found. So for the

sentence In fact, we ignore the majority of sounds present

in the world., and context size C = 3, the context windows for the (focus)

word ignore look as follows:

In fact, we︸ ︷︷ ︸
Left context

focus word︷ ︸︸ ︷
ignore the majority of︸ ︷︷ ︸

Right context

sounds present...

which produces the following word pairs:

(ignore, In)

(ignore, fact)

(ignore, we)

(ignore, the)

(ignore, majority)

(ignore, of)

These word pairs are added to the Skip-gram dataset. Every datapoint contains the

focus and context words, with their respective POS tags, as well as their source

information: sentence number from the original dataset, position of the focus word

in that sentence, and position of the context word relative to the focus word. The

datapoints for the focus word ignore described above are shown in listing 4.2.

Listing 4.2: Skip-gram dataset

[["focus_word", "context_word", "sent_num", "

focus_index", "ctx_position"],

[["ignore", "VERB"],["in", "ADP"], 5, 3, -3],

[["ignore", "VERB"],["fact", "NOUN"], 5, 3, -2]

,

[["ignore", "VERB"],["we", "PRON"], 5, 3, -1],

[["ignore", "VERB"],["the", "DET"], 5, 3, 1],
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[["ignore", "VERB"],["majority", "NOUN"],5, 3, 2

],

[["ignore", "VERB"],["of", "ADP"], 5, 3, 3],

This process then continues by going through every word in the text, treating

every word as the focus word and sliding the context windows accordingly. In these

experiments, context windows are constrained to the sentence in which the focus

word appears, meaning that there are no inter-sentence context windows:

...ignore the majority of sounds present in︸ ︷︷ ︸
Left context

focus word︷ ︸︸ ︷
the world.︸ ︷︷ ︸

Right context

Since context windows are constrained to be intra-sentential, sentences that

are made up of a single token do not provide any context and are therefore skipped.

For the experiments in this chapter, the context size is kept at a constant value

of C = 5, meaning the maximum context distance for a word pair in the dataset

is either 5 positions before or 5 positions after the focus word. This context size

matches the one reported by Mikolov et al. (2013b) in one of the original Skip-

gram papers. Even though the Skip-gram paper by Mikolov et al. (2013a) reports a

larger context size of C = 10, for these experiments I opted for the smaller context

size since it favours the smaller context windows that naturally occur when context

is constrained to a single sentence.

Mikolov et al. (2013a) argue that context words that appear closer to a focus

word are usually more closely related to the focus word. To reduce the impact

of context words that appear farther away, they propose setting C as the maxi-

mum context size and randomly sampling a context size ψ for every focus word

f , i.e. ψ f ∼U(1,C), where U(a,b) is the discrete uniform distribution over values

in the closed interval [a,b]. For these experiments, I implement a context sam-

pling procedure that achieves a similar result10 by randomly sampling a context

10In both context size sampling techniques, the probability of including a context word c that
is x positions away from a focus word is defined by p(x) = (1+ 1

C )−CDF [U(1,x)], where C is
the maximum context window size, and CDF [U(·)] is the cumulative distribution function of the
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size for every word pair, ψ( f ,c) ∼ U(1,C). If the (absolute) context position of

the context word with respect to the focus word is larger than the sampled con-

text size, the word pair is dropped. From the sample datapoints in listing 4.2, a

sampled context size ψ(ignore,in) = 2 would result in dropping the first datapoint,

while ψ(ignore,fact) = 2 would preserve the second datapoint. Listing 4.3 shows

a context-sampled version of the datapoints from listing 4.2. The justification for

using this context sampling regime, as opposed to that presented in the original

paper by Mikolov et al. (2013a), is that this sampling method can more naturally

accommodate the synonym replacement method that I propose here.

Listing 4.3: Sampled Skip-gram dataset

[["focus_word", "context_word", "sent_num", "

focus_index", "ctx_position"],

[["ignore", "VERB"],["we", "PRON"], 5, 3, -1],

[["ignore", "VERB"],["the", "DET"], 5, 3, 1],

[["ignore", "VERB"],["majority", "NOUN"],5, 3, 2

],

[["ignore", "VERB"],["of", "ADP"], 5, 3, 3],

The synonym augmentation regime occurs after the full Skip-gram dataset

has been constructed and the contexts have been sampled. The first step in this

process consists of selecting viable candidates for replacement, which amounts to

choosing focus words that are tagged as nouns ("NOUN"), adjectives ("ADJ"),

adverbs ("ADV"), or verbs ("VERB"). Every candidate word generates a query to

WordNet to obtain its synset, or set of available synonyms, from which a single syn-

onym is selected. There are different possible synonym selection strategies, such as

weighting by the synonym’s frequency. When applied to the data, the frequency-

weighted synonym selection strategy was seen to select the most frequent synonym

in the majority of cases, which is most likely due to the nature of word frequency

distributions in text, as described by Zipf’s law. Even though this strategy reinforces

the naturally occurring frequencies of words, the synonym augmentation regime is

uniform distribution.
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intended to artificially enforce semantic relations that are not frequently observed in

the data. For this reason, in these experiments I opted for a random selection strat-

egy where all synonyms in the synset are equally likely to be selected. Listing 4.4

shows the synonym replacement process on the context-sampled datapoints from

listing 4.3.

Listing 4.4: Synonym replacement in Skip-gram dataset

[["synonym", "context_word", "sent_num", "focus_index

", "ctx_position", "focus_word"],

["dismiss", ["we", "PRON"], 5, 3, -1, ["

ignore", "VERB"]],

["neglect", ["the", "DET"], 5, 3, 1, ["

ignore", "VERB"]],

["snub", ["majority", "NOUN"],5, 3, 2, ["

ignore", "VERB"]],

["dismiss", ["of", "ADP"], 5, 3, 3, ["

ignore", "VERB"]],

The resulting context-sampled and synonym-replaced datasets are stored in

separate files.

4.3.5 Input representation

In preparation for processing, datapoints are first simplified to only contain focus-

context word pairs, with all other information (e.g. tags, context position, etc.)

being discarded. An example of this is shown in listing 4.5.

Listing 4.5: Skip-gram word pair dataset, the first column corresponds to the focus word,

and the second to the context word.

[["ignore", "we"],

["ignore", "the"],

["ignore", "majority"],

["ignore", "of"],

These word pairs are then numericalised according to the word indices defined
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in the vocabulary file, with out-of-vocabulary words being replaced with the index

of the generic unknown token <unk>. An example of this numericalisation applied

to the dataset in listing 4.5 is provided in listing 4.6.

Listing 4.6: Skip-gram numericalised dataset, the first column corresponds to the focus

word, and the second to the context word.

[[4171, 37],

[4171, 4],

[4171, 1040],

[4171, 5],

This process is carried out for both the context-sampled and the synonym-

replaced datasets. The resulting context-sampled and numericalised datasets are

called training, training-synonyms, and validation.

4.3.6 Dataset split

The tokenised sentences in the preprocessed dataset are shuffled before the dataset

is split into a training set made up of 90% of the sentences in the full dataset,

which amounts to 508,326 sentences, and a validation set containing the remaining

56,291 sentences that make up the other 10% of the dataset. This choice of training-

validation split follows a widely used heuristic and also allows for an efficient use

of training data when working with moderately sized datasets.

4.3.7 Model training

4.3.7.1 Pre-epoch processing

Before training begins, a model’s parameters can be initialised to pre-specified val-

ues. In these experiments, I explore random initialisation for the two input U and

output V embedding matrices, as well as initialising the input embeddings to the

publicly available Skip-gram embeddings which had been pre-trained on the Google

News dataset (one billion words). In this process, which I refer to as Word2Vec

initialisation, any words from the vocabulary that do not appear in the pre-trained

Skip-gram embeddings are initialised to the zero vector 0. Since I was unable to

find pre-trained output Skip-gram embeddings, this Word2Vec initialisation is only
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applied to the input embeddings,

All three datasets, training, training-synonyms, and validation, are shuffled at

the beginning of every epoch. Training is carried out for exactly 10 epochs, so early

stopping checks are omitted. The decision to train for a fixed number of epochs is

part of an attempt to keep experimental conditions fixed across models, and all

models displayed certain degree of convergence after 10 epochs. To speed up com-

putation, data is processed in batches of 20 datapoints, after initial tests showed

that a batch size of 20 provided a significant speedup in training while achieving

good validation performance. A batch is constructed by popping 20 word pairs

from the (shuffled) training and training-synonyms datasets, where the probability

that a word pair in the batch came from the training-synonyms dataset is determined

by the augmentation ratio. Three different augmentation ratios are tested in these

experiments: 12%, 25%, 37%, where, for example, an augmentation ratio of 25%

means that, in expectation, 5 out of the 20 word pairs in a batch will be synonym

replacements. Finally, for every word pair, K = 5 negative samples11 are con-

structed by sampling from the unigram distribution puni raised to the 3/4th power,

as described in Mikolov et al. (2013b).

4.3.7.2 Data processing

Every batch provided as input to the model is made up of 20 index pairs represent-

ing the focus and context words, and 5×20 indices for the negative samples. Every

focus word index f gets replaced with an input embedding u f ∈RM corresponding

to the f th row of the input embedding matrix U ∈ RV×M, where M is the dimen-

sionality of the word embeddings and V is the size of the vocabulary V . Similarly,

every context word index c and negative sample index r are converted to output

embeddings vc ∈ RM and vr ∈ RM, respectively, which correspond to rows of the

output embedding matrix V ∈ RV×M. The full batch is processed with matrix and

tensor products, which are more computationally efficient than performing vector

dot products separately. An example of the Skip-gram architecture processing a

11Mikolov et al. (2013b) report values of K (number of negative samples) between 5 and 20, or
between 2 and 5 for larger datasets, are effective in practice.
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Figure 4.1: Skip-gram architecture processing a word pair made up of ignore (focus
word) and majority (context word), and 5 negative samples

word pair with negative sampling is shown in figure 4.1.

4.3.7.3 Error calculation

The Skip-gram language model is set up as a function of the dot product v >c u f

between the output embedding of the context word and the input embedding of the

focus word, and a noise contrastive term−v >r u f defined as the negative dot product

between the output embedding of the negative samples and the input embedding of

the focus word. The full Skip-gram negative sampling objective is as described in

section 4.2:

JNEG( f ,c) = logσ(v >c u f )+
K

∑
i=1

Er∼ps(·)

[
logσ(−v >r u f )

]
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4.3.7.4 Error propagation and optimisation

The error is backpropagated through the input and output embedding matrices,

where the only contribution to the error for a datapoint is localised in the row of

the input embedding matrix that corresponds to the focus word u f = [U] f , and the

rows of the output embedding matrix that correspond to the context word vc = [V]c

and the negative samples vr = [V]r. Given an embedding dimension of M = 300

and a vocabulary size of V = 45,769, the full set of trainable parameters Θ in the

model consists of the input and output embedding matrices:

Θ = {U,V ∈ R45,769×300}

After backpropagating the error for the full batch, the embedding matrices are

updated using a SGD optimiser with a learning rate of η = 0.1. To further explore

the effects of knowledge augmentation, I train a set of models using the embed-

ding space partitioning technique described earlier, where the augmented data only

affects a subspace of dimension B of the embedding space. More concretely, this

amounts to restricting the error propagation to a specific subset of the dimensions

in the input embedding matrix U when processing a synonym-replaced word pair.

When processing an augmented example, the restricted error propagation is imple-

mented by setting the gradients of the unaugmented dimensions to zero, which is

meant to ignore the augmentation. Models are trained on three different partitioned

proportions of augmented-unaugmented subspaces: 25%-75% (i.e. 75-225 dimen-

sions), 50%-50% (i.e. 150 dimensions), 75%-25% (i.e. 225-75 dimensions).

