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Abstract 

While the amount of unstructured text data continues to grow within the clinical 

domain, little modelling is carried out in comparison to other industries. My research 

goal in this thesis is to present machine learning models that can effectively discern 

the relationships within medical notes, tying symptoms and other elements to an 

associated medical speciality. 

There have been many studies in the clinical domain using natural language 

processing that have seen successes with document classification. However, the 

solutions proposed often rely on an external medical dictionary to annotate the data. 

My goal is the development of a classifier that shows that these relationships can be 

extracted from the original, unstructured text. Furthermore, the standard approach to 

documenting research in this area revolves around focusing on a single type of 

machine learning algorithm, be it the method of feature generation or the specific 

machine learning model chosen for the task. The results shown in this thesis address 

this issue by providing a comparative demonstration of multiple feature generation 

methods alongside a plethora of traditional machine learning and neural network-

based models for classification. Lastly, existing research encounters issues with the 

procurement of suitable medical data, often defaulting to using datasets that have 

been curated for a specific task. This research instead uses real patient data from 

Digital Health and Care Wales (DHCW), selected randomly from cases between 

2018 and 2019. 

The results produced in this thesis found that frequency-based feature generation 

performed substantially better than word embeddings when using a traditional 

machine learning model like logistic regression. However, using word embeddings 

with a neural network architecture yielded more comparable results. For the machine 

learning models themselves, the support vector machine (91%) and two transformer 

deep learning models (93%) produced the best results. 
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Chapter 1  Introduction 

Natural language processing is a subfield of computer science that specialises in 

marrying linguistics with statistical methodologies and artificial intelligence. Whilst 

research into statistical modelling of language data has been around since the 1980s, 

the past twenty years have seen an upsurge in interest in exploiting such data across 

a great many sectors, including business, law, and healthcare. This interest originates 

from the increased ability to perform data driven decision making with the modern 

availability of both data and the required hardware. However, as algorithms and 

techniques used within Natural Language Processing are rapidly evolving, there is 

conflicting research into which techniques are considered best practices. This, 

coupled with the fact that a dataset is usually built for a purpose and is therefore 

significantly different from another dataset, presents a unique issue for 

generalisation. This thesis aims to evaluate available approaches for performing 

document classification with the intent of helping medical professionals by 

supplying insight through a knowledge repository. 

This chapter provides an introductory overview of the study’s context and wherein 

the research problem lies, followed by the research aims, objectives and questions 

alongside the significance and limitations of the study. 

1.1 Problem Statement 

The provision of accurate information between clinicians is a necessity for 

safeguarding patient health. Existing systems like the NHS Wales Clinical Portal 

provide consultants with electronic access to a patient’s entire medical record when 

making treatment decisions during a referral process as opposed to a single 

handwritten note by the patient’s general practitioner. It is accepted that medicine is 

a complex discipline, requiring years of training before a member of the public can 

become a practicing clinician. Yet, even with such training, clinicians may need to 

incorporate additional materials like medical dictionaries, past experiences, and a 

consultation with another clinician to ensure the correct decision is made to best 

meet a patient’s needs. When looking specifically at patient transferrals, this 

complexity can cause differences in opinions between the two clinicians involved. 

Each party will have a separate set of information influenced by the general 

practitioner being the only one having direct communication with the patient. 
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Studies have shown that machine learning techniques can be incorporated into the 

clinical domain with reasonable success. Research has been carried out in natural 

language using patient narratives (Buchan, et al., 2017; Munkhdalai, et al., 2018) for 

document classification and in radiology reports for image recognition (Sevenster, et 

al., 2015; Zech, et al., 2018). However, there are underlying issues with existing 

research in this field. Firstly, due to the nature of the data in use, it is not always 

possible to access a suitable dataset. An example of this would be Hassanpour, Bay, 

& Langlotz (2017) in which the dataset of radiology reports only numbered forty 

documents. This thesis combats this by working on three intrinsically different 

datasets of sizes. A presenting complaints dataset of 839,330, a urology specific 

dataset of 25,451, and a general referral dataset numbering 111,128.  

Another issue surrounding existing research into machine learning within the clinical 

domain is the specificity of the research targets. Even when looking at benchmarking 

challenges, the goal is to create a system that can decide whether the clinical data 

refers to one of very few classes (e.g., smoker, past smoker or non-smoker) 

(McCormick, et al., 2008; Uzuner, et al., 2008; Wicentowski & Sydes, 2008). 

Alternatively, publications show that the created systems work for a rigid, structured 

dataset that includes a document and additional markers for patient biometrics that 

can help direct the system to its goal.  

Many of the research publications feature the inclusion of a pre-existing named 

entity system like cTAKES (clinical Text Analysis and Knowledge Extraction 

System, (Savova, et al., 2010)) or MetaMap (Aronson, 2001) to convert examples of 

medical terms contained within documents to codes derived from the Unified 

Medical Language System (Bodenreider, 2004), an extensive medical data dictionary 

that contains other medical vocabularies like SNOMED Clinical Terms (Snomed 

International, 2022). Whilst there are newer attempts at document classification in 

the clinical domain without the inclusion of clinical ontologies (Hughes, et al., 

2017), the issue with procuring data reappears wherein the research has to be 

completed by using structured, well-written clinical research papers gathered from 

PubMed rather than actual examples of full-bodied letters written by a clinical 

professional or a member of staff as used in this thesis. The affirmation of the 

potential to create a system without additional ontologies comes from recent 

examples in the clinical domain (Cohen, et al., 2016; Hughes, et al., 2017; Weng, et 
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al., 2017). The research showed that factors including the presentation of the data to 

the system through word vector representations and the classifier chosen were far 

more influential on the accuracy of the system than the inclusion of any medical 

ontology (0.005% difference in accuracy between the system including the best 

curated ontological subset and the baseline model). 

1.2 Research Aim and Objectives 

The aim of this research is to show the effectiveness of document classification using 

medical notes without the inclusion of additional domain knowledge.  

The intention was to create a system that could successfully discover which semantic 

elements (symptoms etc.) present within a doctors’ note attributed to the assigned 

medical specialities and patient priorities. The resulting classifications could then 

exist as an additional information source to support clinicians. 

In order to achieve this aim, the following objectives have been integrated into this 

work: 

• To investigate machine learning and its existing use within the clinical 

domain alongside the fundamental decision making of clinicians when 

referring patients to hospital. 

• To assess the impact that different feature generation techniques can have on 

the ability for a machine learning algorithm to model relationships in the 

data. 

• To develop a natural language processing classification pipeline that takes in 

raw text data and outputs labels according to medical speciality or priority. 

• To evaluate the contributing factors to a successful classification including 

feature generation, model selection and feature reduction. 

1.3 Thesis outline 

This PhD thesis consists of seven chapters and is structured as follows: 

Chapter 2 provides an overview into the clinical referral process before introducing 

the concepts of Natural Language Processing and the associated classification 

pipeline. It fulfils the first research objective by discussing the existing literature 

relevant to the project and the issues that can occur with medical datasets such as a 

lack of publicly available data. 
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Chapter 3 outlines different vectorisation methods that can be utilised to transform a 

dataset consisting of unedited medical documents into a machine-readable format. 

Furthermore, this chapter also shows how feature reduction techniques can take 

place during pre-processing to reduce the size of an overall dataset without removing 

significant variance. 

Chapter 4 covers the setup for experiments including the hardware used to create, 

train, and implement the models presented in this research. This is followed by an 

explanation for the use of all the different libraries used in this research. The chapter 

then outlines the steps taken to evaluate and clean each of the datasets before 

modelling. The chapter then defines the different methods used for clustering and 

classification in this thesis including any associated changes in hyperparameters.  

Chapter 5 presents all of the findings of this research across the three datasets. The 

initial findings using the presenting complaints dataset are discussed, which showed 

the potential for applying machine learning techniques to previously untapped data. 

Then, clustering and classification results are shown for the urology dataset. This 

section outlines the best vectorisation, classification and feature reduction methods 

discovered when interacting with this dataset including a threshold-based feature 

elimination method. The same approach is then taken with the general referral’s 

dataset, wherein the accuracy of the models proved significantly higher on a general 

dataset than a specialised dataset including the latest transformer model specialised 

to this type of data. The final part of Chapter 5, 5.4, outlines the results that show 

that the goal of this research is valid. The support system indicates the top three 

classes associated with the classification with an accuracy of 99% and can offer the 

probabilities for each class to the end user. 

Chapter 6 covers the main conclusions for this research and includes a discussion 

relating to each of the three research questions outlined in Chapter 1. The 

contributions to knowledge are then outlined based around the unique perspective 

that has been permitted with these datasets. Finally, the future work system outlines 

how the successes of the research could be translated into a live environment and the 

added steps that would need to be taken to ensure patient safety. 

The appendices contain additional information relating to the datasets used in this 

research as well as some more detailed clustering and classification reports. 
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Figure 1.1 Thesis Outline
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Chapter 2  Background 

This chapter provides background into the problem space of the research. It begins 

by outlining the existing manual process of referring a patient from general 

practitioner to consultant with insights into the issues surrounding clarification or 

missing information that may occur. After the clinical consultation pathway is 

discussed, an overview of Natural Language Processing is introduced including the 

pipeline method used to describe the steps taken to transform a set of unorganised 

data into usable documents and an eventual target outcome. 

2.1 Clinical consultation pathways 

Before considering the introduction of a system into an existing manual process it is 

important to consider the context of the situation. Within medicine, there are several 

pathways a patient may take over the course of their treatment. For instance, the 

initial treatment by a doctor or nurse in an accident & emergency department with a 

pathway to either a hospital admission or discharge. An example of the patient 

pathway discussed in this thesis is depicted in Figure 2.1. A patient will attend a 

consultation with a general practitioner for a medical issue and either be prescribed a 

course of treatment, sent for tests, or referred to a specialist. This referral may be to 

confirm a diagnosis, introduce specific treatment plans as well as giving specialist 

advice (Foot, et al., 2010).  
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Figure 2.1 Patient pathway to specialist referral 

The natural language aspect of the pathway this thesis is interested in comes during 

the specialist referral stage. A general practitioner in Wales will write a letter to a 

specialist via an electronic clinical portal (Welsh NHS Confederation, 2020) 

alongside patient biometrics and medical history. While the clinical portal has 

separate fields for patient attributes and medical history, experience dealing with the 

data used in this thesis and conversations with clinical professionals found that the 

important information is often duplicated within the main body of the letter 
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alongside the information about the symptoms that the general practitioner has found 

or have been described by the patient.  

Speaking with a specialist consultant, the level of detail contained within these 

letters is important for ensuring proper patient care as the consultant has no direct 

contact with the patient prior to the referral (NHS Wales, 2017). The referral letter 

needs to address any questions that the consultant may have regarding the case. 

Specifically: 

• Are the symptoms correct?  

o There may be a situation where the patient describes ailments that 

cannot be triaged at a general practitioner’s office. These ailments 

may be misinterpreted due to the language used by the patient. 

Occurrences of this issue may be mitigated by an associated medical 

history if available. 

• Is the priority assigned correctly?  

o A consultant has no direct contact with the patient until the first 

consultation and relies on the language used by the general 

practitioner to convey the urgency of the patient’s condition. 

• Is the patient being referred to the right specialist?  

o Medicine is a complex science in which a series of symptoms may 

refer to one or more conditions. For example, this may occur in when 

the patient’s age would affect the correct outcome; an elderly patient 

suffering from joint pain may need to be referred to either a 

rheumatologist (specialist in bones, muscles, and joints) or a specialist 

in geriatric medicine. 

Should the specialist consultant have any concerns about the above three questions, 

the referral may be returned to the general practitioner for more clarification. This 

may be as simple as confirming a change in priority by the consultant or the request 

for more tests to be carried out (such as an electrocardiogram) before the consultant 

will agree that there is a need to see the patient in a specialist clinic. The time spent 

adjusting the referral conditions come at a loss of time till treatment for the patient 

and an increase in workload for both the general practitioner and the consultant.  
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2.2 Natural Language Processing 

Natural language denotes a method of communication that has evolved organically 

alongside humanity, both written and verbal. Natural language systems build upon 

existing natural language sources to learn and infer from. These systems have 

become an integrated part of daily life, augmenting existing systems or replacing 

manual approaches, from digital assistants like Amazon’s Alexa to spam filtering 

and mobile text auto-predictions. 

Natural language processing as a discipline describes the research and systems 

carried out to convert natural language data such as text or speech into a structured 

data format that can be manipulated by a computer system whilst creating an 

understandable output upon completion. These implementations are categorised into 

three major areas (Liu, et al., 2017). These areas are:  

• Natural language generation refers to producing a human readable 

representation of a non-linguistic input (Reiter & Dale, 1997) such as text or 

speech (Gatt & Krahmer, 2018).  

• Natural language understanding focuses on discovering the underlying links 

such as semantic or contextual markers, between a natural language input and 

a desired output (Semaan, 2012).  

• Natural language interaction describes systems designed for direct human 

communication with a computer interface and receive a specific response, a 

process used in modern technologies such as online chatbots (Dale, 2016) .  

Due to the nature of most Natural Language Processing tasks, it is commonplace to 

find that methodologies span across more than one branch of the discipline.  

The theory that underpins this thesis and a great many other Natural Language 

Processing projects is the distributional hypothesis. The distributional hypothesis 

states that “a word is characterized by the company in which it keeps” (Firth, 1957), 

meaning terms that are similar to each other will appear in similar contexts. This 

hypothesis forms the basis for statistical semantics and later natural language 

processing techniques such as latent semantic analysis, clustering, and document 

classification. It is the idea that a document, an image, or a section of speech is a 

collection of terms that make up a whole and that whole can be compared with other 

collections of terms to determine semantic similarity.  
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However, written language is not constructed in such a way that each word is 

individually important and conveys the same meaning without its surrounding 

context. The example in Figure 2.2 shows that although most of the words are 

present in both sentences, which would satisfy a similarity measure like the Jaccard 

index, the lexical semantics of the sentences are completely different. The 

homonyms green and leaves transform the sentences depending on morphological 

structure and contextual markers. The approaches taken to alleviate this issue using 

word vector representations will be introduced and discussed in the Chapter 3 of the 

thesis. 

