14 research outputs found

    A multimodal feature learning approach for sentiment analysis of social network multimedia

    Get PDF
    Investigation of the use of a multimodal feature learning approach, using neural network based models such as Skip-gram and Denoising Autoencoders, to address sentiment analysis of micro-blogging content, such as Twitter short messages, that are composed by a short text and, possibly, an image

    Tagging Personal Photos with Transfer Deep Learning

    Full text link
    The advent of mobile devices and media cloud services has led to the unprecedented growing of personal photo collections. One of the fundamental problems in managing the increasing number of photos is automatic image tagging. Existing research has pre-dominantly focused on tagging general Web images with a well-labelled image database, e.g., ImageNet. However, they can only achieve limited success on personal photos due to the domain gap-s between personal photos and Web images. These gaps originate from the differences in semantic distribution and visual appearance. To deal with these challenges, in this paper, we present a novel transfer deep learning approach to tag personal photos. Specifi-cally, to solve the semantic distribution gap, we have designed an ontology consisting of a hierarchical vocabulary tailored for per-sonal photos. This ontology is mined from 10, 000 active users i

    Object Detection in High Resolution Aerial Images and Hyperspectral Remote Sensing Images

    Get PDF
    With rapid developments in satellite and sensor technologies, there has been a dramatic increase in the availability of remotely sensed images. However, the exploration of these images still involves a tremendous amount of human interventions, which are tedious, time-consuming, and inefficient. To help imaging experts gain a complete understanding of the images and locate the objects of interest in a more accurate and efficient way, there is always an urgent need for developing automatic detection algorithms. In this work, we delve into the object detection problems in remote sensing applications, exploring the detection algorithms for both hyperspectral images (HSIs) and high resolution aerial images. In the first part, we focus on the subpixel target detection problem in HSIs with low spatial resolutions, where the objects of interest are much smaller than the image pixel spatial resolution. To this end, we explore the detection frameworks that integrate image segmentation techniques in designing the matched filters (MFs). In particular, we propose a novel image segmentation algorithm to identify the spatial-spectral coherent image regions, from which the background statistics were estimated for deriving the MFs. Extensive experimental studies were carried out to demonstrate the advantages of the proposed subpixel target detection framework. Our studies show the superiority of the approach when comparing to state-of-the-art methods. The second part of the thesis explores the object based image analysis (OBIA) framework for geospatial object detection in high resolution aerial images. Specifically, we generate a tree representation of the aerial images from the output of hierarchical image segmentation algorithms and reformulate the object detection problem into a tree matching task. We then proposed two tree-matching algorithms for the object detection framework. We demonstrate the efficiency and effectiveness of the proposed tree-matching based object detection framework. In the third part, we study object detection in high resolution aerial images from a machine learning perspective. We investigate both traditional machine learning based framework and end-to-end convolutional neural network (CNN) based approach for various object detection tasks. In the traditional detection framework, we propose to apply the Gaussian process classifier (GPC) to train an object detector and demonstrate the advantages of the probabilistic classification algorithm. In the CNN based approach, we proposed a novel scale transfer module that generates enhanced feature maps for object detection. Our results show the efficiency and competitiveness of the proposed algorithms when compared to state-of-the-art counterparts

    Variational techniques for medical and image processing applications using generalized Gaussian distribution

    Get PDF
    In this thesis, we propose a novel approach that can be used in modeling non-Gaussian data using the generalized Gaussian distribution (GGD). The motivation behind this work is the shape flexibility of the GGD because of which it can be applied to model different types of data having well-known marked deviation from the Gaussian shape. We present the variational expectation-maximization algorithm to evaluate the posterior distribution and Bayes estimators of GGD mixture models. With well defined prior distributions, the lower bound of the variational objective function is constructed. We also present a variational learning framework for the infinite generalized Gaussian mixture (IGGM) to address the model selection problem; i.e., determination of the number of clusters without recourse to the classical selection criteria such that the number of mixture components increases automatically to best model available data accordingly. We incorporate feature selection to consider the features that are most appropriate in constructing an approximate model in terms of clustering accuracy. We finally integrate the Pitman-Yor process into our proposed model for an infinite extension that leads to better performance in the task of background subtraction. Experimental results show the effectiveness of the proposed algorithms

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Automated detection in benthic images for megafauna classification and marine resource exploration: supervised and unsupervised methods for classification and regression tasks in benthic images with efficient integration of expert knowledge

    Get PDF
    Schoening T. Automated detection in benthic images for megafauna classification and marine resource exploration: supervised and unsupervised methods for classification and regression tasks in benthic images with efficient integration of expert knowledge. Bielefeld: Universitätsbibliothek Bielefeld; 2015.Image acquisition of deep sea floors allows to cast a glance on an extraordinary environment. Exploring the rarely known geology and biology of the deep sea regularly questions the scientific understanding of occurring conditions, processes and changes. Increasing sampling efforts, by both more frequent image acquisition as well as widespread monitoring of large areas, currently refine the scientific models about this environment. Accompanied by the sampling efforts, novel challenges emerge for the image based marine research. These include growing data volume, growing data variety and increased velocity at which data is acquired. Apart from the included technical challenges, the fundamental problem is to add semantics to the acquired data to extract further meaning and gain derived knowledge. Manual analysis of the data in terms of manually annotating images (e.g. annotating occurring species to gain species interaction knowledge) is an intricate task and has become infeasible due to the huge data volumes. The combination of data and interpretation challenges calls for automated approaches based on pattern recognition and especially computer vision methods. These methods have been applied in other fields to add meaning to visual data but have rarely been applied to the peculiar case of marine imaging. First of all, the physical factors of the environment constitute a unique computer vision challenge and require special attention in adapting the methods. Second, the impossibility to create a reliable reference gold standard from multiple field expert annotations challenges the development and evaluation of automated, pattern recognition based approaches. In this thesis, novel automated methods to add semantics to benthic images are presented that are based on common pattern recognition techniques. Three major benthic computer vision scenarios are addressed: the detection of laser points for scale quantification, the detection and classification of benthic megafauna for habitat composition assessments and the detection and quantity estimation of benthic mineral resources for deep sea mining. All approaches to address these scenarios are fitted to the peculiarities of the marine environment. The primary paradigm, that guided the development of all methods, was to design systems that can be operated by field experts without knowledge about the applied pattern recognition methods. Therefore, the systems have to be generally applicable to arbitrary image based detection scenarios. This in turn makes them applicable in other computer vision fields outside the marine environment as well. By tuning system parameters automatically from field expert annotations and applying methods that cope with errors in those annotations, the limitations of inaccurate gold standards can be bypassed. This allows to use the developed systems to further refine the scientific models based on automated image analysis
    corecore