4.3.7.5 Validation phase

The validation phase consists of repeating the data processing step on the validation

set to produce a single validation score. This helps keep track of the generalisation

capabilities of the model after training for an epoch, which can help avoid any

overfitting, as well as confirm that the model is converging to a local optimum of

the objective function.
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4.3.8 Post-training

After model training is concluded, the resulting word embeddings are evaluated on

a set of metrics to probe for semantic and syntactic information in the learned em-

bedding space. Only the trained input embeddings are evaluated. For these experi-

ments, all models are evaluated on the evaluation metrics described in section 3.4.4,

namely the WMD kNN document classification task for the extrinsic evaluation,

and the similarity-distance correlation scores and word pair distance distribu-

tions as intrinsic evaluation metrics. All evaluation conditions from section 3.4.4

remain constant for these experiments. The pre-trained Skip-gram model cropped to

the BNC vocabulary, as described in section 3.4.3, is used as a baseline model to get

a better sense of how the embeddings in these experiments measure up to a well-

established model. Despite the evidence that retrofitting and semantic specialisa-

tion methods improve word embedding performance on downstream tasks (Faruqui

et al., 2015; Mrkšić et al., 2017; Vulić and Mrkšic, 2018; Vulić et al., 2018; Kamath

et al., 2019; Glavaš and Vulić, 2019), they are not used in the empirical comparisons

in this chapter. These methods were not evaluated since the focus of this chapter

is on the effects of the knowledge-augmentation approach with respect to the orig-

inal model they augment. A thorough comparison between knowledge-augmented

embeddings and semantic specialisation methods is left as future work.

4.4 Results
The synonym-augmented Skip-gram models presented in this chapter are trained

with different combinations of the following training conditions:

• Initialisation method, where Word2Vec init is used to denote models where

the input embeddings are initialised to pre-trained Skip-gram embeddings,

and Rand init indicates both input and output embeddings are initialised to

random values.

• Augmentation ratio, which refers to the proportion of synonym augmented

examples in the training data and can take a value of 12% syns, 25% syns,

37% syns, or no-syns for unaugmented models.
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• Augmented partition size, or the percentage of embedding dimensions that are

updated when processing synonym-augmented examples, where the possible

values are 25% part (75/300 augmented dimensions), 50% part (150/300

augmented dimensions), 75% part (225/300 augmented dimensions. When

no partition size is indicated, augmented examples affect all embedding di-

mensions.

The models trained with these variations are referred to as trained models for the

remainder of this chapter. The original pre-trained Skip-gram word embeddings

(described in section 3.4.3), referred to here simply as Word2Vec, is used as a

baseline for these experiments. The models in this chapter trained with random

initialisation (Rand init) and no augmentation (no-syns) correspond to training em-

beddings following the original Skip-gram formulation. However, it is important to

note that, due to differences in hyperparameters and, more importantly, differences

between the dataset and vocabulary used for training, these models are not directly

comparable to the original Skip-gram embeddings.

WMD Document Classification accuracies with corresponding error bounds are

presented in table 4.1 for models with different initialisation methods and augmen-

tation ratios (scores for partitioned models are deferred to table 4.4). The pre-trained

Word2Vec model achieves the highest accuracy by a considerable margin. The clas-

sification accuracies of all the models I trained are within statistical bounds of each

other, regardless of augmentation ratio and initialisation method. What is meant

by within statistical bounds in this context is whether the models have overlapping

confidence intervals (measured at a 95% confidence), which is indicative of whether

there is a statistical difference between the two measures. While this method is not

a formal measure of statistical significance (Schenker and Gentleman, 2001), it is

used here as a simpler proxy to evaluate the significance of experimental results.

Similarity-Distance Correlation scores (described in detail in section 3.4.4) are

shown in tables 4.2 and 4.3, which contain the correlation scores for cosine and

Euclidean distances, respectively. The shading in each cell is proportional to the

degree of correlation, i.e. a lighter shade indicates less correlation (closer to zero),
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Table 4.1: WMD kNN document classification accuracies on the 20 Newsgroups dataset
for unaugmented and augmented models with different initialisation methods

Model Accuracy
Word2Vec 62.75% (± 0.89)
Word2Vec init no-syns 55.01% (± 1.12)
Word2Vec init 12% syns 55.60% (± 1.12)
Word2Vec init 25% syns 54.75% (± 1.12)
Word2Vec init 37% syns 54.95% (± 1.12)
Rand init no-syns 54.51% (± 1.12)
Rand init 12% syns 54.12% (± 1.13)
Rand init 25% syns 54.45% (± 1.12)
Rand init 37% syns 54.82% (± 1.12)

Table 4.2: Similarity-distance correlation results with cosine distance for unaugmented and
augmented models with different initialisation methods

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.5807 -0.4200 -0.3241 -0.2490
Word2Vec init no-syns -0.1453 -0.0959 -0.0966 -0.0693
Word2Vec init 12% syns -0.1229 -0.1790 -0.0953 -0.0471
Word2Vec init 25% syns -0.0900 -0.0402 -0.1044 -0.0456
Word2Vec init 37% syns -0.1242 0.0075 -0.0582 -0.0430
Rand init no-syns -0.0486 -0.0315 -0.0320 -0.0393
Rand init 12% syns -0.0986 -0.0409 -0.0961 -0.0470
Rand init 25% syns -0.1149 -0.0580 -0.0571 -0.0745
Rand init 37% syns -0.1271 -0.0464 -0.0494 -0.0387

while a darker shade indicates a stronger correlation (larger positive or negative

value). The correlation scores for cosine distances are significantly lower across all

models than the corresponding scores for Euclidean distances. While the correlation

scores for these two distance metrics exhibit similar patterns, these patterns are more

evident for Euclidean distances. For this reason, and to use results that more closely

align with the extrinsic evaluation (the WMD is based on Euclidean distances), the

intrinsic evaluation analysis focuses on Euclidean distance. The rest of the results

for cosine distances can be found in appendix A.

The similarity-distance correlation scores in table 4.3 show that the pre-trained
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Table 4.3: Similarity-distance correlation results with Euclidean distance for unaugmented
and augmented models with different initialisation methods

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.7706 -0.6150 -0.4426 -0.3565
Word2Vec init no-syns -0.5144 -0.3207 -0.1957 -0.0952
Word2Vec init 12% syns -0.4577 -0.4151 -0.1953 -0.0821
Word2Vec init 25% syns -0.4365 -0.2589 -0.1951 -0.0467
Word2Vec init 37% syns -0.4225 -0.2008 -0.1595 -0.0854
Rand init no-syns -0.3694 -0.2347 -0.1206 -0.0817
Rand init 12% syns -0.4459 -0.2570 -0.1616 -0.0631
Rand init 25% syns -0.4956 -0.2472 -0.1601 -0.0984
Rand init 37% syns -0.5211 -0.2405 -0.1387 -0.0834

Word2Vec model outperforms the trained models. The effect of the augmentation

process is not clear for Word2Vec initialised models, where increasing the aug-

mentation ratio from 0% (Word2Vec init no-syns) to 37% (Word2Vec init 37% syns)

seems to consistently weaken correlation, with the exception of the WordSim353 Rel

dataset, where the highest correlation score is obtained by the Word2Vec init 12%

syns model. In randomly initialised models (Rand init), knowledge-augmentation

does seem to improve correlation across all correlation datasets up to an augmenta-

tion ratio of between 12% and 25%, after which point scores seem to start declining,

with the exception of the WordSim353 Sim dataset, where correlation seems to con-

sistently improve as the augmentation ratio increases.

Word Pair Distance Distributions (Euclidean) are displayed in figure 4.2 for the

unaugmented models, namely Word2Vec, Word2Vec init no-syns, and Rand init no-

syns. It is worth noting that the synsets used for this evaluation metric come from

a different subset of the BNC dataset than the one used to train and validate the

models presented in this chapter. Even though there is no overlap in the data used in

this evaluation and the training data, the similarity of the linguistic domains must be

pointed out. The most noteworthy aspect of this plot is the difference in the shape

of the distance ditributions across all groups of word pairs, where the word-pair dis-

tance distributions for Word2Vec and Word2Vec init no-syns appear more normally
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distributed, in stark contrast with the Rand init no-syns model’s asymmetric and

long-tailed distance distributions. Despite displaying similar distribution shapes,

the mean distances for all word pair groups in the pre-trained Word2Vec are signif-

icantly smaller than those of the Word2Vec init no-syns, indicating that the training

regime followed by the Word2Vec init no-syns model causes the original Word2Vec

embeddings to move away from each other. Regarding the relative central tendency

between word pair groups (the white dots in the violin plots represent the mean

of the distribution), the three models in figure 4.2 display a larger mean distance

for the random word pairs when compared to contextual and synonym pairs, which

helps validate that embeddings for related words are indeed closer than those of un-

related words. Another desirable property for these embeddings is for synonyms to

be closer together than contextual word pairs, since synonyms are meant to be more

semantically similar. This property is reflected in the pre-trained Word2Vec, but is

not as clear in the Word2Vec init no-syns and Rand init no-syns models.

Figure 4.2: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for unaugmented models: Word2Vec, Word2Vec init no-syns, and
Rand init no-syns

Figures 4.3 and 4.4 show the word pair distance distributions for Word2Vec

initialised and randomly initialised models, respectively. As with the unaugmented

models in figure 4.2, the most salient difference between these two plots is the

shape of the distance distributions, where the word pair distances in the Word2Vec

initialised models appear to be more normally distributed. Another important aspect
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that is consistent in these two plots is that both the Word2Vec initialised and ran-

domly initialised models’ distances seem to remain largely unaffected by the degree

of augmentation.

Figure 4.3: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for Word2Vec initialised models with different augmentation
ratios

Figure 4.4: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for randomly initialised models with different augmentation ra-
tios

Partitioned Knowledge-Augmented Models

WMD Document Classification results for the partitioned knowledge-augmented

models are shown in table 4.4. Partitioning is performed on the models with an

augmentation ratio of 25%, i.e. Word2Vec init 25% syns and Rand init 25% syns,
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Table 4.4: WMD kNN document classification accuracies on the 20 Newsgroups dataset
for partitioned knowledge-augmented models

Model Accuracy
Word2Vec 62.75% (± 0.89)
Word2Vec init no-syns 55.01% (± 1.12)
Word2Vec init 25% syns 54.75% (± 1.12)
Word2Vec init 25% syns 25% part 54.78% (± 1.12)
Word2Vec init 25% syns 50% part 55.31% (± 1.12)
Word2Vec init 25% syns 75% part 54.83% (± 1.12)
Rand init no-syns 54.51% (± 1.12)
Rand init 25% syns 54.45% (± 1.12)
Rand init 25% syns 25% part 53.27% (± 1.13)
Rand init 25% syns 50% part 54.45% (± 1.12)
Rand init 25% syns 75% part 54.37% (± 1.12)

since this augmentation ratio is the midpoint of the augmentation ratios explored

in these experiments. For the Word2Vec initialised models, these extrinsic evalua-

tion scores seem largely unaffected by the partitioning process since all scores are

within statistical bounds of each other. Randomly initialised models seem to be

slightly more sensitive to the partitioning process, with the Rand init 25% syns 25%

part partitioned model achieving slightly lower accuracies than the other randomly

initialised models.

Similarity-Distance Correlation scores, presented in table 4.5, show a more evi-

dent effect of the partitioning process. In both Word2Vec initialised and randomly

initialised models, the 50% partitioning achieves the weakest correlation scores,

with the exception of the WordSim353 Sim score for the Rand init 25% syns 50%

part model. In the Word2Vec initialised models, the 75% partition size achieves

stronger correlation scores than the other partitioned models across all datasets, and

outperforms the non-partitioned Word2Vec init 25% syns model in three of the four

datasets. In randomly initialised models, there is no single partition size that clearly

outperforms the rest. The best performing models per initialisation method are non-

partitioned models, i.e. Word2Vec init no-syns and Rand init 25% syns.