The tree has green leaves. 

The ball leaves the green. 

Figure 2.2 Similar sentences that are semantically different 

 

2.3 Natural language pipelines 

A natural language processing pipeline outlines the different steps that need to be 

taken to transform a raw text input into a series of associated outputs. Whilst textual 

information contains rich knowledge that can be used for machine learning, the issue 

with working with natural language is that it is inherently noisy. As such, 

approaching a Natural Language Processing task is best viewed as a pipeline formed 

of several smaller sub-tasks each contributing to an overall goal. 

Some of the issues facilitating the necessity of sub-tasks are items like common 

words present within natural language. Grammatical articles like ‘the’ and ‘an’ 

provide no potential learning opportunities to a machine learning model. 

Additionally, as humans we can understand that the length of a sentence is irrelevant 

and separate to the semantics contained within. However, when it comes to the input 

to a machine learning model for classification, such as a support vector machine or 

an artificial neural network, a computer expects all information to be presented with 

a fixed length (Mikolov, et al., 2013).  
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Figure 2.3 Classification pipeline including label generation. 
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A generalised outline of a natural language classification pipeline for text 

classification is shown in Figure 2.3. Each stage in the pipeline shows a step taken to 

modify the data itself and movement towards creating the final output.  

The first data manipulation happens in the pre-processing stage upon entering the 

system. This stage involves cleaning the data of common occurrences within textual 

data that will influence the quality of any output (Honnibal & Montani, 2017). 

Removing punctuation, adding lexical markers (such as part of speech) needed for 

other tasks such as named entity recognition (Manning, et al., 2014) or splitting a 

large document into individual sentences to be analysed by the system separately are 

all examples that may occur during pre-processing.  

For classification, an associated class label needs to be assigned to every document. 

The dataset being used may already be pre-labelled or an unsupervised algorithm 

like clustering may be used to produce training labels based on the resulting 

groupings (Károly, et al., 2018). Whilst manual labelling may allow a classifier to 

better generalise the relationships in the dataset, a key issue surrounding medical 

data specifically is the lack of readily available annotated data. 

Once the text has been cleaned, the next stage is feature engineering/selection. This 

stage transforms the cleaned text into a series of interpretable vectors usable by a 

machine learning model. Feature engineering can be broken down into two distinct 

sub-categories: frequency-based methods such as a bag of words or TF-IDF 

(Aizawa, 2003), and context-based techniques like word embeddings (Mikolov, et 

al., 2013). Both approaches are outlined in Section 3.3. To achieve the best set of 

features for a task, the introduction of stop words at this stage can help prevent the 

models that follow from focussing on unimportant words that appear in the text.  

With a vector of features representing the each original document, the information is 

then used to train a machine learning model. This training may be unsupervised or 

supervised learning depending on whether the dataset has associated labels. 

The final stage in the pipeline involves evaluating the output from the earlier steps 

on a previously unseen portion of the dataset. The format of the output will depend 

on the goal of the system. For text generation, the output may form a singular word 

to finish a sentence or an entire answer when looking at a questioning and answering 

system. For text classification, the output will be the predicted label. Performance 
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metrics such as precision, recall and f-score (Sokolova & Lapalme, 2009) are used to 

evaluate the ability of the machine learning model to understand and generalise 

relationships in the data presented during the training stage.  

As the development of a natural language pipeline is an iterative process, insights 

garnered from the outputs of a model can be used to adapt stages in the pipeline to  

better achieve the goal. These adjustments can be made to a small elements in the 

pipeline: for instance adding or removing vocabulary words to a stop word list in 

data pre-processing, or a large element replacing the classification model. 

2.4 Existing literature surrounding clinical data modelling 

For many years, clinical data modelling has been a topic and has been approached 

using numerous ways, including rule-based, machine learning, deep learning, and 

hybrid systems (Fu, et al., 2020). The common trend across many publications is that 

the rate at which biomedical literature and electronic health records have and will 

continue to expand has left the ability to distil information and create hypotheses for 

research unmanageable (Spasic, et al., 2005). Instead, the authors discuss the idea 

that including a domain-specific ontology is necessary for representing the semantics 

of a clinical dataset. While incorporating such ontologies may benefit or be required 

for an information extraction task with specific biomedical indicators such as drug 

and protein names, this added layer of clinical expertise may not be needed for text 

classification. 

For an approach to incorporate an ontology, that ontology must be an exhaustive 

dictionary of terms and each terms associated features. In the clinical domain, the 

ontology used is the metathesaurus provided through the Unified Medical Language 

System (UMLS) (Bodenreider, 2004), in which each term is mapped to a unique 

identifier (often abbreviated to CUI in literature). Due to the complex nature of a 

medical dictionary, an additional type unique indicator (TUI) is also mapped to 

terms to distinguish between terms with multiple meanings. In addition to a 

dictionary of terms, the UMLS metathesaurus also holds a series of controlled 

vocabularies used by health organisations worldwide. Examples of these include the 

ICD-10 (World Health Organization, 2004)  and SNOMED clinical terms used by 

Digital Health and Care Wales (DHCW). 
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A Natural Language Processing system that leverages the UMLS Metathesaurus will 

need to create a dictionary lookup method or incorporate a pre-built system. Of the 

existing systems, the National Library of Medicine’s MetaMap (Aronson, 2001) and 

the Mayo Clinic’s clinical Text Analysis and Knowledge Extraction System 

(cTAKES) (Savova, et al., 2010) are the most used across literature, including the 

most accurate approaches to named entity recognition challenges (Uzuner, et al., 

2011; Uzuner, et al., 2012). Whilst cTAKES incorporates an extended dictionary of 

UMLS terms and relevant synonyms to extract clinical concepts, the method relies 

on an exact matching approach for concept extraction. This rigidity means that 

unexpected acronym usage, word shortening, or spelling mistakes will cause a token 

to be unreadable by the system and be mislabelled. Other approaches like 

MaxMatcher (Zhou, et al., 2006) implement a fuzzy pattern matching technique 

based on the idea that it is common to have term variations within biological 

concepts, which reduces the accuracy of an exact matching approach. This idea has 

been taken further by Soldaini and Goharian (2016) with QuickUMLS to capture 

lexical variation that occurs within the English language. QuickUMLS provides a 

faster method for mapping clinical concepts from a document to its unique UMLS 

identifier when compared to the cTAKES exact matching approach whilst retaining a 

high degree of accuracy. However, the literature primarily uses cTAKES as the 

choice for medical named entity recognition. 

Table 1 Natural language processing challenges using clinical domain data 

Challenge Organiser Challenge Task Dataset Size 

i2b2/VA  

(Uzuner, et al., 2007) 

Anonymisation and 

classification of smoking 

patients 

Training: 398 documents 

Testing: 104 documents 

i2b2/VA  

(Uzuner, et al., 2011) 

Concept extraction, assertion 

and relationship classification 

Training: 394 documents 

Testing: 477 documents 

I2b2/VA 

(Uzuner, et al., 2012) 

Concept extraction and entity 

co-referencing 

Training: 688 documents 

Testing: 454 documents 

i2b2 

(Sun, et al., 2013) 

Temporal relationship 

extraction 310 documents 

ShARe/CLEF eHealth 

(Suominen, et al., 2013) 

Concept extraction Training: 200 documents 

Testing: 100 documents 
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Due to the lack of pre-annotated clinical data availability, a lot of published research 

uses Natural Language Processing challenge datasets. These datasets are described in 

Table 1 with their organisation, challenge task and dataset size. While the datasets 

presented in these challenges provide an opportunity for community-based learning, 

they exemplify some of the issues with clinical Natural Language Processing. The 

challenges are highly specialised towards creating an expert system and have a small 

amount of data to train off of. Whilst the accuracy of systems produced due these 

challenges is reasonably high, there is no testing available to check how each one 

would perform on a non-curated dataset. In addition to this, the most accurate 

method found for the smoking challenge (Uzuner, et al., 2007) was to include 

additional outside data to train the model on (Clark, et al., 2007). This improved 

performance indicates that the size of the initial data was not sufficient enough to 

effectively achieve the classification task set out in the challenge. 

Further research has been carried out using these challenge datasets in conjunction 

with deep learning techniques. Wu et al. (2018) implement a recurrent neural 

network model to improve upon the results of previous challenge entrants, training 

on clinical examples present within the MIMIC-III database (Johnson, et al., 2016). 

Similarly  Lee et al. (2020) and Zhang et al. (2021) provide pre-trained models for 

tackling clinical named entity recognition tasks like the 2010 i2b2 challenge 

(Uzuner, et al., 2011) using a transformer and a recurrent neural network architecture 

respectively, achieving greater results than those shown by the initial challenge 

competitors. Zhang et al. (2018) present another deep learning method for concept 

extraction by combining recurrent neural networks with the attention mechanisms 

used in transformers. This approach was then evaluated against the existing tagging 

systems MetaMap, cTakes and QuickUMLS on the ShAre (Suominen, et al., 2013) 

challenge dataset. The approach achieves comparable accuracy to the other deep 

learning methods used on similar tasks while outperforming the three methods 

directly compared. 

Whilst concept extraction or named entity recognition can be the goal of the 

research, it may also be used in an attempt to create a system for accurate text 

classification. The rest of this section provides an overview into research carried out 

into document classification, focusing on work carried out using healthcare data. 

Classification is the task of associating dataset members with a label. There are a 
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several variables to consider when selecting an approach to a classification problem. 

The first involves the variation in labels available to the model, known as the 

supervision level. These approaches to supervision are:  

• An unsupervised approach like clustering where none of the data is annotated 

with an associated label. This approach groups individuals into categories 

based solely on the data present, learning unexpected associations or 

relationships between data. 

• A semi-supervised approach can be where the test data and a subset of the 

training data is annotated. Implementing a semi-supervised approach like 

label propagation (Zhu & Ghahramani, 2002) emphasises that similar data 

points will appear close together in Euclidean space. The algorithm can then 

begin to associate data groups together and assign labels based on the 

existing labels in the smaller subset. The resulting “complete” set of labels 

can be used as a fully annotated dataset.  

• A supervised approach is where all elements of the dataset are labelled. This 

is the common approach to text classification but requires pre-processing of 

the data, sometimes in conjunction with the help of expert knowledge in the 

field to which the dataset belongs. This approach is again one of the reasons 

why some of the challenges in Table 1 are heavily used in document 

classification due to the lack of publicly available clinical datasets. 

The number of target labels will also affect the accuracy of different classification 

methods. An algorithm that achieves the best accuracy in a binary classification 

problem (two labels) may not outperform other algorithms for a multi-class 

classification problem or, at times, is not suitable. Additionally, the balance of 

classes within the dataset also needs to be considered. Different models will perform 

better if each class is equally represented within the data compared to the same 

problem in an imbalanced dataset. Working with an imbalanced dataset in a 

classification problem risks overestimating how well a model has fitted the data. For 

instance, if a single class represents a large portion of the data and every data point 

gets labelled as that one class, the model can look accurate whilst it has failed to 

model any of the other classes present. A suitable performance metric must be 

chosen to evaluate the model, such as the F-Measure or Matthew’s Correlation Co-

efficient (MCC). 
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Research produced by Tang et al. (2015) employs many methods to classify four 

publicly available datasets for sentiment analysis. These datasets provide a 

multiclass classification problem, with three of them including five labels, and the 

fourth having ten class labels. Whilst the research carried out does not belong 

specifically within the clinical domain, the models created by Tang et al. (2015) have 

been referenced as state of the art models in other papers. The paper compares 

support vector machines, convolutional neural networks, and recurrent neural 

networks for the task, alongside the feature generation techniques discussed in 

Chapter 3. The report shows that for the non-clinical classification task presented the 

recurrent neural network outperformed the other methods with the exception being 

the dataset with ten class labels in which it performed considerably worse. For 

feature generation, Tang et al. (2015) found that implementing a paragraph vector 

mechanism for creating word embeddings performed best. However, the paper does 

not consider vector space models available like TF-IDF as an alternative feature 

engineering method to word embeddings. 

Inside the clinical domain, sentence and document level text classification has been 

implemented for many subdisciplines like patient phenotyping, drug relationships 

and speciality extraction. Recent research into these areas focuses on comparing 

traditional machine learning models to deep learning models. Rajendran and 

Topaloglu (2020) compare approaches to determining patients’ smoking status in 

both a binary classification problem and a three label multi-class problem. The 

research compares both the impact of the feature generation methods term 

frequency-inverse document frequency and word embeddings as well as different 

classification models. The results show that a convolutional neural network 

performed best in binary classification but lost to the Naïve-Bayes approach in multi-

label classification. Whilst the approach achieves reasonable results, elements of the 

research need attention. As previously seen, clinical data has an issue with a lack of 

available data. The data presented in this research only belongs to 781 patients and 

does not state whether the data is balanced or imbalanced. The research also shows 

that with the recurrent neural network approach, there is an increase in the accuracy 

of the multi-class problem when increasing the vocabulary to include bi-grams (two-

word phrases). However, this work is not echoed for the other models to test if this it 

could improve their accuracy. 
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For larger multi-label classification problems, work done by Gehrmann et al. (2018) 

compares the use of cTAKES to leverage concept information from the text 

documents to the application of a convolutional neural network architecture when 

phenotyping patients into ten categories. The valuable information gathered from the 

research is that the transformation of raw text into identified concept markers did not 

significantly improve the accuracy of the other used models, showing that the 

relationships needed for classification already exist with the text without the addition 

of ontologies bloating the pipeline. The research also states that performing term 

frequency-inverse document frequency on the data improved the performance of all 

the models. Research done by Krsnik et al. (2020) tries to classify different knee 

conditions based upon information found within radiology reports using Naïve-

Bayes, logistic regression, support vector machines, random forest classifiers and 

convolutional neural networks. The research is completed using a small dataset size 

of 1,295 radiology reports with unbalanced classes. The best model presented 

achieves high accuracy with the three largest classes in the dataset; however, it 

struggled to accurately portray examples of the smaller classes.   