Word Pair Distance Distributions for partitioned models, shown in figures 4.5

and 4.6, do not vary significantly for the different partition sizes within each ini-
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Table 4.5: Similarity-distance correlation results with Euclidean distance for knowledge-
augmented partitioned word embeddings

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.7706 -0.6150 -0.4426 -0.3565
Word2Vec init no-syns -0.5144 -0.3207 -0.1957 -0.0952
Word2Vec init 25% syns -0.4365 -0.2589 -0.1951 -0.0467
Word2Vec init 25% syns 25% part -0.4323 -0.2703 -0.1175 -0.0586
Word2Vec init 25% syns 50% part -0.3496 -0.2562 -0.0595 -0.0630
Word2Vec init 25% syns 75% part -0.4378 -0.2808 -0.1500 -0.0924
Rand init no-syns -0.3694 -0.2347 -0.1206 -0.0817
Rand init 25% syns -0.4956 -0.2472 -0.1601 -0.0984
Rand init 25% syns 25% part -0.3666 -0.2113 -0.1366 -0.0599
Rand init 25% syns 50% part -0.4139 -0.1919 -0.1019 -0.0438
Rand init 25% syns 75% part -0.3500 -0.2277 -0.1682 -0.0534

tialisation method. In both Word2Vec initialised and randomly initialised models,

the biggest difference in word pair distance distributions is observed between the

non-partitioned model and the partitioned models. Partitioned Word2Vec initialised

models display wider distance distributions with longer tails when compared to the

non-partitioned Word2Vec init 25% syns model. Word pair distance distributions in

partitioned randomly initialised models exhibit similar shapes per word pair group,

regardless of partition size, but these shapes differ substantially from the distribu-

tion shapes observed in the non-partitioned Rand init 25% syns.
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Figure 4.5: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for Word2Vec initialised models with a 25% augmentation ratio
and different partition sizes

Figure 4.6: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for randomly initialised models with a 25% augmentation ratio
and different partition sizes

To gain a better insight into the properties of the two partitioned subspaces, the

word pair distance distributions are calculated for the augmented and unaugmented

partitions separately, i.e. the two subspaces that make up the partitioned embed-

ding. To avoid any artifacts that result from comparing partitions of different sizes

(e.g. for 300-dimensional embeddings and a partition size of 25%, the augmented

partition will have 75 dimensions and the unaugmented partition will have 225),

I focus this exploration on 50% partitions which produces augmented and unaug-
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mented partitions of the same dimensionality, i.e. 150 dimensions per partition. The

distance distributions for the partitions of the Word2Vec init 25% syns 50% part and

Rand init 25% syns 50% part models are shown in figures 4.7 and 4.8, respectively.

The most significant aspect that is observed is that synonym pair distances seem

to be smaller for the augmented partitions, which agrees with my intuition that the

augmentation process should bring synonyms closer in embedding space and that

this effect should be more accentuated in the augmented subspace. Additionally,

both the augmented and unaugmented partitions in these figures preserve the pat-

tern from their full embeddings whereby context pair distances have a smaller mean

than synonym pair distances.

Figure 4.7: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 50%
partitioned embeddings
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Table 4.6: WMD kNN document classification accuracies on the 20 Newsgroups dataset
for Rand init 25% syns word embeddings trained with different learning rates
(η)

Model Accuracy
Rand init 25% syns η = 0.1 54.45% (± 1.12)
Rand init 25% syns η = 0.04 56.86% (± 1.12)
Rand init 25% syns η = 0.003 55.40% (± 1.12)

Figure 4.8: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for partitions in randomly initialised 25% augmented and 50%
partitioned embeddings

Learning Rates (η)

To better understand how training conditions can affect these word embedding mod-

els, I retrained a Rand init 25% syns using three different learning rates: η = 0.1

(used when training all other models in this chapter), η = 0.04, and η = 0.003,

where all other training conditions remain constant. Table 4.6 shows the WMD

document classification scores for these models, where the models with a learning

rate of η = 0.04 achieve a significantly better accuracy than the other two mod-

els. The correlation results for these models, presented in table 4.7, show that the

model trained with a learning rate of η = 0.04 also achieves substantially stronger

correlation scores across all datasets.

Figures 4.9 and 4.10 further demonstrate the impact that the learning rate can

have on the resulting word embeddings. This divergence in model performance for
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Table 4.7: Similarity-distance correlation results with Euclidean distance for Rand init
25% syns word embeddings trained with different learning rates (η)

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Rand init 25% syns η = 0.1 -0.4956 -0.2472 -0.1601 -0.0984
Rand init 25% syns η = 0.04 -0.5238 -0.3840 -0.2967 -0.1907
Rand init 25% syns η = 0.003 -0.0569 -0.0597 -0.0253 -0.0120

different learning rates happens despite observing convergence during the 10 epochs

of training, as evidenced in figure 4.11. Even though all models converge, the values

for training and validation loss they converge to vary, with η = 0.1 converging to

LTrain ≈ 2.90 and LVal ≈ 2.93, η = 0.04 converging to LTrain ≈ 2.36 and LVal ≈

2.50, and η = 0.003 converging to LTrain≈ 2.51 and LVal≈ 2.67, where LTrain and

LVal refer to the values of the training and validation loss, respectively. Zooming

into the last three epochs of training, shown in figure 4.12, η = 0.003 seems to

exhibit a steeper descent than η = 0.1 and η = 0.04, suggesting that that training

regime might have benefitted from training for an additional number of epochs.

Figure 4.9: Cosine distance distributions between random, contextual, and synonymous
word pair sets for Rand init 25% syns word embeddings trained with different
learning rates (η)
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Figure 4.10: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for Rand init 25% syns word embeddings trained with
different learning rates (η)

Figure 4.11: Training and validation losses for Rand init 25% syns word embeddings
trained with different learning rates (η)
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Figure 4.12: Training and validation losses for randomly initialised 25% augmented word
embeddings trained with different learning rates (η) zoomed into the last three
epochs of training

Analysis

These experiments provide evidence that the synonym-augmentation process dur-

ing randomly initialised training can potentially help produce higher quality word

embeddings, defined here as the word embedding models that obtain higher accu-

racies in the WMD classification task and stronger similarity-distance correlation

scores. However, the augmentation process only appears to be beneficial when us-

ing the right augmentation ratio, as evidenced in these experiments, where too little

augmentation can have a negligible effect and too much augmentation can be detri-

mental to the quality of the word embeddings. Given that the augmentation process

can be interpreted as a noising operation that artificially introduces examples that

do not naturally occur in the data, adding too many augmented examples can blur

some of the patterns in the original (i.e. unaugmented) data. It is important to note

that, in my original formulation of the knowledge-augmentation method, one of the
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main advantages that I envisioned was that the approach augmented text in a way

that respected the natural distribution of words in language and therefore did not

rely on additional hyperparameters. However, as evidenced by the results of the

experiments in this chapter, the augmentation ratio ended up becoming a de facto

hyperparameter that has an important influence on the effectiveness of the augmen-

tation process.

The augmentation process has a different effect on the performance of the

Word2Vec initialised models, since none of the augmentation ratios used in this

chapter were seen to positively impact them. A possible explanation for this lies

in the fact that the pre-trained Word2Vec word embeddings used to initialise these

models are already optimised, meaning that they likely represent a specific region of

the gradient landscape, e.g. local minima. These initial parameters would therefore

act as a strong bias that hampers the model’s ability to freely explore the parameter

space during training.

Regarding the partitioning process, these experiments do not present any ev-

idence that it can positively impact the learning of synonym-augmented word em-

beddings. The partitioning process possibly fails to constrain the information flow

to only the desired subspace; one possible explanation is the complex interaction

between the two embedding matrices (i.e. input and output) that make up the Skip-

gram architecture. The partitioning process also appears to have a detrimental effect

on synonym distances, pushing embeddings of synonyms further away from each

other than in their respective non-partitioned counterparts.

As shown most clearly in the comparison between the word pair distance dis-

tributions in figures 4.3 and 4.4, parameter initialisation is the training condition

that most dramatically affects the geometry of the learned embeddings, out of the

three varying training conditions tested in these experiments. However, considering

how similarly the trained models studied in this chapter perform, and the large dif-

ferences in performance with the pre-trained Word2Vec model, it becomes apparent

that the biggest impact on these word embeddings is not the augmentation, parti-

tioning, or initialisation method, but rather other experimental conditions which are
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kept fixed for all models trained here, such as dataset selection, vocabulary size,

number of training epochs, optimisation method, hyperparameter choices, etc.

The impact of training conditions on the learned word embeddings is fur-

ther confirmed when comparing the performance of the same model trained with

three different learning rates, which exhibits a much greater difference in evalu-

ation scores than any of the techniques and approaches explored in this chapter.

These observed differences suggest that an accurate comparison between different

word embedding models should be carried out on models that are trained under the

same training conditions. Finally, to fully understand the impact of the knowledge-

augmentation and partitioning techniques proposed in this chapter, hyperparame-

ters should be optimised for the specific variation of the model that is being studied

since, for instance, the optimal learning rate for unaugmented models might be dif-

ferent than for augmented models. The results up to this point do not provide clear

evidence that the knowledge augmentation process presented in this chapter offers

empirical advantages over other existing methods in the literature. A separate set

of experiments that focus on optimisation and empirical performance must be con-

ducted in order to better understand how this augmentation process can benefit word

embedding models. However, the knowledge augmentation method presented here

is representative of a family of approaches that might be useful to practitioners,

particularly when other approaches are not suitable.



Chapter 5

Structure-Aware Word Embeddings

Each word in a sentence is not isolated as it is in the dictionary. The

mind perceives connections between a word and its neighbors. The

totality of these connections forms the scaffold of the sentence.

Lucien Tesniére, Éléments de syntaxe structurale

Word co-occurrence models, such as the ones discussed in chapter 4, are ef-

ficient to train given the fixed, and typically small, size of contexts they work

with. These models work on raw text and require no additional supervision to learn

relevant semantic information. Nevertheless, word co-occurrence statistics using

fixed-size context windows can fail to capture the fine-grained semantic information

found in the syntactic structure and long-range dependencies that are only present in

full linguistic structures such as sentences. Shifting from the truncated contexts of

word co-occurrence to full sentences has a number of theoretical guarantees. Sen-

tences are natural syntactic units, referred to by Allerton (1969) as the minimum

linguistic units of structural independence. Sentences can also be considered to

be semantically complete and the “proper means of expression for a thought”, as

posed by Gottlob Frege (May, 2006). Within full sentences, words can be analysed

in terms of their functional or grammatical roles (e.g. POS tags) or relations (e.g.

dependency parse trees).

In this chapter, I explore the potential of structural linguistic information in

the learning of structure-aware word embeddings by investigating sequential rep-
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resentation learning models. I analyse the Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et al., 2018) and Robustly optimised BERT ap-

proach (RoBERTa) (Liu et al., 2019) models, two closely related large-scale Trans-

former models for general-purpose sentence representations. Models like BERT

and RoBERTa extract the compositional structure of sentences from their surface

form, i.e. they are trained on vast amounts of raw sentences. To examine the effect

of explicitly using a sentence’s underlying structure to train a representation learn-

ing model, rather than relying only on its surface form, I designed Struct2Seq, a

novel encoder-decoder architecture that takes a dependency parse tree as input and

attempts to reconstruct the original sentence that produced it. During training, the

Struct2Seq model optimises the semantic information that is captured in the learned

representations (i.e. word and dependency parse tree embeddings) by learning a

mapping between two semantically equivalent structures, since a dependency parse

tree constitutes the parsing of a sentence that retains the same underlying semantics.

These three models, BERT, RoBERTa, and Struct2Seq, are trained to learn

sentence representations compositionally from sequences of words. At the base of

these architectures lies a trainable embedding unit used to represent the input words.

The resulting word embeddings can be thought of as being incidental, since these

models are not explicitly trained to produce optimal word representations. The

hypothesis of this chapter is that, as an effect of the learning process, these word

embeddings are instilled with significant information about a word’s functional and

structural linguistic relations.

5.1 Related work

The use of encoder-decoder architectures for NLP tasks became widespread with

the sequence-to-sequence (Seq2Seq) architecture proposed by Sutskever et al.

(2014) to solve a machine translation task. In their setup, a sentence in a source

language is processed by an LSTM encoder, which outputs a context vector that is

used by an LSTM decoder to predict the translation of that sentence in the target

language in an autoregressive fashion, i.e. producing one token at a time based on



5.1. Related work 134

the output at the last timestep. Seq2Seq architectures have also been employed for

other NLP tasks like POS tagging (Zhang et al., 2018), dependency parsing (Kiper-

wasser and Goldberg, 2016; Li et al., 2018), and NER tagging (Lample et al., 2016).

In the context of representation learning, Kiros et al. (2015) exploit the repre-

sentational capabilities of Seq2Seq architectures to learn sentence embeddings by

setting up a Skip-Thought prediction task, where a full sentence is processed by

an RNN encoder, and two separate decoders attempt to reconstruct the previous and

next sentences, respectively. Context Vectors (CoVe), proposed by McCann et al.

(2017), produce context-aware word embeddings by training a Seq2Seq machine

translation model to translate from English to German, and using the trained Bidi-

rectional LSTM (BiLSTM) encoder to embed words that are aware of their semantic

context. Wieting and Gimpel (2017) take a similar approach in which sentence em-

beddings are trained by maximising the cosine similarity between the embeddings

of paraphrase pairs. The Sequential (Denoising) Autoencoder proposed by Hill

et al. (2016), a Seq2Seq denoising autoencoder where the input is a corrupted sen-

tence (i.e. some words are randomly removed or shuffled), is the approach most

similar to the experiments described in this chapter, since the input dependency

parse tree can be thought of as a different type of noising operation applied to the

input sentence.

Sentence representation learning approaches based on the Transformer archi-

tecture have produced transferable sentence embeddings that have helped achieve1

state-of-the-art results across several NLP tasks. These transferable sentence em-

beddings have been commonly trained by learning a language model, such as pre-

dicting a missing word from a sentence (Devlin et al., 2018), or learning inter-

sentence dependencies for sentence and document embeddings (Liu and Lapata,

2018). Some of these approaches complement language modelling with a fine-

tuning stage (Cer et al., 2018; Radford et al., 2018, 2019). All of these sentence

embedding methods learn word embeddings as a byproduct of both the RNN and

1Some of these models are reported to have achieved state-of-the-art results in and of themselves.
However, in many of the cases, they have achieved these results when used as input representations
for task-specific models.
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Transformer architectures they employ. As evidenced by the empirical results

obtained by Embeddings from Language Models (ELMo) representations (Peters

et al., 2018), the internal token and context representations of an LSTM can pro-

duce context-aware word embeddings that are useful for downstream NLP tasks.

LSTMs and Transformers are designed to capture interactions between ele-

ments in a sequence. However, the specific interactions they capture are neither

entirely interpretable nor well-understood. Recurrent units, even ones with more

complex memory cells, emphasise sequentially proximal information, while (sim-

ple) attention units that assign probabilities to positional elements are not fully able

to capture structural dependencies, as described by Liu and Lapata (2018). Even

though in theory these architectures could learn to model structural relations, as ar-

gued by Kim et al. (2017), McCoy et al. (2020) found that Seq2Seq architectures

with different variants of RNNs and attention mechanisms had a bias towards linear

order, while tree-based architectures, such as the Tree-LSTM, had a hierarchical-

syntactic bias, which they describe as underlying Chomsky’s 1965 model of human

language acquisition.

The strong structural bias of tree-based architectures, together with their abil-

ity to handle tree-structured input, has sparked a renewed interest in tree struc-

tures for NLP for tasks such as dependency parsing (Kiperwasser and Goldberg,

2016), NLI (Mou et al., 2016b; Chen et al., 2017), or text generation (Guo et al.,

2018). Tree-based architectures have also been amply used in encoder-decoder se-

tups. Tree-to-tree architectures have been applied to the problem of translating

computer programs from one language to another (Chen et al., 2018), molecu-

lar graph generation (Jin et al., 2018), or generating programs from natural lan-

guage (Alvarez-Melis and Jaakkola, 2017), among others. Tree-to-sequence, and

the closely related graph-to-sequence, architectures have been used in text gen-

eration (Damonte and Cohen, 2019; Beck et al., 2018), constituency parsing (Guo

et al., 2018), and machine translation (Eriguchi et al., 2016; Beck et al., 2018).

Lastly, Vashishth et al. (2019) propose two methods that use Graph Convolu-

tional Networks (GCN) to train word embeddings by exploiting the syntactic (Syn-



5.2. Background 136

GCN), or semantic (SemGCN) information. Their SynGCN variant is similar to the

approach I propose in this chapter in that they both exploit dependency parse trees

to learn word embeddings that are aware of their syntactic context, as opposed to

the sequential context captured by fixed context window approaches. Unlike my

approach, which is based on autoencoding, the objective of SynGCN is based on

predicting a target word given its context, where the context is a learned represen-

tation of the dependency parse tree provided by the GCN.

5.1.1 Positioning

The structure-aware word embedding model I propose in this chapter seeks to

harness the information extraction potential of tree-structured RNN architectures.

While many of the models presented here use tree-based architectures to learn

sentence-level representations, my approach focuses on atomic word representa-

tions that are instilled with information about the syntactic structures in which they

are used. Additionally, unlike some of the tree- and graph-based methods presented

in this section which focus exclusively on syntactic structures, the training objective

of my approach is designed to jointly learn a word’s syntactic and sequential con-

texts. By exploiting both word co-occurrence statistics and linguistically-informed

contexts, the model I propose seeks to learn word representations that capture more

syntactic information, even when trained on smaller datasets.

5.2 Background

5.2.1 Background on Transformer Models

Transformers (Vaswani et al., 2017), which have recently become one of the most

widely used architectures in NLP, consist of stacks of multi-head self-attention lay-

ers. Self-attention (Lin et al., 2017) refers to an attention mechanism applied within

a single sequence, i.e. a set of attention weights that relate the elements of a se-

quence to the elements of the same sequence. BERT and RoBERTa leverage the

expressibility of a multi-layer Transformer architecture to model the syntactic in-

formation contained in sentences without the need for any explicit structural infor-

mation. The intuition behind these models is that, when applied to natural language,
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Figure 5.1: General BERT architecture, where BERT layers are made up of Transformer
encoders, and the BERT pooler is a fully connected layer that outputs token
probabilities.

Transformers have the capacity to model intrasentential interactions, i.e. functional

relations between the words in a sentence, and can therefore produce sentence rep-

resentations that capture the inner structure of the represented sentence.

Both the BERT and RoBERTa models share the same underlying architecture,

shown in figure 5.1. BERT and RoBERTa train different model sizes, but these

experiments are based on their BASE architecture, made up of 12 layers with 768-

dimensional hidden layers and 12 self-attention heads, adding up to a total of 110

million trainable parameters. BERT is trained on two learning tasks: the first is a

masked language modelling task, where a random word in a sentence is masked

and the model is tasked with predicting the masked word; and the second task is a

next sentence prediction binary classification task, where given two sentences, the

model must predict whether they are contiguous or come from different parts of the

corpus. The masked language modelling task forces the model to consider both past

and future contexts concurrently when building its sentence representations, while

the next sentence prediction task is meant to provide the model with inter-sentence

information. RoBERTa is trained only on the masked language modelling task,

as Liu et al. (2019) found in their experiments that the next sentence prediction task

was not improving, and in some cases was hurting, the performance of the model.

In order to keep a reduced vocabulary that has high coverage of the text cor-

pus, these models use subword tokenisation, which creates a vocabulary of the
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Figure 5.2: Input representation layer of the BERT architecture. Every token receives a
token embedding (M), a segment embedding (S), and a positional embedding
(P)

most frequently appearing subwords. Both BERT and RoBERTa use slightly differ-

ent subword tokenisation methods, BERT uses WordPiece tokens, while RoBERTa

uses byte-level BPE tokens (both of these tokenisation methods are described in

section 3.1). For instance, while a common word like dog might have a corre-

sponding token in both the WordPiece and BPE subword vocabularies, a rare word

like zygomatic might get broken down into different subword tokens, where the

WordPiece tokenisation will produce the tokens z, ##y, ##go, ##matic; and

BPE will produce _zy, g, omatic. Aside from the learning task and the tokeni-

sation method, RoBERTa mainly differs from BERT in the choice of training con-

ditions, which include increasing the size of the mini-batches used during training,

masking tokens dynamically (as opposed to masking the dataset once and cycling

over the same masks), and using a single full sentence as input (instead of the con-

catenated pair of sentences BERT uses for its next sentence prediction task).

The two models use an input representation layer, which combines learned

token embeddings (M) with learned positional embeddings (P) and, in the case of

BERT, segment embeddings (S), i.e. embeddings for each of the two concatenated

input sentences, as shown in figure 5.2. For the experiments in this chapter, I use

the token embeddings M as the standalone structure-aware word embedding.

5.2.2 Background on the Struct2Seq Model

Learning word embeddings that contain information about their full semantic con-

text requires an architecture that is capable of extracting semantic information from

the full sentence in which the words occur. RNNs are well equipped for this task,
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Figure 5.3: A basic RNN architecture, where x(t), h(t), and y(t) denote the input, hidden
layer, and prediction, respectively, at timestep t. The weight matrices are
reused across all timesteps and represent connections between the input and
hidden layers, Wih, the hidden layer and the prediction, Who, and the hidden
layers in consecutive timesteps, Whh.

since they were originally designed to process sequences of arbitrary length. A

basic RNN consumes a sequence of ordered elements S = 〈x(1),x(2), . . . ,x(T )〉 one

element at a time, and reuses the same parameter matrices Wih and Whh at each

timestep to produce a hidden state h(t) for timestep t that factors in the input at that

timestep x(t) together with the hidden state at the previous timestep:

h(t) = f (h(t−1),x(t);Θ) (5.1)

where the parameters Θ = {Wih,Whh} include connections from the input word

x(t) to the hidden state h(t), Wih, and recurrent connections between contiguous

hidden states Whh. Hidden state h(t) contains a representation of the sequence up to

timestep t. A simple RNN is depicted in figure 5.3; other variants of this architecture

can produce output only at the last timestep, or include connections between outputs

and hidden states (Goodfellow et al., 2016).

Like all other neural networks, RNNs (and variants) learn an internal represen-

tation that is (approximately) informationally optimal for their training objective,

meaning that these learned representations efficiently store the information that is

most relevant to solve their learning task. In text classification tasks, where the out-

put is a single class, the hidden state is tasked with capturing the most salient fea-

tures in the input with respect to the classification task. In that setting, the RNN’s

hidden state acts as a feature detector over time. This task requires the RNN to
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learn the features that are most indicative for the classification problem, but there is

no guarantee as to the amount of information about the original input that will be

preserved by its learned representation. In terms of learning transferable representa-

tions, this type of task-specific feature learning fails to capture the general linguistic

patterns that might be relevant to solve other related tasks.

Sequence encoder-decoders, also known as Seq2Seq architectures (Sutskever

et al., 2014), offer an alternative that is designed to retain as much information

from the full sequence in ther hidden state as possible. In a Seq2Seq architecture,

the input is processed by an encoder to produce a context vector that is passed

as input into a decoder which, in turn, learns to produce an approximation of the

target sequence. In machine translation, where Seq2Seq architectures have been

widely used, the context vector must preserve as much information about the se-

mantic structure of the input text as possible in order for the decoder to produce

a close translation. The input sequence can be replicated as the target to convert

this architecture into a sequence autoencoder (shown in figure 5.4) which, unlike

the machine translation setup, is unencumbered by an additional grammar for a tar-

get language. This reconstruction objective exploits the information bottleneck2

structure of the autoencoder since, by seeking to recover the orignal input from a

compressed representation, the learned representation is forced to capture as much

information from the original sequence as possible. However, this objective em-

phasises the sequential structure of the textual input, which is sensitive to linguistic

domain and syntactic style. In order to maximise their transferability, word em-

beddings should, in principle, favour information about a word’s semantics and its

grammatical role. This information is more linguistically invariant and therefore

useful in a wider set of linguistic domains.