When narrowing down the problem space of text classification to areas wherein text 

classification had been used on clinical specialities, work carried before this thesis 

by Weng et al. (2017) must be considered. The work involves producing a pipeline 

similar to the one described in this thesis apply traditional and deep learning models 

to the problem space. What was found by Weng et al. (2017) was that the traditional 

classifiers employing word vector representations for feature engineering (see 

Section 3.2) presented a better F1-Score accuracy than those achieved by deep 

learning methods using word embeddings. This mirrors the results shown later in this 

thesis (see Section 5.2.2 and Section 5.3.2). 

Whilst the classification pipeline used in this thesis aligns with the methodology 

shown in Weng et al. (2017), there are notable differences that separate the two. The 

first is evaluating the feature space using feature generation and parameter selection. 

To improve the initial presentation of features to a model, Weng et al. (2017) have 

chosen to include cTAKES (Savova, et al., 2010) to extract medical concepts within 

the text, converting all variations of a concept to a single unique identifier. The work 

carried out in this thesis avoids the inclusion of such ontologies, choosing to attempt 

to exploit an idea that the same concept may be presented differently depending on 
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the specialism being referred to. By relying on actual words and phrases instead of 

these identifiers, this approach removes the opportunity for an ontology to miss a 

partial phrase in a later live example that would form an out of vocabulary word. 

Another key difference occurs when looking at the selection and cleaning of the 

datasets for the system. The work in this thesis uses all the data available for the 

purpose of classification whereas Weng et al. (2017) employ two curated datasets. 

The first is a small set of notes containing just 431 letters across six specialties. 

Although much larger at 542,744 notes, the second dataset encounters an issue 

wherein the selection process removes 83.2% of all clinical notes (reducing the 

number to 91,237). This occurs because the labelling technique used relies on 

consultant doctor’s specialism rather than the individual letter. Weng et al. (2017) 

removed all notes correlating to a specialist that had more than one speciality 

assigned to avoid mislabelling cases. The size difference is not attributed to this 

alone as there has also been a manual decision to limit the specialities present to the 

top twenty-four. 

There is no guarantee that a specialist cardiologist sees a patient under the guise of a 

potential cardiology issue and that the actual outcome is an alternative, similar 

specialism. In comparison, the dataset used in this thesis for general specialism 

classification is labelled by the general practitioner on a per case basis which helps 

(but does not guarantee) to ensure a correct label is assigned to each document. The 

data itself and associated specialisms were also randomly selected from a larger 

dataset of NHS Wales documents rather than curated. As explained further in 4.2.3, 

the only removal of documents from the dataset involved those assigned to a 

speciality with a limited selection that could be considered significant or where test 

documents were mixed into the database. The approach taken towards data 

procurement only reduces the dataset size by 7.5% instead of 83.2%. 

The issue with selecting just a portion of the overall dataset for research purposes is 

not limited to Weng et al. (2017). Table 2 presents examples of research that extract 

a small training and testing set compared to the overall dataset available. Cocos et al. 

(2017) was forced to exclude a substantial portion of their dataset due to a reliance 

on crowdsourcing to label the training data. However, the benefits to using a small 

subset of data for research purposes was not presented in the other publications listed 

in Table 2. For example, Cohen et al. (2016) explicitly state that maintaining both a 
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balanced dataset and increasing the size of their training set from forty to two 

hundred examples increased the F1-score by ten percent. However, the authors do 

not try and expand their study by including other examples from their already 

available set of data.      

Table 2 Reductions in used data by clinical domain researchers 

Other research into medical speciality classification includes Hughes et al. (2017). A 

convolutional neural network approach was used to classify medical text into 

twenty-six categories based upon pre-classified encyclopaedic articles (Merck Sharp 

& Dohme, 2021). Work completed found that bag of words and Word2Vec 

outperformed Doc2Vec when implementing the neural network. Whilst the paper 

states that the data was split into balanced training and testing sets for each category 

of four thousand and one thousand respectively, there is no mention of individual 

categories’ performance. Instead, there is just an overall accuracy for each feature 

generation method. In other languages, Faris et al. (2020) implements a support 

vector machine method incorporating binary particle swarms to extract medical 

Author Research Goal Total Dataset Size Used Dataset Size 

Gustafson et 

al. (2017) 

Classifying patients for atopic 

Dermatitis conditions 

2.5 million clinical 

notes 

43,268 related notes 

Training: 562 

Testing: not disclosed 

Cohen et al. 

(2016) 

Predicting surgery candidates 

for paediatric epilepsy 

Clinical progress 

notes for 6,343 

patients 

Training: 40 – 200  

Testing: not disclosed 

Cocos et al. 

(2017) 

Crowdsourcing electronic health 

record labelling 

10,880 unlabelled 

sentences 

Training: 100-717  

 

Castro et al. 

(2017) 

Classifying breast imaging 

radiology reports:  

machine learning versus  

a rule-based system   

2 million radiology 

reports 

Rule-based: 1560 

ML Training: 360 

ML Validation: 60 

ML Testing: 179  

Fodeh et al. 

(2018) 

Classifying if documents  

contain pain assessment 

indicators. 

99,481 clinical 

notes 

Training:705 

Testing: 353 

Weng et al. 

(2017) 

Classifying medical subdomains 542,744 clinical 

notes 

Training and Testing: 

91,327 
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specialties from a question answering system. The research achieves accuracies in 

the mid-eighties for their approach, with an increase in performance over other 

traditional machine learning approaches on their dataset. In comparison to the data 

used in actual clinical letters, however, the questions in their dataset are concise with 

less noise to filter out.  

2.5 Chapter conclusion 

This chapter provides an introduction into the problem space in which this thesis sits. 

The premise involves augmenting the existing process of hospital referrals which are 

currently carried out through manual interpretation of a general practitioner’s letter 

by a hospital consultant. Natural language pipelines (see Section 2.3) can be built to 

mimic portions of this existing clinical pathway, such as classifying a set of free text 

documents into a series of associated speciality labels. 

The last part of this chapter details insights into the existing academic approaches to 

using Natural Language Processing within the clinical environment. Whilst existing 

literature showed accurate results, it highlighted two key issues when working with 

medical documents. Firstly, there is a significant lack of publicly available datasets, 

with most academics having to rely on small challenge datasets. The second 

involved specialising the data, either to a specific single yes or no classification task 

or by pruning the data to facilitate better outputs. To avoid these drawbacks, this 

research ensured the use of medical datasets with a significant size that haven’t been 

curated to fit a specific challenge goal or to increase the chances of obtaining a better 

end result. The results shown in this thesis can then be a fair representation of each 

models’ ability to classify the data.  

The following chapter outlines the first two stages of the Natural Language 

Processing pipeline discussed in Section 2.3, wherein documents are cleaned and 

transformed into machine-readable inputs for use in future machine learning models. 
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Chapter 3  Natural Language Feature Engineering 

This chapter provides an overview of the first two stages of a Natural Language 

Processing pipeline (see Figure 3.1), wherein data pre-processing and feature 

engineering techniques are used to create a meaningful semantic representation of 

the data in a format that a machine learning model can use for classification.  

 

 

Figure 3.1 Representation of the first two stages of a classification pipeline 
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3.1 Initial data pre-processing 

As stated in Chapter 2, raw text data is inherently noisy. The following section 

focuses on the first steps taken as each document enters the pipeline including 

processes that underpin other more complex Natural Language Processing tasks. 

3.1.1 Tokenisation 

Tokenisation is the process of separating a sentence or document down into 

individual words/tokens (Manning, et al., 2014). A tokeniser is used across Natural 

Language Processing tasks as most tasks are processed on a word level basis. This 

includes traditional machine learning models using word vectors and newer 

transformer-based architectures. 

The approach to tokenisation was introduced into computer science by Webster and 

Kit (1992), wherein a token is described as the natural language equivalent of an 

atom (a textual element that need not be decomposed further) and the basis upon 

which all processes are built from.  

The tokenisation process is commonly done alongside the use of regular expressions 

(Bird, et al., 2009) to filter out meaningless elements in the documents that consist of 

(but are not limited to) tabs, punctuation, capital letters and special characters. One 

set of such rules involves incorporating the Penn Treebank annotated corpus 

(Marcus, et al., 1993). Initially designed for part of speech tagging, the corpus has 

been used to provide rules for tokenising documents of more complex occurrences 

including quotes and contractions. However, due to the age of the corpus (which ran 

between 1989-1996), some issues may arise. For instance, the use of language has 

evolved, containing elements that may impact the ability for the treebank to be useful 

in situations with a more modern style of writing (e.g., social media). Whilst the 

inclusion of such rules may benefit the overall accuracy of a system, more recent 

pre-trained corpora of word vectors and embeddings such as GloVe (Pennington, et 

al., 2014)(see Section 2.3.2) split contractions directly into prefix and suffix pairs 

instead of expanding them. This prevents issues where two or more words share the 

same contraction. Whilst this is rare, it can occur when dealing with possessives such 

as ‘he’s’, which can be expanded into ‘he has’ or ‘he is’. There can be a significant 

difference in meaning between the words ‘has’ and ‘is’, especially when dealing 

with a dataset in a clinical scenario.  
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A step that may be taken at the tokenisation stage is the inclusion of a stop words 

list. Stop words refer to inherently noisy elements within textual data that may 

provide little to no benefit to any Natural Language Processing task. A stop word list 

can include some of the possessives discussed above, reducing the need to expand 

contractions. There are some default stop word dictionaries that can be downloaded 

for multiple languages, provided by both NLTK (Bird, et al., 2009) and SpaCy 

(Honnibal & Montani, 2017). However, these curated lists will need updating to fit 

the context area of a dataset.  

The question that must be asked when tokenising is whether singular words are 

enough to provide an accurate depiction of the semantics of a document. In cases 

such as a clinical environment, conditions, tests, and treatments often span multiple 

words. Including a wider window for tokenisation also requires a stop word list to be 

updated. In the examples referenced above, words such as ‘no’ are present in the stop 

word list and therefore omitted from any feature engineering. However, when 

including phrases at the tokenisation stage, the need for these negatory terms is 

useful. For instance, being able to differentiate between documents containing the 

phrase ‘lesions present’ and ‘no lesions present’ could be imperative to deciding 

whether a patient would get attributed to the dermatology speciality or not.     

3.1.2 Stemming and lemmatisation 

Both stemming and Lemmatisation are morphological approaches to pre-processing 

textual data. Stemming is a process first published by Lovins (1968) in which Lovins 

described a 2-step, longest-matching algorithm to reduce words to their root form by 

removing inflectional affixes. For example, the words ‘travel’, ‘travelled’ and 

‘travelling’ can all be reduced to the stem ‘travel’ whilst still retaining their meaning. 

Porter (1980) adapted this approach and implemented a 5-step algorithm for suffix 

stripping. Porter (2001) further developed this idea by introducing a programming 

language called Snowball, which included an updated stemming algorithm dubbed 

Porter2.  

Issues can occur when adding stemming to a natural language pipeline due to the 

complexity of language. Without optimization, a stemming algorithm can run into 

two pitfalls. The first pitfall that occurs is over stemming. The stemming algorithm is 

overzealous, reducing different words with different meanings to the same root word 
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or the root word’s meaning is different to the original. For example, the Porter 

stemmer reduces ‘meaning’ to ‘mean’. While the original word is a participle used to 

explain a concept, the derived root form can mean the same, hurtful to someone or a 

mathematical way of averaging. The other pitfall, under stemming, describes when 

the algorithm does not find the same root stem for two inflexions of the same word 

(an inflexion being a change in word form such as tense). This issue arises more 

often in Romance languages such as French where articles differ based on the 

subject’s gender. There are further issues in languages such as Welsh and German 

where the language includes multipart words (Dale, et al., 2000).    

To alleviate the issues that arise with stemming, the process of lemmatisation does 

not focus purely on removing suffixes from words. Instead, the process transforms 

words into their lemma which may include adding or replacing the word entirely as 

shown below: 

   Stem     -  Worse -> wors 

   Lemma -  Worse -> bad 

The lemmatisation process relies on additional external sources to complete these 

more complex transformations.  At minimum, two corpora are required: a dictionary 

of all words and a corpus of stop words. A more complex lemmatiser will also 

require the inclusion of a part of speech tagger to differentiate between verbs and 

nouns, akin to the example shown in Section 2.1 with the homonym ‘leaves’ having 

two meanings in different contexts. The lemmatisation process works by scanning 

the corpora for a matching word and replacing it when appropriate. However, 

employing a lemmatiser requires a substantial increase in both processing power and 

time compared to the stemming process described above.  

The inclusion of either transformation into a Natural Language Processing pipeline is 

to try and improve the generalisation of a model by reducing the vocabulary and the 

model’s ability to overfit to individual words present within a dataset. Whilst the 

above statement is true, there are scenarios in which the inclusion of either 

transformation would be detrimental to the accuracy of a model. The first is the 

context area of the dataset, a scenario where a series of non-standard words may get 

reduced and lose their semantic meaning. The second relies on the methods used for 

feature engineering that are discussed later in this chapter. A lemmatised vocabulary 
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will change the associated frequencies for features in a bag of words vector 

representation. This effect would be compounded further when using a different 

vectorisation approach such as term frequency-inverse document frequency. The 

weight of each word changes with the number of times it occurs within the document 

set. 

3.2 Feature engineering: frequency-based vector representation 

As previously stated, there are two distinct methods for feature generation. The first 

is frequency-based word vector representation to create vector space models. This 

section provides an overview of the methods behind vector space models before 

detailing the two encoding methods used for experiments later in this thesis. 

 

Figure 3.2 Vector space model for three documents with a vocabulary size of three 

For a vector space model, the goal is to create a representation of each document (d) 

in n-dimensional feature space (Salton, et al., 1975). To accomplish this, first, a 

vocabulary of features (both words and phrases) is extracted from the dataset’s 

entirety. A document is then transformed into a 1-dimensional vector of feature 

weights using an encoding method. Iterating this process across the entire dataset 

creates a sparse, semantic matrix with the dimensions of D x V (the set of all 

documents x the total set of vocabulary features). 



 

27 

 

After encoding, each document can then be expressed as a vector such that d = (w1, 

w2…wn), wherein w is the encoded weight for each term in the vocabulary (Lee, et 

al., 1997). Figure 3.2 provides an example of a vector space model for a dataset that 

consists of three documents (d1, d2, Q) and a vocabulary of three terms (t1, t2, t3). As 

shown, the combined weighted value of each of the presented terms determines the 

final position of a document within the vector space.  

Creating a vector space model allows for the similarity between two documents to be 

measured. An example of such a measure is the cosine similarity shown Figure 3.2 

where the distance between two vectors is equal to the cosine (θ) of the angle 

between them.  

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑄, 𝑑) = cos 𝜃 =  
𝑄⃗ ∙𝑑 

||𝑄⃗ || ||𝑑 ||
 =  

∑ 𝑤𝑞,𝑡𝑤𝑑,𝑡
𝑛
𝑖=1

√∑ 𝑤𝑞,𝑡
2𝑛

𝑖=1  √∑ 𝑤𝑑,𝑡
2𝑛

𝑗=1

  
(1) 

where: 

• Q is the new query document 

• d is an existing document for comparison 

•  
𝑄⃗ ∙𝑑 

||𝑄⃗ || ||𝑑 ||
 is the dot product of the two different document vectors 

(Gudivada & Rao, 2018) 

To create these comparable unit vectors, the initial document vectors require 

normalisation to reduce the bias towards documents of longer lengths. This 

normalisation factor is the denominator in (1) and is explained by: 

 

where: 

• w is vocabulary term within a document vector 

• n is equal to the length of the document vector (Bagga & Baldwin, 1998) 

With the creation of these structured document vectors, machine learning models 

used for document classification can interpret and evaluate the contents of a 

document and classify individuals into labelled sets. 

  

 
√𝑤1

2 + 𝑤2
2 + ⋯+ 𝑤𝑛

2 
(2) 
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The method chosen for encoding the vocabulary within a document set will 

dramatically vary values for individual feature weights. Whilst the binary encoding 

method (dummy encoding (Boole, 1854)) is noted as a precursor to other vector 

space model encoding methods, the bag of words and TF-IDF methods discussed in 

Section 3.2.1 and Section 3.2.2 respectively. 

 

3.2.1 Bag of features 

The Bag of Features approach to feature selection employs a strategy based upon an 

idea set out by Harris (1954). The theory states that the distributional structure of any 

document can be represented by the frequency of terms relative to the other terms 

present within the document and is complete without the inclusion of other added 

rules. When applying this approach to textual data, a “Bag of Words” approach 

means creating a vector containing frequency counts of words present across a 

dataset (Guyon & Elisseeff, 2003). The approach has been extended outside of 

textual information to include visual object recognition tasks (Li, et al., 2010; 

Sarwar, et al., 2019; Zhang, et al., 2010) by either labelling sections of the images or 

extracting combinations of letters and numbers. The rest of this section describes an 

example of Bag of Words in action.  

Taking the following three letters as the entire dataset, the two steps taken by the 

approach are as follows. 

Letter 1 - The man does not have arthritis. 

Letter 2 - The man had arthritis. 

Letter 3 - The man has been congested. 

As mentioned in Section 3.2, the first step iterates over each document present 

within a dataset and creates a vocabulary of terms consisting of words and/or 

phrases. There are ten unique occurrences of terms within the above examples when 

looking at words alone. The next step then creates a vector for each of the documents 

in the dataset and assigns frequency values to each term within the vocabulary as 

shown in Table 3. The resulting fixed length vectors are understandable by a 

machine learning model to be used for clustering or classification purposes. 
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Table 3 Bag of Words feature table 

 

From the information shown in Table 3, some of the issues of using the Bag of 

Words approach can be seen. Increasing the size of the dataset from two to three 

documents increased the vocabulary size by thirty percent on single words alone. 

The inclusion of phrases would exponentially increase the dimensionality of the 

vectors created. However, without including phrases a level of context is lost. A task 

requiring an elevated level of granularity may not be able to differentiate between a 

vector containing a term and a negated term as is often found within medical letters. 

The final issue arises with the approach’s method regarding each term as equally 

important. From the example in Table 3, the Bag of Words approach considers each 

letter inherently similar because they all share the same two starting terms.  

  

 Letter 1 Letter 2 Letter 3 

The 1 1 1 

man 1 1 1 

does 1 0 0 

not 1 0 0 

have 1 0 0 

arthritis 1 1 0 

had 0 1 0 

has 0 0 1 

been 0 0 1 

congested 0 0 1 
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3.2.2 Term Frequency–Inverse Document Frequency 

Term Frequency-Inverse Document Frequency (TF-IDF) is an alternate approach to 

vector space model creation that can be used to counteract the issue that arises within 

a Bag of Words model about term importance. The method builds upon the idea of 

term specificity first described in Spark Jones (1972) to determine the semantic value 

of any present term in a document. The idea states that a highly generalised term is 

less likely to be an influencing factor when measuring the representation of an 

overall document (Aizawa, 2003). The formula used to create a TF-IDF vector 

representation of a document can be seen in (3).   

 

 𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑 , 𝐷) = 𝑡𝑓(𝑡 , 𝑑) × 𝑖𝑑𝑓(𝑡, 𝐷) (3) 

where:   

• t is a vocabulary term 

• d is a single document 

• D is the set of all documents 

• tf is the term frequency - tf(t, d) = 
ƒ𝑑(𝑡)  

|𝑑|
 

• ƒ𝑑(𝑡) is the frequency of term t in document d 

• idf is the inverse document frequency -  𝑖𝑑𝑓(𝑡, 𝐷) =

log ( 
|𝐷|

|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}|
) 

 

Simply put, the TF-IDF values are a product of the featured terms within a document 

in correlation to the number of appearances of that term across the entire dataset. The 

term frequency part of the formula deals with the terms solely inside the document 

analysed. It ranks the unique terms (t) by occurrence over the number of words 

present within the document. Whilst the examples used in Table 4 all use a single 

occurrence of each of the terms, it shows the difference in the frequency values 

dependent on the length of the given document. 
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Table 4 Term frequency table as part of TF-IDF 

 Letter 1 Letter 2 Letter 3 

The 1/6 1/4 1/5 

man 1/6 1/4 1/5 

does 1/6 0/4 0/6 

not 1/6 0/4 0/6 

have 1/6 0/4 0/6 

arthritis 1/6 1/4 0/6 

had 0/6 1/4 0/6 

has 0/6 0/4 1/5 

been 0/6 0/4 1/5 

congested 0 0 1/5 

Table 5 shows the impact of adding an extra “the” to Letter 3 and that without the 

second half of the TF-IDF formula a non-descript article would end up as the most 

important feature. 

Table 5 Term frequency table for updated letter 3 

The inverse document frequency part of the formula transforms the term frequency 

counts into representations of term relevancy. The weight of each term present 

within a document is calculated by taking the log of the number of documents in a 

dataset divided by the number of documents containing the term.  

Table 6 outlines the calculations made to evaluate the inverse document frequency 

for each of the ten terms present in the example vocabulary. With this information, it 

can be seen that when dealing with this half of the formula, adding a duplicate term 

to a document would not change the outcome as the presence of each vocabulary 

term is denoted as a binary value. 

 

 the man does not have arthritis had has been congested 

Letter 3 2/6 1/6 0 0 0 0 0 1/6 1/6 1/6 
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Table 6 Inverse document frequency values for the example data 

 Letter 1 Letter 2 Letter 3 IDF Value 

The 1 1 1 Log(3/3) = 0 

Man 1 1 1 Log(3/3) = 0 

Does 1 0 0 Log(3/1) = 0.477 

Not 1 0 0 Log(3/1) = 0.477 

Have 1 0 0 Log(3/1) = 0.477 

Arthritis 1 1 0 Log(3/2) = 0.176 

Had 0 1 0 Log(3/1) = 0.477 

Has 0 0 1 Log(3/1) = 0.477 

been 0 0 1 Log(3/1) = 0.477 

congested 0 0 1 Log(3/1) = 0.477 

Combining the two halves of the formula results in the matrix shown in Table 7. 

Common terms across all three documents are seen as unimportant, whilst those that 

differentiate between the documents are weighted higher. With such a small dataset, 

the words that appear in only one document are significantly higher than those that 

appear in two. With a much larger dataset like the ones discussed in Chapter 4, the 

importance of more common grammatical terms used to connect two ideas (i.e., 

“does” and “not”) is subdued.  

Table 7 Final TF-IDF matrix for the example dataset set out in Section 2.2.1 

 Letter 1 Letter 2 Letter 3 

 Formula Value Formula Value Formula Value 

the 1/6 * 0 0 1/4 * 0 0 1/6 * 0 0 

man 1/6 * 0 0 1/4 * 0 0 1/6 * 0 0 

does 1/6 * 0.477 0.0795 0 * 0.477 0 0 * 0.477 0 

not 1/6 * 0.477 0.0795 0 * 0.477 0 0 * 0.477 0 

have 1/6 * 0.477 0.0795 0 * 0.477 0 0 * 0.477 0 

arthritis 1/6 * 0.176 0.294 1/4 * 0.176 0.044 0 * 0.176 0 

had 0 * 0.477 0 1/4 * 0.477 0.119 0 * 0.477 0 

has 0 * 0.477 0 0 * 0.477 0 1/6 * 0.477 0.80 

been 0 * 0.477 0 0 * 0.477 0 1/6 * 0.477 0.80 

congested 0 * 0.477 0 0 * 0.477 0 1/6 * 0.477 0.80 
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3.2.3 Observations 

Vector space models for document representations provide an understandable 

method for presenting structured data to a machine learning model from a series of 

unstructured text documents. While collecting the frequency of terms across a 

dataset is simplistic compared to later techniques in Section 3.3, the methods 

presented in this section have shown to produce accurate results (Tang, et al., 2015). 

When comparing bag of words and term frequency-inverse document frequency, the 

first is easier to interpret when looking at the matrix and how values are generated 

but the latter produces a better result on machine learning tasks (Weng, et al., 2017). 

Work carried out by Fan and Zhang (2018) shows that the model chosen for 

classification will dictate which feature generation is best and also states that the 

inclusion of phrases (bi-grams and tri-grams) had a greater influence on the machine 

learning model’s ability to classify. However, Fan and Zhang (2018) did not 

compare the ability of term frequency-inverse document frequency to the bag of 

words when using feature sets that included phrases. 

It is important to note that implementing a stop word list as described in Section 

3.1.1 will significantly change the number of variables stored in the matrix which are 

produced due to one of the vector space models described in this section. Using the 

standardised set of stop words from the Natural Language Tool Kit (2009) Python 

library will result in a matrix containing only the terms “the”, “man”, “arthritis”, and 

“congested”. However, the formula for calculating the term frequency-inverse 

document frequency will still take the removed terms into account when determining 

the length of each document. 

An issue when using vector space models is that the value assigned for each 

word/phrase does not consider the context of a document. Without this extra level of 

context, terms outside of the current word/phrase window are treated as individual 

occurrences that have no relevance to each other. The approaches outlined in the 

next section of this thesis describe an alternative feature selection method that aims 

to counteract this issue by defining a term as a collection of its surroundings, with 

the idea being to discover the meaning of a word rather than just its occurrence. 
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3.3 Feature engineering: word embeddings 

Whilst the vector space models discussed in Section 3.2 focussed on frequency-

based methods for representing words, word embeddings rely on the belief that terms 

can be predicted from contextual markers present in the surroundings in which they 

exist (Baroni, et al., 2014), expanding on the idea presented in Firth (1957). These 

relationships can be built in different ways, with the primary methods involving 

neural networks (see Section 3.3.1) or co-occurrence matrices (see Section 3.3.2) 

with stochastic gradient descent to train the final embedding matrix. 

Creating an embedding matrix for use in a machine learning model follows a 

different structure to a vector space model. Whilst both methods create a vocabulary 

of terms, the second dimension of an embedding matrix is an unlabelled series of 

trainable parameters of a predefined length. The length of the dimension will depend 

on the relevant dataset, with a higher dimension space creating a more granular set of 

relationships at the cost of training time and processing power. By approaching 

feature generation in this way, the resulting embedding matrix should be 

significantly smaller than one created when using a vector space model approach 

whilst keeping a valid representation of the terms within the dataset rather than on a 

per document basis. As a result of keeping dimensions low, the approach aims to 

avoid the “curse of dimensionality”, wherein Euclidian distances between terms 

become less meaningful as the dimensionality increases (Bengio, et al., 2003). This 

occurs when multiple dimensions are equal between documents, as will happen when 

dealing with a sparse matrix like the vector space models discussed in Section 3.2.  

Word embeddings are an unsupervised method of feature generation the 

relationships used as a dimension are less explainable than the vector space models. 

There is no direct, traceable correlation between the inputted words and the 

outputted embeddings like there is with the frequency-based representations.  

To explain the goal of forming relationships through word embeddings, an example 

has been created in Figure 3.3. The example employs the medical specialties 

“Andrology” and “Gynaecology” alongside the terms for gender “Man” and 

“Woman”. Whilst the two speciality terms may not occur in the same letter, the idea 

is that similar words will appear around them. 
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Figure 3.3  Andrology and Gynaecology word embedding gender relationship 

The equation shown in (4) explains the concept. As both specialties have dealings 

with the reproductive system, taking the vector ([term]) of a term and switching the 

genders should move the vector in n-dimensional space to be in close to the 

equivalent function/event for the opposite gender. The following sections overview 

the different methods used to create word embeddings as an input into a machine 

learning model. 