In the context of sequential autoencoders, I hypothesise that dependency re-

lations can be integrated into the autoencoding process to emphasise the capturing

2The information bottleneck term was first introduced by Tishby et al. (1999) and is broadly
defined as the process of finding a short code X̂ for an input X such that X̂ preserves as much
meaningful information about another variable Y as is possible given the availables bits in X̂ , where
Y , also called the relevance variable, is dependent on X (i.e. the mutual information of X and Y is
positive).
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Figure 5.4: Generic sequence autoencoder architecture

of sentence-level syntactic information in the learned representations. A depen-

dency parse tree is a representation of a sentence in terms of the (typed, binary,

and directed) grammatical relations between its constituting words, and is a full

description of the underlying syntactic structure of that sentence. Dependency parse

trees are useful in this setting because they are entirely based on pairwise rela-

tions between words, unlike constituency parse trees, which deal with recursive

compositional phrase structures. Additionally, dependency parse trees are less sen-

sitive to order information, which allows them to focus on grammatical relations

that hold irrespective of the linguistic domain in which they appear. To exemplify

this, take the compound sentence For many of the farmers involved,

the news is devastating, which is semantically equivalent to a rearrange-

ment of its independent clauses: The news is devastating for many

of the farmers involved. For this particular example, the semantic simi-

larity between these two sentences is more closely captured by their dependency

parse trees (figure 5.5) than by their constituency parse trees (figure 5.6). The

temporal processing performed by a straightforward RNN architecture favours the

order information captured by constituency parse trees, but incorporating the non-

proximal relations contained in dependency parse trees can help these sequential

models capture the underlying syntactic structure of a sentence.
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Figure 5.5: Dependency parse trees for the sentences For many of the farmers
involved, the news is devastating. (left) and The news is
devastating for many of the farmers involved. (right)
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Figure 5.6: Constituency parse trees for the sentences For many of the farmers
involved, the news is devastating. (left) and The news is
devastating for many of the farmers involved. (right)

Even though dependency parse trees have the desirable property of (some de-

gree of) stylistic invariance, they achieve it at the expense of word order information

from the original sequence. Word order is relevant to the construction of word em-

beddings since it informs about word usage. Ideally, learning transferable and

structure-preserving word embeddings should integrate their more invariant inter-

actions (dependency relations) with their stylistic usage (positional information). To

achieve this, the Struct2Seq architecture that I propose in this chapter incorporates
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the ideas from the Seq2Seq architecture and the additional grammatical information

that is obtained from dependency parse trees. Struct2Seq is, in essence, the inverse

formulation of an end-to-end neural dependency parser in that it takes a dependency

parse tree as input and is tasked with recovering the original sentence for that de-

pendency parse tree. Figure 5.7 shows the general Struct2Seq architecture for the

sample sentence He experimented on pea plants.

on

plants

pea

experimented

he

ch

<sos> he experimented on plants <eos>

Encoder
Context

Decoder

pea

Figure 5.7: Struct2Seq architecture

Whereas the internal representations of a Seq2Seq autoencoder are employed

as memory units that keep track of the words that appeared in the input to be re-

constructed, the internal representations of the Struct2Seq architecture double as a

mapping from dependency relations to word order. By inverting the order of a

dependency parser, the expectation is that the learned representations of the encoder

place a bigger emphasis on the dependency structure. Additionally, learning a tree

decoder is significantly harder than learning a sequence decoder, so by simplifying

the decoding task, the model can focus on the representation learning process. The

main reasoning behind providing syntactic information as part of the input to the

Struct2Seq autoencoding process is that, as the syntactic information flows through

the tree-structured encoder, the token embeddings capture some of the information

needed to model the syntactic relations. The expectation with this setup is that token

embeddings will contain dependency information from their observed contexts dur-

ing training. After training concludes, the learned token embeddings can be used as
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standalone word representations that contain information about a word’s observed

syntactic contexts without the need to provide syntactic information at the time of

embedding.

The decoder unit of the Struct2Seq architecture is implemented with the

LSTM (Hochreiter and Schmidhuber, 1997) RNN variant. The original LSTM im-

plements a memory gate which allows it to selectively retain or forget information

from the full history, which makes it better at modelling long-range dependencies

than a standard RNN. This memory gate, shown in figure 5.8, is implemented with

the following equations:

i(t) = σ(Wix(t)+Uih(t−1)+bi)

f(t) = σ(W f x(t)+U f h(t−1)+b f )

o(t) = σ(Wox(t)+Uoh(t−1)+bo)

u(t) = tanh(Wux(t)+Uuh(t−1)+bu)

c(t) = i(t)�u(t)+ f(t)� c(t−1)

h(t) = o(t)� tanh(c(t))

(5.2)

where x(t) ∈ RD is the input vector at timestep t, h(t−1),c(t−1) ∈ RH are the hid-

den and cell vectors at the prevous timestep, i(t), f(t),o(t),u(t) ∈ RH are inter-

nal vectors, σ is a non-linear function, tanh is the hyperbolic tangent function,

Wi,W f ,Wo,Wu ∈ RD×H and Ui,U f ,Uo,Uu ∈ RH×H are trainable parameter ma-

trices, and � is the Hadamard or element-wise product.

The encoder of the Struct2Seq uses the Tree-LSTM architecture by Tai et al.

(2015) to deal with its tree-structured input. The Tree-LSTM is an extension to

the LSTM architecture designed to deal with trees. More specifically, the encoder

uses a variant of this architecture, termed Child-Sum Tree-LSTM, that is capable

of dealing with an arbitrary number of children for each node, which is necessary

when processing dependency parse trees.3 The transition equations for the Child-

Sum Tree-LSTM, shown in figure 5.9, are similar to those of the LSTM, but where,

3The alternative formulation, the N-ary Tree-LSTM, is designed to deal with trees where nodes
have at most N (ordered) children.
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Figure 5.8: Architecture of a single LSTM cell, where green arrows denote the flow of
the input signal, red arrows trace the flow of the previous hidden state, gray
arrows show the flow of the previous cell state, and black arrows and circles
correspond to the internal operations and variables of the cell.

instead of timestep t, processing follows the traversal of the nodes of a tree. These

are the equations for node j, with children C ( j):

h̃( j) = ∑
k∈C ( j)

h(k)

i j = σ(Wix( j)+Uih̃( j)+bi)

f( jk) = σ(W f x( j)+U f h(k)+b f )

o( j) = σ(Wox( j)+Uoh̃( j)+bo)

u( j) = tanh(Wux( j)+Uuh̃( j)+bu)

c( j) = i( j)�u( j)+ ∑
k∈C ( j)

f( jk)� c(k)

h( j) = o( j)� tanh(c( j))

(5.3)

where most elements remain the same as in equation 5.2 with the exception of

h̃( j) ∈RH which is the hidden state for the current node calculated as the sum of its

child nodes (hence the name Child-Sum Tree-LSTM), and a f( jk) vector calculated

for every child k of node j.

The Tree-LSTM learns a representation for every node in the tree composition-
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the flow of the combined parent hidden state, and black arrows and circles
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ally, such that every node is represented as a function of its input and child nodes,

and the representation of the root of the tree is also a representation of the full tree.

To learn word embeddings that capture the general semantic and syntactic infor-

mation from this pipeline, but are encapsulated from the rest of the words in the

sentence, I prepend an additional trainable embedding layer M to the encoder that

embeds the words before they are input into the Tree-LSTM.

5.3 Struct2Seq Learning Algorithm

In this section, I describe the full learning algorithm to train and evaluate structure-

aware word embedding models.

5.3.1 Task, dataset, and architecture definition

The goal of these experiments is to learn structure-aware word embeddings. To

achieve this, the learning task is that of reconstructing a sentence from its corre-

sponding dependency parse tree. The general probabilistic model can be expressed
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as the probability of a sequence S = 〈w1, . . . ,wT 〉 given a dependency parse tree G:

p(S|G)

As in the experiments in chapter 4, the dataset used for these experiments is

the BNC dataset described in section 3.4.1. Due to computational constraints, and

to be consistent with the experiments in chapters 3 and 4, the Struct2Seq models

in this chapter are trained on the same subset of 10% of the sentences randomly

sampled from the full dataset, as detailed in section 3.4.1.

5.3.2 Preprocessing

The Struct2Seq model training requires a set of sentence-dependency parse tree

pairs. To construct a dataset that has this format, I add a dependency parsing step

to the preprocessing pipeline described in section 4.3. Aside from the dependency

parsing step, the rest of this preprocessing is essentially the same as that in section

4.3:

1. Concatenate all BNC documents into a single continuous raw text corpus

2. Tokenise sentences following BNC XML tags

3. Remove XML information since BNC tags are not used in these experiments

4. Shuffle sentences (since the BNC data is organised into topics, shuffling en-

sures that this training corpus has interspersed sentences from all topics) and

retain a subset of 10% of the sentences in the data (601,818 sentences)

5. Dependency parsing and word tokenisation using the spaCy library (Hon-

nibal and Montani, 2017) to produce the dependency parse trees for all to-

kenised sentences

6. Convert text to lower case to minimise token variations

7. Remove punctuation to focus the training on words and their relationships

(this avoids having to encode the relations between words and punctuation

marks)



5.3. Struct2Seq Learning Algorithm 148

8. Convert numeric tokens to a generic format, e.g. 12.45 is converted to

##.##, to preserve the structure of numeric tokens while reducing their vari-

ability

9. Prune sentences containing a single word since they have no contextual in-

formation (37,201 sentences removed)

5.3.3 Vocabulary construction

For consistency with the rest of the experiments and baseline models used in this

thesis, the vocabulary used in the experiments in this chapter is the same as the

vocabulary described in chapters 3 and 4. To reiterate, the vocabulary used here is

based on the 10% subset of the full BNC dataset, where words that appear fewer

than 5 times in the dataset are pruned. After pruning, the resulting vocabulary is

made up 45,769 unique tokens, which cover 32.45% of unique tokens and 98.48%

of non-distinct tokens in the dataset.

5.3.4 Datapoint construction

The fully preprocessed dataset consists of dependency parse trees and tokenised

sentences. From there, the construction of a datapoint is straightforward and con-

sists of using the dependency parse tree as the input and the tokenised sentence

as the target. Figure 5.10 shows the dependency parse tree for the sentence He

experimented on pea plants, and listing 5.1 shows the corresponding

JSON formatted datapoint for the sequence-dependency parse tree pair. The depen-

dency parse tree used for the input is simplified for these experiments by removing

the connection types.

Listing 5.1: Sequence-dependency parse tree datapoint in JSON format

{"seq": ["he", "experimented", "on", "pea", "plants"],

"tree":

{"word": "experimented", "children": [

{"word": "he", "children": []},

{"word": "on", "children": [
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on

plants

pea

experimented

he

Figure 5.10: Dependency parse tree for the sentence He experimented on pea
plants (dependency types are omitted)

{"word": "plants", "children": [

{"word": "pea", "children": []}

]}

]}

]}

}

5.3.5 Input representation

The Struct2Seq architecture requires the constructed datapoints, like the one shown

in listing 5.1, to follow a particular numericalised format. The first formatting

step consists of numericalising the words in the sequence and the tree by replacing

each word with its index from the vocabulary. The sentence He experimented

on pea plants would therefore be translated to the sequence of indices [18,

20270, 17, 19705, 1634], as shown in the "seq" entry of listing 5.2. The

dependency parse tree is then decomposed into its constituting elements. The

"features" element represents the tokens in the dependency parse tree in depth-

first traversal order. In the example sentence and its dependency parse tree shown

in figure 5.10, the resulting traversal order would be [experimented, he, on,

plants, pea], and its corresponding numericalised representation, [20270, 18,

17, 1634, 19705], as it appears in ["tree"]["features"] in listing 5.2. The

"levels" and "adjacency_list" features describe the structure of the tree

in terms of the depth of a node in the tree (e.g. the root word experimented is

at the 0th level) and the edges that connect the nodes in the tree (e.g. an adjacency
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of [0, 2] indicates a connection between the root node and the second node, which

corresponds to on), respectively. Finally, "node_order" and "edge_order"

describe the traversal order of the nodes and edges in the tree, from leaves to root.

Every numericalised datapoint, i.e. sequence-dependency parse tree pair, is as-

signed an identifier, "id", that links it to its pre-numericalised form. The resulting

datapoint in JSON format is shown in listing 5.2.

Listing 5.2: Input representation for sequence-dependency parse tree datapoint

{"id": 6,

"seq": [18,20270,17,19705,1634],

"tree": {

"features": [20270,18,17,1634,19705],

"levels": [0,1,1,2,3],

"node_order": [3,0,2,1,0],

"adjacency_list": [[0,1],[0,2],[2,3],[3,4]],

"edge_order": [3,3,2,1]

}

}

5.3.6 Dataset split

The tokenised sentences in the preprocessed dataset are shuffled before the dataset

is split into a training set made up of 80% of the sentences in the full dataset, which

amounts to 450,314 sentences, and the remainder of the data is split evenly between

a validation set (10%) and a test set (10%), containing 56,291 sentences each.

This choice of training-validation-test split allows for an efficient use of training

data when working with moderately sized datasets.

5.3.7 Model training

5.3.7.1 Pre-epoch processing

The training and validation datasets are shuffled at the beginning of every epoch.