 [Andrology] – [Man] + [Woman] = [Gynaecology] (4) 

 where: 

 [Andrology] is an embedding vector for the initial medical speciality  

[Man] and [Woman] represent relationships used to shift the position in n-

dimensional space  

[Gynaecology] is the anticipated embedding vector after adjusting for the 

relationships. 

 

3.3.1 Word2Vec 

The Word2Vec models for creating word embeddings build upon the neural 

probabilistic language model outlined in Bengio et al. (2003). Introduced in 2013 by 

Mikolov et al., the Word2Vec architectures employ a feed-forward, back-

propagation neural network to learn context based representations without 

supervision. The two architectures presented are a continuous bag of words and the 
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skip-gram model. Both models are built upon the same base concept shown below, 

with the differences between the two models discussed later in this section.  

Akin to the methods discussed earlier in this thesis, the first stage is to create a 

vocabulary of every term present within the dataset (V). Secondly, the size of the 

trainable embeddings must be chosen (N). These two elements form the dimensions 

of the embedding matrices used and produced at the end of training. The values 

within these matrices are then randomised before training begins.  

 

Figure 3.4 Abstracted Word2Vec continuous bag of words model 

To help explain the workings of Word2Vec, Figure 3.4 outlines a continuous bag of 

words model that incorporates only a single context word meaning a single input 

term and an expected target term. The illustrated neural network is fully-connected 

with each node connected to each node in the next layer. Each element of the figure 

can be described as follows: 

Input layer: A one-hot encoded vector for a single term with a length of V. As the 

vector uses one-hot encoding, from x1 to xv there will only be a single unit activated 

(1) and the other units will be deactivated (0). 

Embedding matrix (W): A weight matrix of size V x N wherein each row is the N-

dimensional vector representation of a vocabulary term from the input vector. 

Hidden/Projected layer: An n-dimensional representation of the weights from the 

embedding matrix for the activated unit from the input vector. The hidden layer has 

only a linear activation function, providing no additional calculation to the received 

weight vector and is essentially just a copy. Alternatively, the function of this layer 

can be described as a lookup table. 
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Context matrix (W1): Secondary weight matrix of size V x N wherein each row of 

the N-dimensional vector represents of a term present within the vocabulary. The 

vector from the hidden layer is compared to each of the vectors within this matrix 

and a score is computed for each. 

Output layer: Outputs the probabilities for each term across the whole vocabulary 

of terms. The term with the highest probability is selected as the model’s expected 

response. The softmax activation function is typically used to produce this list of 

probabilities from the context matrix scores. 

For training, the resultant response chosen by the model will then be compared to the 

actual target. The weights will then be updated via backpropagation in both the 

context and embedding matrix to increase the probability of observing the actual 

output target. Explanations of the mathematics used for the training objectives and 

loss functions can be found in Rong (2016). During training Word2Vec employs 

negative sampling to reduce overfitting to common terms. Negative sampling means 

that whilst the weights associated with the correct outcome are always updated each 

epoch, only a small subset of negative samples are updated. This decrease has the 

added benefit of also reducing the time and cost of training the network. The context 

matrix is discarded and the resultant embedding matrix is used as the basis for a 

machine learning task after training. 

 

Figure 3.5 Continuous bag of words and skip-gram models for embedding matrix 

creation (Mikolov, et al., 2013) 
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The actual implementation of the continuous bag of words model (Figure 3.4) 

expands on 

Figure 3.4 to work with a multi-word input window. Elements on either side of the 

word within the text are used as the context window to predict a target word. The 

weights of each term are gathered from the embedding matrix and the summation of 

the weights creates the n-dimensional representation within the hidden layer. 

Training the model occurs in the same way, except that the embedding matrix for 

every word used in the context window gets updated. The skip-gram model is the 

mirror of the continuous bag of words model. It relies on a single word input vector 

but tries to predict the surrounding context window from that singular word. 

The difference in the two approaches leads to embedding matrices that excel 

differently. The continuous bag of words approach will better learn relationships 

between morphologies of the same word such as pluralisation’s. The skip-gram 

produces a better understanding of a datasets semantic relationships. Words that may 

have no direct relationship such as “car” and “bus” will be closer when using this 

model as their predicted contexts would be similar. The best choice of model will 

depend on the converted dataset, with skip-gram working best with datasets that rely 

on a vocabulary consisting of terms that rarely appear. Using the continuous bag of 

words approach in this situation may result in the smothering of those rare words by 

frequent words that appear in similar contexts as they are used as part of an input 

context window multiple times. However, a significant increase in training time and 

processing power is required to create the skip-gram model (Mikolov, et al., 2013).    

 

3.3.1.1 Doc2Vec 

Doc2Vec extends the Word2Vec algorithm used to calculate relationships between 

documents instead of individual words. Le & Mikolov (2014) explain that the 

Doc2Vec algorithms learn from fixed length paragraph vectors created from variable 

lengths of text. Again, two methods are presented: A distributed bag of words and 

distributed memory, shown in Figure 3.6. 
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Figure 3.6 The two Doc2Vec models (Le & Mikolov, 2014) 

The training method employs the same neural network approach as the previously 

discussed Word2Vec algorithm. By default, the distributed bag of words approach 

focusses solely on each paragraph matrix, forgoing updating any word embeddings 

during training. However, the inclusion of the Word2Vec skip-gram model can be 

used to train a word embedding matrix simultaneously to potentially aid 

performance. Conversely, the distributed memory approach treats the paragraph as 

an additional label, updating both the paragraph embedding matrix and the word 

embedding matrix at the same time. Earlier work has shown that the distributed bag 

of words approach outperforms the distributed memory and both Word2Vec methods 

when looking at a multiclass classification problem (Lau & Baldwin, 2016). 

However as stated in Le & Mikolov (2014) there is the potential to merge the two 

approaches to create a more robust set of word embeddings. 

3.3.2 GloVe relies on counting occurrences of words within 

Introduced in Pennington et al. (2014), the GloVe algorithm learns word relations 

through the implementation of a co-occurrence matrix. This matrix counts the 

number of occurrences in which a vocabulary (row) word is found in a sentence 

alongside a context (column) word  instead of the neural network based approach 

discussed earlier in Section 2.3.1. As the name suggests, the Global vectors capture 

relationships by analysing a word in the context of an entire dataset whilst the earlier 

methods captured relationships between words in a local context window.  

The following outlines the stages taken to create a usable set of word embeddings 

with the GloVe algorithm. After the usual data pre-processing stages, a large co-

occurrence matrix is created with dimensions of the vocabulary by the context. 

Whilst these dimensions can be equal, the context dimensions can be larger than the 
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vocabulary. This occurs when the top X number of features are chosen to create a 

vocabulary, but all words are used for the context. To chart the occurrences of a 

word in a context a window is used like the earlier Word2Vec models. This window 

can be symmetric (taking tokens from either side of the word) or asymmetric (only 

taking tokens before the word).  

 
𝑃𝑖𝑗 =  𝑃(𝑗|𝑖)  =  

𝑋𝑖𝑗

𝑋𝑖
 

Where: 

Pij is the probability of word j will occur in context i 

Xij is the number of times j appears in context i 

 

𝑋𝑖 = ∑𝑋𝑖𝑘

𝑘

 

Xi is the sum of occurrences for any word in context i 

(5) 

 

 

 

 

 

(6) 

Pennington et al. (2014) explains that the asymmetric approach works best on 

syntactic tasks, but the window symmetry does not significantly impact semantic 

tasks. Following the creation of the co-occurrence matrix, relationship extraction can 

be carried out by comparing co-occurrence probabilities. The probability of any 

word existing within a context is calculated as per (5) and (6). 

The similarities of two words can then be compared using the ratio of probabilities in 

the context of a third word. Using the same example specialties from Section 3.3, 

Table 8 shows that within certain contexts that the words andrology and gynaecology 

can be seen as similar whilst having features contexts that keep them separated. The 

contexts in which one word is heavily present will result in a ratio far from 

equivalent, while a context where both words or neither word are present will be of 

close equivalency. A context where both elements are present will be slightly higher 

than one, and a context where neither elements are present will be somewhat lower 

than one. 
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Table 8 Andrology and Gynaecology probability occurrence and Ratio of words 

 k = male k = female k = fertility k = nose 

𝑃(𝑘|𝑎𝑛𝑑𝑟𝑜𝑙𝑜𝑔𝑦) High Low High Low 

𝑃(𝑘|𝑔𝑦𝑛𝑎𝑒𝑐𝑜𝑙𝑜𝑔𝑦) Low High High Low 

𝑃(𝑘|𝑎𝑛𝑑𝑟𝑜𝑙𝑜𝑔𝑦)

𝑃(𝑘|𝑔𝑦𝑛𝑎𝑒𝑐𝑜𝑙𝑜𝑔𝑦)
 >1 < 1 ~1 ~1 

Attempting to create embeddings from a matrix the size of the initial co-occurrence 

matrix would require too many resources. Instead, several features are chosen to 

capture a high variance representation of the initial matrix.  Whilst the correct 

number of features will vary per dataset, Pennington et al. (2014) states that there are 

diminishing returns above 200 dimensions.  

 

Figure 3.7 Factorization of the co-occurrence matrix into two matrices of features 

As shown in Figure 3.7, two matrices are created using the vocabulary, context and 

new feature dimensions. Each new matrix is filled with a random set of weights for 

each feature and the algorithm tries to recreate the initial matrix by factorization. The 

model trains using stochastic gradient descent to achieve a weighted least-squares 

objective function, adjusting the weights in each matrix until no further progress is 

made. The features created during this process are again learnt rather than selected, 

and as there is no human control over what the model decides to select as a feature 

there can be no certainty as to what a feature represents.  

Although there is a higher initial memory cost when using the GloVe algorithm, it is 

faster to train and more easily scalable than the Word2Vec models. The impact of 

hyperparameter initialisations (learning rate) is greater when dealing with GloVe and 

can affect the quality of the final embeddings. 
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3.3.3 FastText 

The final word embedding algorithm discussed is the FastText algorithm 

(Bojanowski, et al., 2017). The FastText algorithm builds upon the idea of a factored 

neural language model (Alexandrescu & Kirchhoff, 2006) that includes both words 

and sub features combined with the skip-gram model discussed in Section 3.3.1. The 

premise works off the idea that splitting a word into component character n-grams 

can better represent rarer words that may appear in a dataset whilst also capturing 

morphisms of the same word that appear in the text.  

As previously stated, FastText works by splitting a model into component features. 

This means that a pair of terms like “monarchy” and “anarchy” that may not be 

captured as similar in a different scenario will have some semblance of a relationship 

due to a suffix of “chy”. Whilst the effect of these added affix relationships is minor 

when dealing with the English language, it can be helpful for languages that have 

compound words such as German. FastText does have its own drawbacks. As each 

word is taken individually and split, the focus of the training process is on a per word 

basis. Datasets that rely on features that occur together as a phrase may lose those 

connections. 

Results have shown that the approach outperforms other word embedding algorithms 

when performing tasks such as sentiment analysis (Joulin, et al., 2017) and question 

answering (Mikolov, et al., 2018). While the results show that FastText should 

outperform GloVe embeddings on these tasks, the relative performance to other 

methods such as TF-IDF and bag of words is comparable. The method with the 

highest accuracy will depend on the dataset analysed.  

3.3.4 Observations 

Word embeddings provide a viable alternative approach to extracting features from a 

dataset to those discussed in Section 3.2. The algorithms are used to allow for more 

intricate relationships to be created across a dataset and help deal with situations 

where morphemes are prevalent. Both the neural network (Word2Vec/FastText) and 

co-occurrence matrix (GloVe) approach create embeddings that are similarly 

accurate to one another. Both approaches should be considered as options when 

converting a series of documents into usable embeddings before input into a machine 

learning model for more complex tasks. The ability to provide this context-based 
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overview of the text comes at a greater computation cost than the vector 

representations. Suppose the processing power and time are a constraint when 

considering a method for creating a new set of word embeddings. In that case, 

FastText should be used over the other word embedding algorithms as it is 

significantly faster.  

3.4 Feature reduction methods 

Word embeddings are one way of dealing with the curse of dimensionality. The 

other way is to reduce the number of features present within the vocabulary itself. 

Feature reduction methods can be used as pre-processing steps when using 

techniques like principal component analysis (PCA) and singular value 

decomposition (SVD), post-processing steps when using recursive feature 

elimination (RFE), or as the complete pipeline for topic modelling when using latent 

Dirichlet allocation (LDA) (Spasic & Lovis, 2020).  

The goal of implementing a feature reduction technique is to remove redundant 

features present within the dataset, specifically the vocabulary when dealing with 

text data. TF-IDF (see Section 3.2.2) vectorisation already shows a filter-based 

approach to feature reduction. If a feature appears too often across the dataset or too 

little to have any impact, it is filtered out of the final vocabulary. PCA is a matrix 

decomposition technique for feature reduction that transforms the data into linear 

combinations of existing features referred to as a principal components (Abdi & 

Williams, 2010). The goal of applying PCA is to discover the number of these 

principal components needed to represent a significant level of variance within a 

dataset. The first principal component is the result of a linear function that separates 

the original data in a way that maximises variance within the dataset. Any further 

principal components are computed at an orthogonal direction to any principal 

components that already exist. As such, the maximum number of principal 

components that can be assigned to a dataset is the number of features. Following 

this principal, each additional principal component added will represent less 

individual variance in a dataset. Figure 3.8 explains how the addition of each 

principal component produces less individual variance and has less impact on the 

total cumulative variance discovered within a dataset.  
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Figure 3.8 The difference between individual and cumulative explained variance 

using PCA matrix decomposition 

SVD is another form of matrix factorisation using eigenvectors like PCA. The goal 

of implementing SVD is to find the best-fitting subspace for k dimensions, 

minimising the sum of squares error created between the perpendicular distance of 

points within the dataset to the created subspace (Blum, et al., 2013). Unlike PCA 

however, the SVD approach does not transform the data into independent 

components. The outputted matrices from applying SVD to a dataset still represent 

each individual feature present within the dataset. This means, if required, the 

outputted SVD matrices could then be used as an input for PCA. 