Training is carried out for an arbitrary number of epochs in order to understand



5.3. Struct2Seq Learning Algorithm 151

the behaviour of the model’s training, early stopping checks are omitted. Mini-

batch processing was explored in preliminary checks and displayed a slower rate of

convergence, so these models are trained on a single datapoint at a time.4

5.3.7.2 Data processing

A dependency parse tree is input into the Struct2Seq architecture, which initially

embeds every word in the tree with a trainable embedding matrix M. It then com-

putes a representation for every node in the tree compositionally until it reaches the

root. The root representation, or context vector, which contains information about

the entire tree, is then decoded one step at a time into the output sequence. As a

guide to the decoder, a start-of-sequence token <sos> is added at the beginning of

the target sequence and an end-of-sequence token <eos> is added at the end. The

decoder learns to predict the <eos> token, which indicates it has to stop produc-

ing new tokens, as a way of learning the length of the target sequence (which has

the same number of elements as the input tree). The output sequence is produced

one step at a time using the (updated) context vector and the generated output at

the previous timestep. Given this dependence on the previous output, producing

an incorrect token can increase the probability of producing wrong tokens for all

future timesteps. Teacher forcing (Williams and Zipser, 1989) is used to decrease

the effect of an incorrect token, which is a process that exchanges the predicted out-

put at the previous timestep, y(t−1), with the target for that timestep, τ(t−1), with a

given probability. For these experiments, I found the best performing teacher forc-

ing ratio to be tf=0.5, meaning it will use the previous target τ(t−1) instead of the

predicted input y(t−1) with a probability of 0.5. The full unfolded architecture for

the sentence He experimented on pea plants is shown in figure 5.11.

An additional maximum sequence length parameter, max_seq_len=60, is

set to skip longer sentences, which removes 30,384 sentences (around 5% of the full

dataset). This reduces the memory requirement, since the BPTT algorithm requires

4Batch processing in this setting requires concatenating multiple dependency parse trees as a sin-
gle sequential input, and the target consists of a sequence of concatenated target sequences. Since
this architecture seeks to recover the words and order information, this concatenation significantly
increases the complexity of the learning task, as evidenced by preliminary tests in which the recon-
struction error increased substantially as the number of datapoints in each batch increased.
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Figure 5.11: Unfolded Struct2Seq architecture to process the sentence He
experimented on pea plants

the full computational graph to be unfolded to perform back-propagation over all of

the timesteps in the sequence. Limiting the length of the sequence also reduces the

complexity of the modelling process, which can speed up the convergence of the

model’s training.

5.3.7.3 Error calculation

The target sequence in these experiments is an ordered sequence of words Sτ =

〈w(0),w(1), . . . ,w(T )〉, where w(t) corresponds to the target word at timestep t. The

decoder of the Struct2Seq model outputs a vector of activations for each timestep

y(t) ∈RV (where V is the size of vocabulary V ) which are raw, unnormalised scores

for each word in the vocabulary, i.e. [y(t)]i (the ith element of the y(t) vector) is the

decoder’s score for the ith word from the vocabulary happening at timestep t of

the target sequence. Given that the target sequence is taken as a ground truth, the
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probability of a target word w(t) at timestep t is encoded as p(w(t)) = 1, where all

other words in the vocabulary receive a probability of zero, i.e. p(ŵ(t)) = 0,∀ŵ ∈

V , ŵ(t) 6= w(t). The cross-entropy loss, from the cross-entropy equation for discrete

distributions p and q, i.e. H(p,q) = −∑w∈V p(w) logq(w), is then calculated by

focusing only on the score for the target word, since that will be the only non-zero

term (given that p(ŵ(t)) = 0 for non-target words). The resulting cross-entropy loss

used in these experiments to calculate the loss at timestep t is:5

Lt =− log

(
exp([y(t)]i)

∑ j exp([y(t)] j)

)
=−[y(t)]i + log

(
∑

j
exp([y(t)] j)

)
(5.4)

where y(t) is the vector of scores for all words at timestep t, [y(t)]i is the score for

the target word w(t), i.e. w(t) is the ith word in the vocabulary, and ∑ j is a sum over

all the elements of y(t).

To get a single error value for the full sequence comparison, irrespective of the

length of sequences that are being compared, the loss function calculates the aver-

age cross-entropy of the probability of the predicted word for all timesteps. Using

the average cross-entropy helps ensure that every datapoint contributes equally to

the gradient, regardless of the length of its corresponding sentence. The resulting

loss for a full sequence of length T takes the form:

LS =
∑

T
t=0 Lt

T
(5.5)

5.3.7.4 Error propagation and optimisation

The error of the generated sequence is backpropagated through the decoder first,

where it unfolds the computation graph for all timesteps that were generated for the

output sequence, following the BPTT procedure. It then backpropagates through

the encoder in a similar fashion, but given that this is done through the structure

of a tree, instead of through ordered timesteps, this unrolling of the Tree-LSTM is

5From the PyTorch implementation of cross-entropy loss described in https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


5.3. Struct2Seq Learning Algorithm 154

termed back-propagation through structure (BPTS) (Goller and Küchler, 1996).

The full set of parameters that are tracked when backpropagating through the whole

Struct2Seq architecture consists of the following:

ΘEncoder = {MEnc,Wi,Ui,bi,W f ,U f ,b f ,Wo,Uo,bo,Wu,Uu,bu}

ΘDecoder = {MDec,Wih,bih,Whh,bhh,W f c,b f c}

where MEnc and MDec are embedding matrices that encode the words that are in-

put into the cells of the encoder and decoder units, respectively. These embedding

matrices are represented with green trapezoids in figure 5.11. Aside from the word

embedding matrices, MEnc and MEnc, the encoder parameters ΘEncoder correspond

to the Tree-LSTM cell parameters described in equation 5.3, and the decoder pa-

rameters ΘDecoder correspond to the LSTM cell parameters described in equation

5.2. These experiments use the same vocabulary as in all previous experiments,

which has a size of V = 45,769 tokens. Different values for the word embedding

dimension M ∈ {300,768}, and hidden dimensions H ∈ {512,768,1024,1300}, are

explored, giving the parameters the following dimensions:

MEnc ∈ R45,769×M

Wi,W f ,Wo,Wu ∈ RM×H

Ui,U f ,Uo,Uu ∈ RH×H

bi,b f ,bo,bu ∈ RH

MDec ∈ R45,769×H

Wih,Whh ∈ RH×H

bih,bhh ∈ RH

W f c ∈ RH×45,769

b f c ∈ R45,769
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Once the error is backpropagated to calculate the contribution of the parameters

to the final error, different optimisers (Adam and SGD) with varying learning rates

of η ∈ {0.0001,0.0002,0.001,0.01,0.04,0.07,0.1} are used to update the model’s

parameters. The Adam optimiser is used with the default recommended values for

the exponential decay rates for moment estimates β1 = 0.9 and β2 = 0.999.

5.3.7.5 Validation phase

The data processing step is repeated on the validation set to produce a single vali-

dation score. This helps keep track of the state of the model after training for an

epoch, which helps avoid any overfitting, measures the model’s generalisation ca-

pabilities, and provides an insight into the convergence of the optimisation process.

5.3.8 Post-training

As in the experiments in chapter 4, after model training is concluded, the resulting

word embeddings of the Struct2Seq encoder, MEnc, are evaluated on a set of metrics

to probe for semantic and syntactic information in the learned embedding space. As

with all previous experiments, the models in this chapter are evaluated on the eval-

uation metrics described in section 3.4.4, namely the WMD kNN document clas-

sification task for the extrinsic evaluation, and the similarity-distance correlation

scores and word pair distance distributions as intrinsic evaluation metrics. All

evaluation conditions from chapters 3 and 4 remain constant for these experiments.

The Struct2Seq word embeddings are then compared with the BERT and RoBERTa

word embeddings, as well as the pre-trained Skip-gram model, described in section

3.4.3, to provide a comparison between structure-aware word embeddings and word

co-occurrence embedding models.

As described in section 5.2.1, the BERT and RoBERTa models use subword

tokenisers to provide a wider coverage of text data, which implies that rare words

can be tokenised into several more frequent subwords. To compare the different

word embeddings, every word used in the evaluation must have a single vector

representation. For this, I use two encoding strategies for BERT word embeddings:

single-token, where I only evaluate words that have a single corresponding token
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(25,766 of the 45,769 words in the vocabulary) and all missing words are encoded

as a zero vector; and average token, which takes the embeddings of all subword

tokens and averages them to produce a single embedding, e.g. uzygomatic = (uz+

u##y+u##go+u##matic)/4. The subword vocabulary used by RoBERTa contains

only 4,115 of the 45,769 words in the vocabulary as single tokens, so the RoBERTa

word embeddings are only encoded as average token embeddings, to avoid having

a majority of zero vectors.

5.4 Results

Before running a full training regime, I set out to verify that the Struct2Seq model I

designed and implemented was in fact capable of learning from the data. To verify

this, I forced the Struct2Seq model to overfit by training it over 200 epochs on a

small subset of 0.1% of the data, which amounted to a training set of 450 sentences,

and a validation set of 56 sentences. As shown in figure 5.12, the model was able to

fit the training data perfectly after 40 epochs when using an Adam optimiser with a

learning rate of η = 0.0001, which confirmed that there were no major issues with

the model’s architecture or training regime.



5.4. Results 157

Figure 5.12: Training and validation losses for a Struct2Seq model with 768 hidden dimen-
sions, teacher forcing of 0.5, and an Adam optimiser with different learning
rates (η = 0.01, η = 0.001, and η = 0.0001) on .1% of the full dataset over
200 epochs

After validating the overfitting behaviour of the model, I ran additional tests

on a larger subset of 10% of the data, i.e. 45,031 training and 5,628 validation

sentences, to find a reasonable starting learning rate for training on the full dataset.

As shown in figure 5.13, the model using a learning rate of η = 0.0001 exhibited a

more convergent behaviour and obtained lower training and validation losses. This

optimisation method and learning rate are consistent with the values used to train

BERT and RoBERTa, which use an Adam optimiser with a peak learning rate value

of η = 0.0001.
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Figure 5.13: Training and validation losses for a Struct2Seq model with 768 hidden dimen-
sions, teacher forcing of 0.5, and an Adam optimiser with different learning
rates (η = 0.001, and η = 0.0001) on 10% of the full dataset over 20 epochs

When scaling the training to the full dataset, however, the initial optimiser

and learning rate selection performed poorly. As described by Wilson et al. (2017),

adaptive gradient optimisation methods like the Adam optimiser can oftentimes lead

to worse generalisation capabilities than non-adaptive methods. For this reason, I

subsequently experimented with a simpler SGD optimiser. As can be seen in figure

5.14, all models trained with an SGD optimiser outperformed the best model trained

with an Adam optimiser.
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Figure 5.14: Training and validation losses for Struct2Seq models with different hidden
dimensions, optimisers, learning rates, and word frequency weightings

An initial observation of the top predictions made by the model showed that

the model developed a bias towards the most frequent words in the vocabulary,

as shown in the sample validation predictions for each epoch shown in table 5.1.

To compensate this bias, I explored adding a weighting of log
(

1
freq

)
to the words

predicted by the model. This approach assigns a weight of 2.78 to the most frequent

word, and 16.09 to the least frequent words, meaning that the contribution of rare

words to the loss can be up to 5.75 times greater than that of frequent words. This

weighting is meant to favour predicting rare words over frequent ones, which it

qualitatively seems to do, as exemplified by the sample predictions presented in

table 5.2. The resulting weighted cross-entropy loss is:

Lt =−φi log

(
exp([y(t)]i)

∑ j exp([y(t)] j)

)
=−φi[y(t)]i +φi log

(
∑

j
exp([y(t)] j)

)
(5.6)

where φi = log
(

1
freqi

)
is the weight for word i.

I evaluate both the weighted and unweighted versions of the Struct2Seq model,

namely Struct2Seq H = 512 η = 0.04 (hidden layer dimension of H = 512) and
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Table 5.1: Sample validation predictions at epochs 1, 8, and 15 for Struct2Seq teacher forc-
ing=0.5 hidden dimension=768 SGD optimiser with a learning rate of η = 0.04

Target Prediction at epoch
1 8 15

if if whether if
you you they you
are ask are ask
turned the not turned
down the the to
ask the the the
the the the the
bank the <eos> the
whether or <eos> or
or the the they
not the the ask
they the <eos> to
have are <eos> ask
used a used the
a a to or
credit the the you
reference <eos> <eos> for
agency <eos> <eos> the
<eos> <eos> the <eos>

Struct2Seq H = 768 η = 0.04 log
(

1
freq

)
(hidden layer dimension of H = 768).

Both models were trained under the same conditions: 15 epochs of training, SGD

optimiser with a learning rate of η = 0.04, teacher forcing ratio of tf=0.5, and

word embedding dimension of 300.

WMD Document Classification results for structure-aware word embeddings are

presented in table 5.3, where Word2Vec word embeddings are included for com-

parison with a non-sequential word co-occurrence model. Both Struct2Seq models

perform similarly, indicating that the word frequency weighting strategy does not

have a substantial impact on the learned word embeddings. The Struct2Seq models

achieve significantly lower accuracies than the Word2Vec, BERT, and RoBERTa

models. Word2Vec is outperformed by both BERT and RoBERTa models. The

best performing model by a significant margin is BERT, both evaluated with single

tokens and average tokens.
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Table 5.2: Sample validation predictions at epochs 1, 8, and 15 for Struct2Seq teacher forc-
ing=0.5 hidden dimension=768 SGD optimiser with a learning rate of η = 0.04
and word frequency weighting of log

(
1

freq

)
Target Prediction at epoch

1 8 15
if if if if
you you you you
are ask ask ask
turned ask ask whether
down or ask the
ask the the the
the the the whether
bank the bank whether
whether <eos> <eos> you
or <eos> <eos> or
not <eos> not not
they <eos> <eos> you
have <eos> <eos> have
used not <eos> turned
a <eos> <eos> to
credit <eos> <eos> problem
reference <eos> <eos> or
agency <eos> <eos> <eos>
<eos> <eos> <eos> <eos>

Table 5.3: WMD kNN document classification accuracies on the 20 Newsgroups dataset
for Word2Vec, Struct2Seq (using SGD and a learning rate of η = 0.04), BERT,
and RoBERTa word embeddings

Model Accuracy
Struct2Seq H = 512 37.37% (± 1.09)

Struct2Seq H = 768 log
(

1
freq

)
36.95% (± 1.09)

Word2Vec 62.75% (± 0.89)
BERT single token 65.18% (± 1.08)
BERT average token 65.79% (± 1.08)
RoBERTa average token 60.33% (± 1.10)
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Table 5.4: Similarity-distance correlation results with cosine distance for Struct2Seq (using
SGD and a learning rate of η = 0.04), BERT, RoBERTa, and Word2Vec word
embeddings

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Struct2Seq H = 512 -0.0004 0.0719 0.0162 -0.0099

Struct2Seq H = 768 log
(

1
freq

)
0.0601 -0.0336 -0.0769 0.0090

Word2Vec -0.5807 -0.4200 -0.3241 -0.2490
BERT single token -0.5513 -0.3864 -0.3617 -0.2099
BERT average token -0.5789 -0.3938 -0.3621 -0.2367
RoBERTa average token -0.1649 -0.0942 -0.2187 -0.0854

Table 5.5: Similarity-distance correlation results with Euclidean distance for Struct2Seq
(using SGD and a learning rate of η = 0.04), BERT, RoBERTa, and Word2Vec
word embeddings

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Struct2Seq H = 512 0.0872 0.0724 -0.0024 -0.0173

Struct2Seq H = 768 log
(

1
freq

)
0.0898 -0.0435 -0.0247 0.0130

Word2Vec -0.7706 -0.6150 -0.4426 -0.3565
BERT single token -0.6556 -0.4113 -0.4927 -0.2958
BERT average token -0.6440 -0.4118 -0.4810 -0.2773
RoBERTa average token -0.5231 -0.3389 -0.1801 -0.1041

Similarity-Distance Correlation results, presented in tables 5.4 and 5.5, show

Word2Vec achieves the strongest correlation scores across most datasets, with the

exception of the SimLex-999 dataset, where BERT word embeddings retain an ad-

vantage. Both Struct2Seq models achieve significantly weaker correlation scores

than the rest of the models, and the frequency weighting strategy does not seem to

substantially impact these scores. RoBERTa achieves considerably weaker corre-

lation scores than the BERT word embeddings. These patterns are consistent for

cosine and Euclidean distances, although the difference in correlation scores be-

tween RoBERTa and BERT and Word2Vec appears to be more pronounced with

cosine distances.
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Word Pair Distance Distributions for random, contextual, and synonym word

pairs are shown in figures 5.15 and 5.16 for the Word2Vec, Struct2Seq η = 0.04

H = 512, BERT single-token, BERT average-token, and RoBERTa average-token

word embeddings. The distance distributions for the Struct2Seq η = 0.04 H = 512

word embeddings are considerably larger than in all other models, which is es-

pecially evident in the Euclidean distance distributions (figure 5.16). Struct2Seq

η = 0.04 H = 512 word embeddings also exhibit very similar distributions across

all word pair groups, i.e. random, contextual, and synonym word pairs.

Figure 5.15: Cosine distance distributions between random, contextual, and synonymous
word pair sets for Word2Vec, Struct2Seq η = 0.04 H = 512, BERT single-
token, BERT average-token, and RoBERTa average-token word embeddings

As observed in the zoomed-in distance distributions for the Struct2Seq η =

0.04 H = 512 and Struct2Seq η = 0.04 H = 768 log
(

1
freq

)
word embeddings in fig-

ures 5.17 and 5.18, the distributions across all word pair groups, and even between

the two models, bear a very close resemblance and exhibit near identical central

tendencies (the white dots in the violin plots represent the mean of the distribution).

This is especially noteworthy when compared to the variations in distribution shapes

and central tendencies for the rest of the models observed in figures 5.15 and 5.16.

Lastly, figures 5.19 and 5.20 present only the pre-trained Word2Vec, BERT

average-token, and RoBERTa average-token word embeddings to minimise the vi-

sual artifacts caused by the large distance distributions in Struct2Seq word embed-

dings. These plots show that the structure-aware word embeddings produced by
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Figure 5.16: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for Struct2Seq η = 0.04 H = 512, BERT single-token,
BERT average-token, and RoBERTa average-token word embeddings

Figure 5.17: Zoomed-in cosine distance distributions between random, contextual, and
synonymous word pair sets for Struct2Seq η = 0.04 H = 512 and Struct2Seq
η = 0.04 H = 768 log

(
1

freq

)
word embeddings

BERT and RoBERTa have the unexpected pattern that contextual word pairs have

larger distance distributions than random word pairs. This pattern is especially clear

in the cosine distance distributions of BERT word embeddings. Despite this coun-
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Figure 5.18: Zoomed-in Euclidean distance distributions between random, contextual, and
synonymous word pair sets for Struct2Seq η = 0.04 H = 512 and Struct2Seq
η = 0.04 H = 768 log

(
1

freq

)
word embeddings

terintuitive behaviour, BERT obtained the highest accuracies in the WMD extrinsic

evaluation, which is a task based entirely on Euclidean distances and where, intu-

itively, contextual information would contribute significantly to document classifi-

cation.

Figure 5.19: Cosine distance distributions between random, contextual, and synonymous
word pair sets for Word2Vec, BERT average-token, and RoBERTa average-
token word embeddings
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Figure 5.20: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for Word2Vec, BERT average-token, and RoBERTa
average-token word embeddings

Analysis

The word embedding evaluations in this chapter were performed on sentence rep-

resentation models which do not explicitly train their word embedding units, which

opens the possibility that explicitly trained structure-aware word embeddings could

potentially achieve even better performance. Surprisingly, Word2Vec obtains lower

scores than BERT and RoBERTa in the WMD task, despite the fact that these are

word-level tasks and Word2Vec is the only model that explicitly trains word em-

beddings.

There appears to be a relation between the pattern of word pair distances

and the similarity-distance correlation results. Word2Vec, which outperformed

structure-aware word embeddings on the WordSim353 and SimVerb-3500 datasets,

exhibits word pair distance distributions that conform to my intuition that both se-

mantically similar and contextually related words should be embedded close to-

gether. However, BERT’s stronger correlation results on the SimLex-999 dataset,

together with its extrinsic evaluation scores, challenge the assumption that the em-

beddings of contextually related words should be placed close together. Inspecting

two examples from the SimLex-999 dataset with low similarity scores, tiny and

huge obtain a similarity score of 0.6/10, and dog and cat obtain a similarity

score of 1.75/10, these two pairs of words can be interpreted as being contextually
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related since they might appear in the same sentence more frequently than entirely

unrelated words. These examples offer a possible explanation for why the larger

contextual distances in BERT result in stronger correlation scores in the SimLex-

999 dataset, which focuses exclusively on semantic similarity. The larger distances

for contextual word pairs observed in BERT and RoBERTa can also be an effect of

their architecture: multi-layer attention models have no need to explicitly capture

contextual information in their word embedding layer, since this information will

be captured by the attention layers in their architecture. Context is captured by the

model’s structure, so its word embeddings are free to focus on semantic similarity.

Even though the Struct2Seq exhibits a convergent training behaviour and good

generalisation performance on its learning task, it would appear from the word

pair distance distributions that the Struct2Seq word embeddings are not distinguish-

ing random words from contextually or synonymically related words. This is fur-

ther confirmed by the weak correlation scores achieved by these models on the

similarity-distance correlation task. One possible explanation for this is that the

learning task is inadequate for the learning of word embeddings, and these em-

beddings could potentially benefit from incorporating an auxiliary loss term that

enforces semantically meaningful geometric properties on the word embeddings as

part of the training objective. Another possible explanation for the poor perfor-

mance of Struct2Seq word embeddings in these evaluations is that the current train-

ing regime is insufficient for the model to produce meaningful representations. One

of the main differences between the pre-trained Word2Vec, BERT, and RoBERTa

models and the Struct2Seq models presented here lies in the magnitude of train-

ing. While Struct2Seq models were trained on fewer than 10 million words, the

Word2Vec models were trained on 6 billion words, and the BERT and RoBERTa

models are trained on approximately 3.3 billion words.6

The patterns observed when training the Struct2Seq model with larger hidden

dimensions of 1,024 and 1,300, as well as with a larger word embedding dimension

6Devlin et al. (2018) report training BERT on a dataset made up of the BooksCorpus (800 million
words) and a Wikipedia dump (2.5 billion words). Liu et al. (2019), on the other hand, report the
dataset used to train RoBERTa as consisting of 160GB of text, but make no mention of the number
of words this refers to.
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of 768, showed no clear performance gains, hinting that the poor performance can-

not be easily improved by a simple increase in model size. Following the current

trend in representation learning models for NLP, the potential of the Struct2Seq ar-

chitecture might only be fully understood by scaling the complexity of the model

and the size of the training data by several orders of magnitude.7 However, as ev-

idenced by the decay in performance exhibited by RoBERTa, despite having the

same architecture and retaining most of the same training conditions as BERT, cer-

tain training conditions can have a large bearing on the quality of resulting model

even when keeping the same architectural and dataset choices. For instance, the fact

that RoBERTa achieves a lower document classification accuracy than BERT, can

potentially be explained by the removal of the inter-sentence (next sentence pre-

diction) task from its training regime, although as argued by Liu et al. (2019), this

task has no effect on the scores obtained by the RoBERTa model on the General

Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018a).

7The models in this thesis are trained on 107 words, or an order of magnitude of 7, while dataset
sizes for commercial NLP models are commonly over 109 words, or an order of magnitude of 9.



Chapter 6

Conclusions

In this thesis I explored the effect of integrating linguistic knowledge into represen-

tation learning approaches aimed at learning word embeddings. The main goal of

these approaches is to contribute towards the creation of domain-invariant represen-

tations of text that can be accessible even for low-resource languages, i.e. represen-

tation learning models that can be robustly trained at reasonable computational and

data costs. The expectation was that, by exploiting existing sources of linguistic

knowledge, distributional representation learning models would be able to produce

word embeddings that reflect more universal linguistic patterns and can therefore

be used more effectively across linguistic domains and NLP applications.

This thesis provides a comprehensive analysis of multiple word representation

techniques and approaches. The models evaluated in this research include publicly

available pre-trained word embeddings, feature-engineered word representations,

and my own word embedding models. For this comparison, I designed an auto-

mated pipeline to construct feature-engineered word representations that lever-

ages various existing lexical resources to construct word representations from se-

mantic, morphological, and lexical features (chapter 3). To provide a fair compari-

son of the different word representation approaches, I used a single word embedding

evaluation framework comprised of a set of extrinsic and intrinsic evaluation met-

rics. As part of this framework, I proposed a new word pair distance distribution

intrinsic evaluation (chapter 3) which gives an additional insight into the geometric

properties of word representation models.
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For the training of my own models, I defined a learning algorithm in order

to ensure that as many of the experimental variables remained fixed or with mini-

mal variation. Under these conditions, I trained a set of word embedding models

using my proposed a knowledge-augmentation technique (chapter 4) which incor-

porates semantic relations extracted from lexical knowledge bases into the distribu-

tional learning of word embeddings through word co-occurrence models. To control

the flow of augmented information while training these knowledge-augmented word

embeddings, I implemented a novel embedding partitioning method (chapter 4).