Both methods of feature reduction are heavily used in conjunction with machine 

learning models. Cao et al. (2003) explains the effects that PCA has on achieving a 

better normalised mean squared error when employing support vector machine for 

time series forecasting problems. Beam et al. (2020) implements PCA and SVD as 

alternative methods to GloVe and Word2Vec for creating word embedding models 

to be used with machine learning models. When applying feature reduction directly 

to text categorisation, Uğuz (2011) implemented a two-stage method of feature 

selection to prepare the data for clustering and classification. Ibid. found that the 

performance of the models increased with a set of features that was significantly 

smaller than the original vocabulary.   
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3.5 Chapter conclusion 

Presenting the data to a machine learning system in an acceptable format is as 

important as the model chosen for classification. This chapter has shown that there 

are multiple options, with salient reasons for testing each of them out.  

Using a frequency-based encoding such as the bag of words or TF-IDF is helpful 

when creating a fast baseline model on an unexplored dataset. This initial input 

matrix can then be compared to the more complex models using neural networks to 

determine if the added computational requirement was necessary. Frequency based 

encoding methods also benefit from explainable white box models in comparison to 

black box word embedding approaches. The methods used for weighting each 

feature within a dataset are readily traceable to their origin and are explainable. In 

contrast, reducing features through techniques such as Word2Vec result in 

problematic relationships to examine.  

Whilst there are pre-trained vectors of word embeddings available for GloVe 

(Pennington, et al., 2014) and FastText (Grave, et al., 2018) that consist of several 

billion tokens, the relationships found within a highly domain-specific dataset (such 

as medicine) may not be present in a set of vectors learnt from a source like 

Wikipedia. Combining this possibility with a similar issue in that a project may 

involve a small dataset may render some word embedding techniques inaccurate if 

an embedding matrix needs to be created without an existing, larger vocabulary.  

The benefit of word embeddings is that the matrices created already exist in a dense 

format. This is the expected matrix format for the neural network machine learning 

libraries Tensorflow and Keras. This means that no transformation from a sparse 

matrix to a dense matrix is necessary. Comparatively, using a vector space model 

that requires matrix transformation may be impossible due to memory issues if the 

initial matrix is too large. 

With more recent developments in Natural Language Processing tasks, pre-

processing the data into a matrix may be unnecessary. Whilst the initial cleaning, 

stemming and lemmatisation still occur, transformer models take the input as a set of 

words and calculate relationships (feature weights) as the model trains. The 

following chapter introduces the modelling techniques used in this research 

alongside the hardware and software requirements for the experiments. 
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Chapter 4  Experiment Setup 

Chapter 4 outlined the three datasets that are evaluated in this thesis, with each 

presenting different complexities such as the size of the dataset used with the general 

practitioner’s referral letters. In order to accomplish research question three, any 

approach to classification needs to be applicable with hardware constraints. As such, 

experiments were conducted using three consumer hardware setups. The initial 

anonymisation and vectorisation of patient data was carried out on an encrypted 

DHCW laptop. The clustering and classification methods used to produce the results 

in Chapter 6 were conducted using the hardware setups listed in Table 9. The first 

setup was used for the presenting complaints data and initial exploration into the 

urology dataset. The second was used for the final classification tasks with the urology 

dataset, as well as all tasks related to the general referral dataset. Both sets of hardware 

shown in Table 9 used the PyCharm Professional Edition IDE running Python 3.7 on 

Windows 10. 

Table 9 Hardware used for clustering and classification 

CPU GPU DDR4 RAM 

AMD Ryzen 7 1700x NVIDIA GeForce GTX 1060 6GB 16GB 2133mhz  

AMD Ryzen 9 5900x NVIDIA GeForce GTX 3080 10GB 32GB 3600mhz 

This chapter begins by outlining the libraries needed to implement the machine 

learning models and carry out the cleaning process discussed in this thesis. Next, the 

justification for not implementing clinical NER from an experimental standpoint is 

discussed. 
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4.1 Libraries used for experiments in this thesis 

The list of Python libraries contained in this section outline all of the important 

libraries that have been used to produce the results in Chapter 6. In addition to the 

use cases listed here, each library will also contain other machine learning tools that 

may be relevant for other projects. 

• Natural language toolkit (NLTK) (Bird, et al., 2009) 

o Conglomerate library consisting of corpora and resources to provide 

ease of use access to text processing tools such as (but not limited to) 

tokenisation, part-of-speech tagging and lemmatisation. In this thesis 

the NLTK library has been used to retrieve an initial English language 

stop-word corpus. 

• Regular expression (RegEx) (Aho, 1991) 

o Python implementation of regular expressions that rely on a series of 

characters to create a unique search pattern. These expressions are 

used to find and replace unwanted information contained within the 

base letter provided by the general practitioner, removing elements 

such as punctuation and added whitespace.  

• SciPy (Virtanen, et al., 2020) 

o Scientific computing package containing other packages such as 

NumPy, Matplotlib and pandas. Within this thesis the SciPy library 

has been used directly for the saving and loading of sparse TF-IDF 

matrices before and after vocabulary reduction. 

• NumPy (Harris, et al., 2020) 

o Numerical computing library which provides the syntax for 

manipulating arrays, vectors, and matrices. The NumPy library is 

included specifically in this thesis to convert data into usable arrays 

and remove specific rows and columns from a sparse matrix. 

However, NumPy forms the basis for computations carried out by 

other libraries discussed in this chapter shown below. 

• pandas (McKinney, 2010) 

o The pandas library provides an easily analysable and manipulatable 

set of data structures when working with both numeric and text data. 

For this thesis, pandas has been used to hold the initial set of 
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documents and their associated tags for pre-processing, and later used 

to compare the predicted outputs to the expected values. 

• scikit-learn (Pedregosa, et al., 2011) 

o Machine learning library built to provide access to tools in data driven 

analysis. This thesis implements features from the scikit-learn library 

to classify the text data and print the results either as an accuracy 

score or in a readable classification report format.  

• TensorFlow (Abadi, et al., 2015) and Keras (Chollet, 2015) 

o Open source machine learning platform. This thesis implements both 

to create the neural network architectures used in 5.2.2 and 5.3.2. 

• HuggingFace (Wolf, et al., 2019), Simple Transformers (Rajapaske, 2019) 

o Open source library of pre-trained models and implementation tools 

for Transformer models used for classification in 5.3.2.2. 

• LIME (Ribeiro, et al., 2016) 

o Local Interpretable Model-agnostic Explanations is a library that 

produces human readable outputs about modelling decisions. The 

example shown in 5.4.2.1 uses the LimeTextExplainer module is used 

to create a simplified linear model from the results of the original 

support vector machine. This new model can then be used to display 

human readable outputs of the relationships between features in a 

document and the predicted label. 

4.2 Datasets used in this research 

As shown in Chapter 3, there is a wealth of data modelling techniques that can be 

applied to free text data, both inside and outside of the medical field. It also 

explained the issues that can occur when using medical data with lack of availability 

and the inclusion of a narrow expert dataset. This chapter outlines the three datasets 

used to produce the results present in this thesis that avoid the issues listed in 

Chapter 3. All of the data used was extracted directly from DHCW and are all actual 

records of patients at varying stages of a clinical pathway. Whilst the dataset outlined 

in Section 4.2.2 is a curated dataset, the separation of this data was completed before 

the beginning of this project. 
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4.2.1 Emergency Department Dataset: Presenting Complaints 

The dataset used for classification purposes was the Emergency Department Dataset 

(EDDS). The EDDS contains information about hospital admissions that come 

through the Accident and Emergency department. The data being used for 

classification is the presenting complaint field, a short form string inputted into the 

system by a receptionist as the patient arrive in Accident and Emergency. It relies on 

the description of symptoms passed from the patient to the non-medical personnel 

before a nurse or doctor triages them.  

Table 10 Fields contained within the DHCW Emergency Department Dataset 

Field Name Description 

Unique Key Alphanumeric String that is unique to each event 

Presenting Complaint Plain text description of the problem given by the patient on 

arrival in Accident and Emergency 

Treatment Speciality Name of the Speciality that the patient was assigned to. 

Date of Incident Date and time of incident: 

dd/mm/yy h:m:s 

Consultant Speciality Speciality of the consultant assigned to patient 

Table 10 outlines the fields that were present within the final dataset. The 

combination of the unique key identifier and the date of incident was used to create a 

set of unique events. Initial exploration into the data found that the consultant 

speciality that was listed in the table was unlikely to correlate directly with the 

outcome treatment speciality. This is due solely to how an Accident and Emergency 

department is run. The clinicians will have to deal with patients across various 

specialities rather than having individuals assigned/referred to them. Instead, the 

focus of classification tasks carried out on this dataset is to extract any relationships 

between the presenting complaint text field and the treatment speciality. 

The EDDS dataset consists of 839,330 events spread across eighty-two medical 

specialities which causes potential issues with dimensionality. The large amount of 

vocabulary terms stretched across the eighty-two classes can lead to extremely 

sparse data with no clear boundaries to separate between classes (Debie & Shafi, 

2019).  
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The separation of these events into categories is shown in Figure 4.1. There is a 

significant imbalance of representation between the classes in the dataset. This could 

potentially mean that the accuracy of any model used to classify the data will be 

lower than if the classes were balanced, especially considering that forty-five out of 

eighty-two categories have less than one hundred examples. The full table of 

frequencies for each of the eighty-two medical specialties can be found in Appendix 

1.  

 

Figure 4.1 Emergency department dataset medical specialty distribution 

A subset of this data with the general surgery and general medicine classes removed 

was also used for classification testing. These were removed through communication 

with members of staff at DHCW because these two classes may be potentially used 

as a universal class for placing patient cases if a more specialist class is not obvious.  

4.2.2 Urology letters dataset 

The urology dataset is an already curated series of general practitioner referral letters 

to a hospital within the speciality of urology alongside associated labels. The dataset 

comprises 35,156 unique entries, each consisting of the following fields shown in 

Table 11. 
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Table 11 Fields contained within the DHCW Urology dataset 

Field Description 

Letter Plain text letter from the doctor to the hospital consultant 

DocumentID Unique alphanumeric sequence for each document 

PrioritisationData Pre-programmed DHCW database entry which includes clinical coding and 

patient subcategory diagnosis 

GP Priority given by the general practitioner to the patient being referred 

Consultant  Priority is given by the hospital consultant to the patient being referred 

 

The first stage of preparing the dataset for classification was to look carefully at the 

PrioritisationData field and decide how to extract the diagnosis and clinical codes 

needed to label each document. Each of these fields attributed to a document was 

different and held varying levels of detail. Two examples of this field are shown in 

Figure 4.2 to depict the difference in depth of detail contained within the dataset.  

2000037|1|Consultant|CONSG|Mixed Clinicians~ 2000037|2|Clinical 

Condition|UR06|PSA 

3000062|2|Clinical Condition|352|PSA 

Figure 4.2 Examples of PrioritisationData Field 

Each section of information (separated by a vertical bar) is manually inputted into a 

database by a DHCW employee who received the letter from the relevant hospital 

health board. The information looked for in this project is the description of the 

condition/diagnosis at the end of the field and the alphanumeric code preceding it. 

Individual string cleaning was carried out by splitting them into arrays via the 

vertical bar marker whilst only keeping the data in the final two entries. This allowed 

for the data needed for the project to be collected correctly without worrying about 

the length of the array created due to the varying sizes of each prioritisation string. 

As seen in Figure 4.2, even when the ending condition is the same, not all the 

clinical codes present within the database match each other. This may occur as no 

singular coding standard is shared across the seven Welsh health boards. This also 

occurs when the code was missing on the initial letter received by DHCW and the 

resulting input code for the database is the same as the condition (e.g., PSA|PSA). 
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Table 12 Additional health board codes combined into larger urology labels 

New codes Combined codes 

UR01 male luts 

UR04 348, 349, loin pain stone 

UR05 haematuria 

UR06 psa 

UR07 uti 

UR09 346, 744, 745, 746, 347, erectile 

dysfunction 

A rule-based system was implemented to correct this labelling issue, converting the 

incorrect labels into usable codes for nine distinct categories, UR01-UR09, as shown 

in Table 12. These rules were created through the use of the NHS data dictionary 

(NHS Wales, 2020) and communication with DHCW clinical coding staff. While 

this rule-based system worked for approximately ninety-five percent of cases, some 

manual inspection and correction was needed in situations where the condition was 

more detailed than expected. An example of this is where whoever coded the 

information included “Haematuria – visible” instead of just haematuria. Within the 

dataset there were several cases with speciality labels belonging to a small group that 

have since been removed. There was a combination of examples labelled as 

“Other/Unknown”, “SysOther”, or with test codes. These have also been removed, 

reducing the dataset size to 25,451.  Table 13 shows how the letters are split into 

nine categories after extracting the labels from the prioritisation data field. 

Table 13 Extracted codes and conditions from the PrioritisationData field within the 

dataset after cleaning 

Code Condition Supporting Documents 

UR01 Male lower urinary tract symptoms 3869 

UR02 Female lower urinary tract symptoms 650 

UR03 Penoscrotal 1763 

UR04 Loin pain and stone 1631 

UR05 Haematuria 8386 

UR06 Prostate specific antigen (PSA) 5549 

UR07 Urinary tract infection 2448 

UR08 Cancer 366 

UR09 Andrology 789 
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With the documents categorised correctly, the next step was to clean the letters 

themselves. Cleaning the documents aims to alleviate issues that are created from 

human error in order to create better inputs for the Natural Language Processing 

pipeline. The dataset was loaded from a .csv file into a pandas dataframe using only 

the columns for the letter and code. Each document was then cleaned as follows: 

1. tabs removed 

2. remove punctuation and numbers, leaving only alpha characters 

3. remove multiple spaces 

4. remove leading and trailing spaces 

5. convert each word within a document to lower case 

6. replace the existing document with the cleaned version 

The author decided to keep all extracted terms present in full due to the nature of 

certain words having different meanings within a medical context. No use of 

stemming or lemmatising has been carried out on the dataset. The last step taken to 

prepare the data for vectorisation was to include a list of stop words to remove 

potential redundancies from the dataset. The system utilised the English stop word 

corpus from NLTK (Bird, et al., 2009). The author then extended the standard list to 

better meet the project’s requirements (shown in Table 14).  

Table 14 Stop words added to the NLTK library for the Urology Dataset 

dear, colleague, sincerely, grateful, thank, thanks, seen, review, history, today, requested, ago, dr, 

please, would, could, also, examination, old, year, patient, help, advice, management, opinion, see, 

last, months, however, given, years, may, since, symptoms, sent, well, due, showed, appreciate, 

regarding, presented, kind, regards 

The words in the extended list mainly consisted of variations in salutations and 

valedictions that would be expected in a full letter. The other stop words included 

were ones like advice and opinion, words that convey the conversational aspect of 

the letter between the two medical practitioners rather than any marker towards the 

condition of the patient.  

4.2.3 General Practitioner Referral Letters 

The final dataset discussed in this chapter is another set of referral letters between a 

general practitioner and a hospital consultant. These referral letters were selected at 

random from a DHCW database with no prior of knowledge of what speciality or 



 

54 

 

priority they had been assigned. Initially the size of this dataset was 121,146 

documents that was reduced to 111,128 due to the cleaning process described in 

Section 4.2.3.1. Table 15 contains the list of fields within this dataset. The primary 

fields concerning this thesis are the ExtractedText field which contained the unedited 

letters, the speciality, and the priority fields. 

Table 15 Fields contained within the DHCW multiple specialities dataset 

Field Description 

ExtractedText Plain text letter from the doctor to the hospital consultant 

DocumentDateTime Date/time the document was put into the system 

EventDateTime Date/time of the GP appointment 

VersionNumber How many times the letter has been passed between GP and 

consultant 

SubjectSexCode Sex of the patient (M or F) 

Speciality Name of the Speciality being referred to 

GPPriority Priority given by the general practitioner to the patient being 

referred 

ConsultantPriority Priority given by the hospital consultant to the patient being 

referred 

DateReferred Date of the GP appointment 

PatientReferralAge Age of the patient 

LocalHealthBoardResidenceCode Associated code with the Welsh health board 

LocalHealthBoardResidenceName Associated name of the Welsh health board 

 

Figure 4.3 shows the associated version numbers for each letter in the dataset. The 

version number denotes a round of correspondence between general practitioner and 

consultant. Increasing the version number by one means that something has occurred 

with the case. This may be that the case is forwarded on to a different medical 

specialist, new test data has been added, or an acknowledgement/rejection of a 

change of priority has been made for the case. The data shows that through random 

sampling of a wider database, at least fifty percent of all cases undergo changes. 

Each change made to a referral increases the timeframe before the patient receives 
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their appointment letter and the amount of work both clinicians are required to spend 

on a case. The ability to classify documents correctly could ensure that a first stage 

version change because of medical speciality or prioritisation would no longer be 

needed. 

 

Figure 4.3 Version numbers showing the number of changes that have been made to 

a referral letter by a GP or consultant in the dataset 

The following outlines the process taken to extract a usable set of data from the 

ExtractedText field and the two classification outcomes pursued with this dataset. 

The first classification relating to the medical speciality assigned to a letter and the 

second related to the assigned patient priority. 

4.2.3.1 Dataset cleaning 

The free text analysed in this thesis exists as a part of a larger document. The content 

of this document lists a variety of clinician and patient-related data, including 

personal information that needed to be excluded before the data could be processed. 

This information is contained within Figure 4.4. 
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A manual inspection of the letters found useful headings that could be used as 

indicators for the start and end of the main body of the referral letter that was 

important to the project. After reducing the letter to the information between these 

headings, variations on salutations were used to find the starting point of the letters, 

and the final token before a valediction was used as the ending point. 

General Practitioners priority 

Patient Details – Name/sex/Address 

GP Details – Code, Practice name/code/Address 

Consultant Details – Speciality/Hospital site 

 

Reason for Referral 

Care Type Requested 

Expected outcome 

 

Problems/Diagnoses – Description and dates of previous diagnoses 

Operations/Procedures – Same as above, also includes new patient screening 

 

Referral Speciality 

Date of Referral 

Hospital 

Urgency 

 

Presenting complaint – Free text by GP explaining the situation 

Lifestyle information (not always filled in) – History of alcohol/exercise/smoking 

 

Medical History 

• Recent Medication 

• Measurements (height/weight/Blood pressure) 

Any additional relevant information – i.e., Veteran status 

Figure 4.4 Outline of a referral letter 
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The same process as the one described in Section 4.2.2 for the urology dataset was 

followed for the cleaning of the referral letters themselves. Within a small number of 

letters, it was found that there was a letter within another letter as it was a repeated 

referral. The maximum number of words within a letter was set to 251 to counteract 

these abnormalities in the data. Similarly, the minimum number of words required to 

be considered as an actual letter was set to 10 to remove instances where the letter 

consisted of a variation of the phrase “please find the attached referral”. A limited, 

anonymised subset of cleaned letters can be found in the University of South Wales 

Computer Science and Artificial Intelligence Paradigms (CSAIP) research 

repository1. The stop words list from the previous dataset was again implemented to 

help reduce the impact of conversational noise within the letters themselves. 

However, it was found that the default stop word list from the NLTK library (Bird, et 

al., 2009) contained the words “no” and “not”. These two words were removed from 

the stop word list as the difference between “signs of symptom” and “no signs of 

symptom” would impact the speciality pathway a patient may take. 

 

4.2.3.2 Medical specialisms 

The information for specialties was already separated into a separate field instead of 

being contained within a single string of information like in the urology dataset. 

However, due to the increased size of the dataset, there were more variations in the 

speciality field. Without any data pre-processing, the dataset consisted of 108 

different specialities and documents of sizes varying between 1 and 14760. 

Through communication with members of DHCW and the use of the NHS Wales 

data dictionary (NHS Wales, 2020), certain specialties have been grouped together. 

The separations occurred in the original dataset due to health board differences or a 

specific condition (neurology department compared to neurology focused on 

epilepsy). The changes made are explained below in Table 16. The name used for the 

new class already existed within the dataset. Examples without a combined speciality 

only existed as that version. All classes are represented as presented in the dataset; 

spelling issues included. 

 
1 https://intelligence.research.southwales.ac.uk/documents/edit/3573/Letters.zip  

  (Password: ESSSbMRLuaSVM) 

https://intelligence.research.southwales.ac.uk/documents/edit/3573/Letters.zip
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Table 16 Grouping of specialties into more concise classes 

Specialities Combined Specialties Supporting 

Documents 

Cardiology Cardiology (card) 3606 

Care of the elderly Care of the elderly usc identi 275 

Clinical Immunology  444 

Clinical neurophysiology  225 

Community orthopaedic  2047 

Dermatology Dermatology (derm) 

Dermatology (usc) 

Dermatology laser 

Dermatology usc identifer 

14760 

Dietetics Dietetics (dthe) 1682 

Endocrinology Medical endocrinology (mendoc) 

Endocrinology usc identifer 

Endocrinology usc identifier 

989 

Ent Ent (usc) 

Ent audiological medicine (entam) 

Ent usc identifier 

Ear nose and throat (ent) 

12529 

Gastroenterology Gastroenterology (gastro) 

Gastroenterology (usc) 

Gastroenterology usc identifer 

5210 

General medicine General medicine (genmed) 

General medicine usc identifer 

General medicine nurses (gmedn) 

1098 

General surgery General surgery (surg) 

General surgery usc identifier 

General surgery breast clinic (surb/c) 

General surgery breast service 

Breast (usc) 

Breast 

Gs breast usc 

14312 

Geriatric medicine Geriatric medicine pathy day hosp (gerijp) 

Geriatric medicine (geri) 

406 
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Gynaecology Gynaecology (gynae) 

Gynaecology (usc) 

Gynaecology usc identifer 

10182 

Haematology (clinical) Haematology (clinical) usc ide 

Haematology-clinical (haem) 

720 

Nephrology  Nephrology (neph) 436 

Neurology Neurology (neur) 

Neurology epilepsy (epilep) 

Other neurology 

Other neurology usc identifer 

Other neurology usc identifier 

2172 

Oral/maxilla facial surgery OMF usc identifer 

Oral/maxilla-facial surgery (oral) 

Omf usc identifier 

1039 

Ophthalmology  Ophthalmology usc identifer 719 

Orthopaedic Orth foot & ankle (t/ofa) 

Orthopaedic hand (t/hand) 

Orthopaedic hip (t/ohip) 

Orthopaedic knee (t/knee) 

Orthopaedic paediatrics (t/paed) 

Orthopaedic shoulder (t/osh) 

Otrhopaedic spinal (t/osp) 

Orthopaedic spines 

Orthopaedic spines usc ident 

Trauma & orthopaedic 

Trauma & orthopaedic usc  ident 

Trauma & orthopaedics (t/o) 

11408 

Paediatrics  Paediatric endocrine (pendo) 

Paediatric gastroenterology (pgast) 

Paediatric respiratory (presp) 

Paediatric cardiology (pcardl) 

Childrens ent (entpae) 

Paediatrics usc identifier 

Paediatric surgery (paedsu) 

3646 

Pain management Chronic pain management(chronp) 807 

Physiotherapy adult  7072 
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Rapid diagnostic centre Rapid diagnostic centre usc 152 

Rehabilitation Rehab day hospital (rehadh) 

Rehabilitation (rehab) 

656 

Rheumatology Rheumatology (rheum) 2141 

Thoracic Medicine Thoracic medicine (throme) 

Thoracic medicine usc identif 

Respiratory (usc) 

2912 

Urology Urology (usc) 

Urology (urol) 

Urology usc identifer 

8706 

Vascular surgery Vascular  777 

 

These combinations resulted in twenty-nine usable specialties for the purpose of 

classification. The additional specialties existing within the dataset are shown in 

Table 17. These specialities were unable to be combined with other specialties and 

were removed due to the lack of supporting documents. 

 

Table 17 Removed specialties due to limited supporting documents. 

Speciality Supporting Documents 

Adult speech and language (salt) 59 

Occupational therapy 36 

Clinical pharmacology 73 

Stroke medicine 37 

Oral medicine 28 

Tier 3 weight management 19 

Gender services 18 

Plastic surgery 2 
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4.2.3.3 Patient Prioritisation  

The secondary classification task surrounds the priority assigned to a patient’s case 

as they get transferred to a hospital. Three priorities exist within the dataset: Routine, 

Urgent, and USC (urgent suspected cancer). These priorities are consistent across the 

health boards in Wales and require no label cleaning like the specialisms in 4.2.3.2. 

 

Figure 4.5 Assignment of patient priority across the whole dataset 

 

 

Figure 4.6 Assignment of patient priority specific to initial referral 

Figure 4.5 and Figure 4.6 show the number of patient cases assigned to a specific 

priority. In Figure 4.5, there are only minor differences between what a general 

practitioner assigns and what a consultant will assign when encompassing all of the 

dataset. The largest differential is in the USC class with a 1.1% higher likelihood that 

a consultant would mark a case as USC. Figure 4.6 however begins to outline the 

difference in opinion a general practitioner will have to the consultant when first 
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referring a patient to hospital. The differentials for the same classes are multitudes 

higher than they were in the first view (Figure 4.5).  

However, the bar graph representation of this data only reveals a portion of 

information regarding the issue with prioritisation. Using the graphs alone does not 

show the number of prioritisation changes that occur in the initial referral process. 

There are two confusion matrices shown in Figure 4.7 that describe these 

differences.  

Figure 4.7 (a) shows a large amount of movement between prioritisations when a 

consultant reads the initial letter. These changes occur as both downgrades and 

upgrades. Given the referral letters analysed in this thesis a general practitioner’s 

assigned priority will only match the consultant’s priority for an initial referral 83.67 

percent of the time. The biggest movement in priority is seen in the urgent class. 

Only 73.65 percent of cases listed as urgent by the general practitioner are kept as 

urgent. The other 26.35 percent are either upgraded to USC or downgraded to 

routine. 

Figure 4.8 (b) shows a stark difference for referrals that have undergone a second 

iteration between clinicians. The assigned priorities from both clinicians are more 

likely to match than the original referrals (98.9 percent). While the urgent class is 

still the most volatile out of the three classes, the disagreement between clinicians is 

significantly lower. What this suggests is that the first version update of a referral 

letter is all about the consultant adjusting the priority assigned to a case.  

The goal of this classification task is then to target this initial disparity between the 

general practitioner and consultant priority. If a classifier can map the relationship 

between the words in an incoming referral letter and what priority a consultant will 

assign, a sizeable portion of correspondence could be removed. Again, the choice of 

output is important. A choice could be made for auto-prioritisation for cases above a 

certain confidence threshold. However, taking the same direction as the medical 

specialism classification, providing a support tool that the general practitioner can 

see how a letter has been prioritised (highlighting key words and phrases) is also 

considered. 
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Figure 4.7 Patient Prioritisation matching between GP and Consultant when either (a) no changes or (b) one change is made 
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4.3 Machine Learning Algorithms 

This section summarizes the different machine learning algorithms that have been 

used to produce the results shown in Chapter 5 of this thesis. It has been broken 

down into three sections: unsupervised learning with clustering algorithms, 

traditional machine learning algorithms and neural networks. 