Additionally, I designed and trained a new Struct2Seq model (chapter 5) that pro-

duces word and sentence embeddings by learning a mapping between a dependency

parse tree and its originating sentence.

The empirical results presented in this thesis suggest that training conditions,

such as the choice of optimiser, the learning rate hyperparameter, or the vocab-

ulary size, can have a large effect on the quality of a word representation model

regardless of its underlying architecture or the characteristics of its training data.

As evidenced by the experiments in this thesis, training conditions can have intri-

cate and unpredictable interactions, and fully understanding the effect of varying

a single training condition requires further work in this direction through meticu-

lously controlled experiments. The work I presented here can help inform common

heuristics in NLP research and applications, such as considerations regarding the

choice of vocabulary and comparative advantages and disadvantages of commonly

used word representation models.

Limitations and Future work

The models and approaches proposed in this thesis have contributed to the grow-

ing field of knowledge-aided representation learning for NLP. The experiments and

analysis presented here show that it is possible to incorporate linguistic knowledge

into the distributional learning of word embeddings, but the full potential of these

approaches remains to be explored. Despite the known advantages that the incor-

poration of pre-existing linguistic knowledge contributes to the distributional learn-
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ing of word embeddings (Vashishth et al., 2019; Glavaš and Vulić, 2019; Vulić and

Mrkšic, 2018; Faruqui et al., 2015), the experiments conducted in this thesis present

no conclusive evidence to further advance that claim. While the models and ap-

proaches presented in this research fall short of showing a benefit of this integration

when compared against large-scale word embedding models, their applicability to

low-resource languages remains to be explored in future work.

Even though keeping all experimental conditions fixed while training and eval-

uating all word representation models allowed for a clear comparison of these mod-

els and their individual strengths and shortcomings, this setup is restrictive when at-

tempting to train more competitive models. The next step forward would therefore

be to explore the full potential of a single one of the models presented here by train-

ing it on larger datasets while also increasing the model’s complexity (e.g. number

of layers or dimensions, adding attention layers). Specifically, the Struct2Seq model

could obtain more competitive performance by training it on the full version of the

BNC data, as well as by incorporating an attention layer that helps the decoder focus

on specific nodes of the Tree-LSTM encoder. In addition, training a competitive ver-

sion of these models would also require searching for the optimal hyperparameters

for a given set of experimental conditions, as observed in the experiments in chapter

5 where the optimal learning rate and optimiser changed depending on the size of

the training data. The experiments conducted for this research raise questions about

the pertinence of restricting experimental conditions when comparing different NLP

approaches. Given the complexity of the models and training regimes presented in

this work, these restrictions can hamper the optimisation process and produce sub-

optimal models as a result. These results suggest that it might be more productive

to fully optimise training conditions and hyperparameters for each individual model

and explore different alternatives that enable a like-for-like comparison of the fully

optimised models.

Regarding possible avenues for future research, the potential of tree structures

in NLP research still remains underexplored. Compositional architectures, such

as Tree-LSTMs and Graph neural networks (GNNs) still have untapped potential,
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especially for processing and interpreting the structural information contained in

language. This family of models has been explored in the context of Natural Lan-

guage Generation (NLG) (Koncel-Kedziorski et al., 2019; Schmitt et al., 2020) and

can potentially benefit the field of text representation learning.

The concept of partitioning embeddings can also be more thoroughly studied

by applying it to existing models that are trained on a joint loss. The potential of

partitioned embeddings in the decoupling of structural information from semantic

similarity that I attempted in chapter 4 will be better understood after applying it to

a wider variety of learning algorithms. The generality of this approach can also be

analysed theoretically by running controlled tests that gauge the informational flow

to each of the different subspaces in the embedding. Additionally, new evaluation

metrics can be proposed that look into the geometric and semantic properties of

different subspaces.

On the theoretical side, a more comprehensive analysis on the effect of the

choice of vocabulary is still needed in the NLP community. A systematic review on

the effect of vocabulary sizes and the advantages and disadvantages of word vs. sub-

word vocabularies, tokenisation methods, and the impact of coverage in a model’s

performance can be very beneficial to the NLP research community. Furthermore,

many empirical results in NLP rely on evaluations that use different distance met-

rics, while the specific impact of using one distance metric instead of another is

still not well-understood in the context of word embeddings, especially given that

the models that are being evaluated can be very high-dimensional. An in-depth To

the best of my knowledge, a systematic analysis of the mathematical and geomet-

ric properties of different distance metrics in high-dimensional spaces with respect

to their effects on word embedding learning and evaluation is still missing in the

NLP literature. Such an analysis could help NLP researchers make more informed

decisions when constructing their model evaluation frameworks.

The experiments in this thesis, as part of a growing body of research in the

existing NLP literature, suggest that the integration of knowledge bases and sta-

tistical learning can benefit a wide variety of NLP approaches. Of special interest
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as a future work direction is the applicability of these approaches in low-resource

languages. Linguistic knowledge has the potential to reduce the training data re-

quirements for NLP models by providing shortcuts to generalisable linguistic pat-

terns during training. If applied successfully, the incorporation of knowledge into

statistical learning approaches could help democratise NLP by reducing the com-

putational and data requirements for training competitive nlp models.



Appendix A

Knowledge-Augmented Word

Embeddings - Additional Results

Additional results on knowledge-augmented word embeddings not presented in

chapter 4.

Figure A.1: Cosine distance distributions between random, contextual, and synonymous
word pair sets for unaugmented models: Word2Vec, Word2Vec init no-syns,
and Rand init no-syns
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Figure A.2: Cosine distance distributions between random, contextual, and synonymous
word pair sets for randomly initialised embeddings with varying augmentation
ratios

Table A.1: Similarity-distance correlation results with cosine distance for knowledge-
augmented partitioned word embeddings

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec init no-syns -0.1453 -0.0959 -0.0966 -0.0693
Word2Vec init 25% syns 25% part -0.1173 -0.1845 0.0445 0.0351
Word2Vec init 25% syns 50% part -0.0267 -0.1160 0.0988 0.0282
Word2Vec init 25% syns 75% part -0.0645 -0.1332 0.0143 0.0172
Word2Vec init 25% syns -0.0900 -0.0402 -0.1044 -0.0456
Rand init no-syns -0.0486 -0.0315 -0.0320 -0.0393
Rand init 25% syns 25% part 0.0203 -0.0842 0.0523 0.0546
Rand init 25% syns 50% part -0.1054 -0.0451 0.0396 0.0507
Rand init 25% syns 75% part -0.0017 -0.0758 -0.0180 0.0264
Rand init 25% syns -0.0875 -0.0360 -0.1191 -0.0704



176

Table A.2: Similarity-distance correlation results with cosine distance for knowledge-
augmented partitioned word embeddings (separate partitions)

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.5807 -0.4200 -0.3241 -0.2490
Word2Vec init no-syns -0.1453 -0.0959 -0.0966 -0.0693
Word2Vec init 25% syns 25% part -0.1173 -0.1845 0.0445 0.0351
Word2Vec init 25% syns 25% part (augm) -0.1250 -0.1683 0.0155 0.0317
Word2Vec init 25% syns 25% part (unaugm) -0.0944 -0.1605 0.0498 0.0358
Word2Vec init 25% syns 50% part -0.0267 -0.1160 0.0988 0.0282
Word2Vec init 25% syns 50% part (augm) -0.0643 -0.1340 0.0456 0.0065
Word2Vec init 25% syns 50% part (unaugm) 0.0066 -0.0798 0.1084 0.0361
Word2Vec init 25% syns 75% part -0.0645 -0.1332 0.0143 0.0172
Word2Vec init 25% syns 75% part (augm) -0.0084 -0.0798 -0.0109 0.0035
Word2Vec init 25% syns 75% part (unaugm) -0.1264 -0.1994 0.0515 0.02976
Rand init no-syns -0.0486 -0.0315 -0.0320 -0.0393
Rand init 25% syns 25% part 0.0203 -0.0842 0.0523 0.0546
Rand init 25% syns 25% part (augm) -0.0198 0.0103 0.0075 0.0149
Rand init 25% syns 25% part (unaugm) 0.0335 -0.1013 0.0693 0.0655
Rand init 25% syns 50% part -0.1054 -0.0451 0.0396 0.0507
Rand init 25% syns 50% part (augm) -0.0318 -0.0077 0.0047 0.0383
Rand init 25% syns 50% part (unaugm) -0.0980 -0.0219 0.0649 0.0568
Rand init 25% syns 75% part -0.0017 -0.0758 -0.0180 0.0264
Rand init 25% syns 75% part (augm) 0.0197 -0.0286 -0.0362 0.0038
Rand init 25% syns 75% part (unaugm) -0.0374 -0.1025 0.0162 0.0513

Figure A.3: Cosine distance distributions between random, contextual, and synonymous
word pair sets for Word2Vec initialised 25% augmented partitioned embed-
dings
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Table A.3: Similarity-distance correlation results with Euclidean distance for knowledge-
augmented partitioned word embeddings (separate partitions)

WordSim353
Sim Rel SimLex-999 SimVerb-3500

Word2Vec -0.7706 -0.6150 -0.4426 -0.3565
Word2Vec init no-syns -0.5144 -0.3207 -0.1957 -0.0952
Word2Vec init 25% syns 25% part -0.4323 -0.2703 -0.1175 -0.0586
Word2Vec init 25% syns 25% part (augm) -0.2316 -0.1282 -0.0998 -0.0550
Word2Vec init 25% syns 25% part (unaugm) -0.3813 -0.2448 -0.0929 -0.0393
Word2Vec init 25% syns 50% part -0.3496 -0.2562 -0.0595 -0.0630
Word2Vec init 25% syns 50% part (augm) -0.2888 -0.2085 -0.0434 -0.0810
Word2Vec init 25% syns 50% part (unaugm) -0.2327 -0.1682 -0.0419 -0.0277
Word2Vec init 25% syns 75% part -0.4378 -0.2808 -0.1500 -0.0924
Word2Vec init 25% syns 75% part (augm) -0.3764 -0.2370 -0.1539 -0.0909
Word2Vec init 25% syns 75% part (unaugm) -0.3056 -0.2390 -0.0471 -0.0499
Rand init no-syns -0.3694 -0.2347 -0.1206 -0.0817
Rand init 25% syns 25% part -0.3666 -0.2113 -0.1366 -0.0599
Rand init 25% syns 25% part (augm) -0.2960 -0.0871 -0.1367 -0.0877
Rand init 25% syns 25% part (unaugm) -0.2423 -0.1736 -0.0840 -0.0280
Rand init 25% syns 50% part -0.4139 -0.1919 -0.1019 -0.0438
Rand init 25% syns 50% part (augm) -0.2803 -0.1086 -0.1036 -0.0507
Rand init 25% syns 50% part (unaugm) -0.2691 -0.1284 -0.0568 -0.0134
Rand init 25% syns 75% part -0.3500 -0.2277 -0.1682 -0.0534
Rand init 25% syns 75% part (augm) -0.2861 -0.1663 -0.1767 -0.0764
Rand init 25% syns 75% part (unaugm) -0.1816 -0.1638 -0.0661 -0.0054

Figure A.4: Cosine distance distributions between random, contextual, and synonymous
word pair sets for randomly initialised 25% augmented partitioned embeddings
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Figure A.5: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 25%
partitioned embeddings

Figure A.6: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 25%
partitioned embeddings
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Figure A.7: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 25%
partitioned embeddings

Figure A.8: Euclidean distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 25%
partitioned embeddings
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Figure A.9: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in Word2Vec initialised 25% augmented and 25%
partitioned embeddings

Figure A.10: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for partitions in Word2Vec initialised 25% augmented
and 25% partitioned embeddings
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Figure A.11: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in randomly initialised 25% augmented and 25%
partitioned embeddings

Figure A.12: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for partitions in randomly initialised 25% augmented
and 25% partitioned embeddings
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Figure A.13: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in randomly initialised 25% augmented and 25%
partitioned embeddings

Figure A.14: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for partitions in randomly initialised 25% augmented
and 50% partitioned embeddings
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Figure A.15: Cosine distance distributions between random, contextual, and synonymous
word pair sets for partitions in randomly initialised 25% augmented and 75%
partitioned embeddings

Figure A.16: Euclidean distance distributions between random, contextual, and synony-
mous word pair sets for partitions in randomly initialised 25% augmented
and 75% partitioned embeddings
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