4.3.1 Unsupervised Learning: Clustering 

Clustering is an unsupervised approach to data grouping, separating data into clusters 

based on similarity. Whilst the classification methods described in this section 

require a set of labelled training examples to assign roles to data, an unsupervised 

approach relies solely on the implemented algorithm to separate data into groups of 

information. Using an unsupervised method like clustering can provide a good, data-

driven opportunity for discovering initial insights into a dataset even when the 

dataset is labelled. Within the medical subdomain, work done by Patterson & Hurdle 

(2011) and Dong-Harris, et al. (2013) speak to using k-means clustering for medical 

specialities and how it can benefit datasets that have different labels due to the 

information coming from a variety of sources.   

The clustering algorithm used in this research is the k-means++ clustering algorithm 

(David & Sergei, 2007). It is an adaptation to the k-means algorithm that employs a 

directed initial centroid placement strategy to ensure centroids (points chosen to be 

centres of clusters) are evenly distributed across the dataset. Once the centroids have 

been placed, the k-means++ algorithm uses a squared error function (Lloyd, 1982) as 

its objective function (7) to determine which cluster each document belongs to. 

 

𝐽 =  ∑∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

Where: 

• J is the objective function  

• k is the total number of clusters 

• n is the number of documents (cases) 

• 𝑥𝑖
(𝑗)

 is the document current being placed 

• 𝑐𝑗 is the centroid for cluster j  

(7) 
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4.3.2 Traditional Machine Learning algorithms  

The term traditional machine learning algorithms encompasses the different models 

available for tasks such as document classification that do not employ a neural 

network-based approach to training. Some of the prevalent models in this category 

include support vector machines, logistic regression, k-nearest neighbours, and 

decision trees. These models have shown to have comparative accuracies to the 

neural network and transformer based architectures on similar tasks (Behera, et al., 

2019), including tasks within the clinical domain such as autism detection (Lee, et 

al., 2019) and classifying medical specialities (Weng, et al., 2017). 

This research compares seven different traditional machine learning algorithms. The 

hyperparameters for each of the algorithms have been determined through 

experimental means, with some techniques (random forest classifier) requiring a 

significant increase in time and effort to achieve similar results to the other 

methodologies. Table 18 shows the traditional machine learning techniques and their 

associated hyperparameters used in the comparison experiments. Each of the models 

can be accessed through the sci-kit learn (Pedregosa, et al., 2011) Python library. 

Table 18 Models and parameters used for K-fold cross validation on GP letters 

Model Parameters 

Linear Support Vector 

Machine 

Penalty : l2 

Loss: squared_hinge 

C : 1.0 

Support Vector Machine 

(RBF Kernel) 

C : 1.5 

Gamma: 0.5 

 

Logistic Regression Penalty : l2 

C : 1.0 

Solver : lbfgs (Malouf, 2002) 

Stochastic Gradient Descent 

(SVM equivalent loss penalty) 

Penalty : l2 

Loss : hinge 

Alpha : 0.0001 
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Random Forest Classifier Estimators : 100 

Max_depth : 80 

Max_features : sqrt(features) 

Split Criterion : Gini Impurity 

Bernoulli Naïve-Bayes Alpha : 1.0 

Class Priority : None 

Multinomial Naïve-Bayes Alpha : 1.0 

Class Priority : None 

 

4.3.3 Artificial Neural Networks 

Artificial neural networks (ANNs) are computing systems used in machine learning 

built around replicating the transference of knowledge via signalling that occurs via 

neurons in an animal brain. A neural network trains through experience and iterative 

learning, updating a series of small weights and biases until the desired result is 

achieved. This desired output of a neural network model will depend on the problem 

tasked, as neural networks are used for a variety of tasks, including classification and 

pattern recognition. 

Over the years, several types of neural network architectures have been created to 

address the nuances of specific machine learning tasks like using a convolutional 

neural network for image recognition. However, these architectures are still able to 

produce outputs that may match or improve on the accuracy of traditional machine 

learning methods in other tasks like document classification (Rabhi, et al., 2019). 

This performance was echoed for the i2b2 (Uzuner, et al., 2008) challenges 

discussed in Section 2.4 where deep learning architectures were able to outperform 

the models from the original challenge winners (Lee, et al., 2020; Zhang, et al., 

2021). However, the same architectures have shown to have issues when classifying 

to a larger number of classes (Tang, 2015) than a simpler binary classification. 

This research employs linear, convolutional, recurrent, and transformer-based neural 

network architectures to produce the results shown in Chapter 5. The choice of 

optimiser for training these networks was adaptive moment estimation or Adam 

(Kingma & Ba, 2014). Adam is commonly found as the default optimiser choice in 

newer libraries of neural networks, especially those using newer architectures such 
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as transformers (Wolf, et al., 2019). For the results shown using transformer-based 

architectures, RoBERTa-base (Liu, et al., 2019) and BioBert (Lee, et al., 2020) were 

used to contrast models trained on general data versus biomedical documents. 

 

4.4 Experimental reasons for excluding clinical named entity recognition 

using existing pre-trained libraries 

The results shown in Chapter 5 have been produced without additional clinical 

annotations being overlayed onto the data. This decision was reached based upon a 

combination of previous literature and a test of external clinical NER 

implementations on unseen medical letters. As noted in Section 2.4, the 

incorporation of one of these pre-trained software packages is commonplace within 

clinical literature. However, it was shown through articles by Weng et al. (2017) and 

Gehrmann et. al. (2018) that the method used to transform the data into input vectors 

or word embeddings has a larger impact on the ability of the system to accurately 

classify the data than the inclusion of clinical annotations. 

Three open-source packages are available for clinical named entity recognition that 

could have be included in a project and will be explained further in this section. 

These packages are: Apache cTakes (Savova, et al., 2010), MetaMap (Aronson, 

2001) and QuickUMLS (Soldaini & Goharian, 2016). 

To determine the effectiveness of these available software packages, two randomly 

selected doctors’ notes were taken from a DHCW database and analysed. As shown 

in Figure 4.8, the quality of grammar and overall sentence structure will depend on 

the author of the letter and may also vary on a case-by-case basis from the same 

doctor. The input for each annotator was a single string for the entire letter, no 

external tokenisation was done as each annotator was a pipeline with this feature 

built in. The rest of this section will outline the results of applying these annotators 

to this data. 
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Case 1 – I reviewed <patient> who is struggling to hear conversation and also 

with watching tv. She has bilateral non intrusive tinnitus which she can mainly 

hear at night. Clinically both her ears appear normal and pta showed mild 

deterioration of her hearing mainly on the right when compared to her audiogram 

in 2017. However, her hearing thresholds remained stable compared to her 

audiogram in 2016. I have discussed the role of amplification and she has opted 

for bilateral hearing aids. Though there is some asymmetry in her hearing, I feel 

the best way forward is to monitor this and I have arranged to review her again in 

one year. Yours sincerely. 

 

Case 2 – post-op removal of plate from 1st tmt fusion 19-jun-2018 this lady is now 

2 weeks following her surgery. Her wound has healed beautifully with no evidence 

of infection and the sutures have been removed today. She did have a fall on a bus 

recently but thankfully didn’t come to any harm. I have advised her to get into 

normal footwear and gradually get off the crutch. We have given her another 4 

weeks of enoxaparin due to her previous dvt. We will see her back in the clinic in 4 

weeks time. With kind regards 

Figure 4.8 Case study for comparing NER packages 

4.4.1 Apache cTakes 

Apache cTakes annotates eighteen different examples from the first case, including 

the terms tinnitus and audiogram. However, there are number of issues with the 

output that dispute the effectiveness of using it as a blanket annotator across the large 

datasets in this thesis. On multiple occasions individual words were picked out as 

terms instead of being combined into a longer medical concept. In case one the 

medical device hearing aids was classified as two different annotations: hearing and 

aids; the second having no relation to anything present in the case study.   

The inclusion of medical abbreviations in the texts also produces issues. In case one 

the medical abbreviation pta is present and given the context of this letter, pta stands 

for pure tone audiometry. The annotator labelled the abbreviation as plasma 

thromboplastin antecedent instead, a coagulation factor, which would direct the 

output of a classifier towards clinical haematology and away from the ENT 

speciality. No alternatives were offered as to the meaning of the abbreviation. 
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The second case shows an issue with the wide nomenclature of medications. The 

word today was mislabelled twice as the antibiotic ingredient cephapirin sodium 

used for veterinary means which has the preferred name ToDAY (Whetzel, et al., 

2011). This followed the word bus being extended to Busulfan instead of attributed 

to the vehicle the patient fell down in. 

4.4.2 MetaMap 

MetaMap produced a better overall annotation of phrasal features in the case studies 

than the cTakes annotator. Phrases such as bilateral non intrusive tinnitus in case 

one and post-op removal in case two were annotated as one detailed feature. The 

phrase bilateral hearing aids was also annotated together unlike previously seen in 

Section 4.4.1. The MetaMap output included a type assigned to each annotation such 

as finding, location and laboratory procedure. 

Uncommon medical abbreviations proved to also be an issue with MetaMap. The pta 

abbreviation was expanded and annotated as prothrombin activity measurement, 

which is another medical concept that does not relate to the same speciality as the 

original letter. MetaMap annotated non-medical terms successfully. Bus was 

annotated as a location for the patient’s fall and temporal concepts within the letter 

(today, now, recently) were also annotated. 

4.4.3 QuickUMLS 

The QuickUMLS annotator was the fastest but least robust annotator. It produced the 

least number of annotations on the case studies overall. However, it does offer a list 

of alternatives and their associated confidence levels. While some phrasal 

information has been retained, the performance lacks behind MetaMap. 

The annotator’s approach is an approximate dictionary matching algorithm, meaning 

the annotator can only provide a similarity score to those topics in the dictionary. 

Any general concepts, like bus, present within the case study had no annotation 

attached. Similarly, none of the abbreviations were expanded and annotated. 
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4.4.4 Observations 

The three annotators exemplify the issue with Natural Language Processing on 

medical data. Attempting to map terms in a letter to broad medical dictionaries 

results in irrelevant annotations that obscure outcomes. While this approach has 

shown to have minor improvements to the overall accuracy of a classification model, 

it would reduce trust in a system where the results of individual terms are outputted 

to the screen. Requiring a clinician to perform manual verification of every term 

annotated would provide no benefit in usefulness or work reduction. 

4.5 Chapter conclusion 

This chapter steps taken to best represent the relationships present within the data 

and therefore produce machine learning models that have acceptable accuracy 

scores. The steps detailed in Section 4.2 provide a unique perspective towards 

cleaning and preparing a medical dataset that exists without a reliable structure. It 

further explains the pitfalls of employing existing libraries thoughtlessly with both 

generic stop word lists and medical ontologies. Section 4.3 outlines the different 

types of machine learning models being used in this research for both supervised and 

unsupervised learning. This chapter also provided an experimental reason for not 

depending on open-source clinical annotators such as cTakes. It shows that there are 

errors that can occur if the resulting outputs are not validated. The following chapter 

describes the experimental results derived from the application of algorithms to the 

data described here. 
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Chapter 5  NLP Implementations and Results 

This chapter outlines the results produced by clustering and classification methods 

on the three different datasets described in Chapter 4. The approaches and machine 

learning tools used on the datasets in each section influence the decisions made with 

subsequent datasets. These choices culminate in the system detailed in Section 5.4 

which draws on the idea of presenting multiple options to a clinician as a supporting 

tool rather than a direct classification tool that overrides any medical professional’s 

input. 

5.1 Results using the presenting complaints dataset 

The results produced using the presenting complaints dataset were used in 

communications with DHCW as an indication that machine learning algorithms 

could be beneficial with patient data but required a more sophisticated dataset to 

train on to achieve better results. As explained in 4.2.1, the presenting complaints 

dataset was made up of short, unstructured lists of symptoms that a person was 

describing to the receptionist at an accident an emergency department whereas the 

later datasets were full bodied doctors’ letters. 

The research was carried out using supervised classification methods alone (outlined 

in Section 3.4). A 5-fold cross validation strategy has been used to determine an 

estimated level of accuracy between the models on the presenting complaints data. 

Table 19 outlines the accuracies found using the whole dataset and the same dataset 

with the general medicine and general surgery categories as outlined in Section 

4.2.1. 

Table 19 Classification accuracies using 5-fold cross validation 

The results in Table 19 show that the classifiers used with this data were able to 

discover some of the relationships present between the input vectors and the labelled 

medical specialities. Three out of four classifiers produced results that exhibited 

signs of generalised learning, while the fourth struggled to accurately portray the 

Model name All categories 

accuracy 

Subset 

 accuracy 

Logistic Regression .608371 .584923 

LinearSVC .604581 .582112 

MultinomialNB .59436 .567942 

Random Forest .32544 .232453 
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data. The accuracy reported by the random forest classifier is around the level of 

accuracy a person could achieve by assigning every presenting complaint to the 

general medicine class (.282322). The subset accuracy shows that removing general 

medicine and general surgery because it is potentially used as a blanket label by 

accident and emergency staff is unfounded. If this hypothesis was true, the expected 

accuracy values would increase as the largest classes of data are no longer obscuring 

the boundaries between other, smaller classes. Instead, there is a general decrease in 

the model accuracy as the influence of smaller classes has a proportional relation 

with the number of documents.  

The accuracy metric has a significant shortcoming when portraying a dataset with 

unbalanced classes. There is no penalisation of misclassified documents. Table 20 

demonstrates the ability of the models to classify with different performance metrics. 

Every model’s performance shows a greater recall score than a precision score, 

indicating that each model is presenting more false positives than false negatives. 

Again, this performance indicator can be attributed to the unbalanced classes in the 

dataset. If the majority of documents are assigned to the largest classes in the dataset, 

the number of false positives will be higher than the false negatives.  

Table 20 Performance metrics for models on the presenting complaints data 

The classification models did not achieve a suitable accuracy for use as a system 

within a clinical environment. However, the models demonstrated that there is a 

clear relation that can be computationally modelled between signs and symptoms 

and a medical speciality. It is reasonable to suggest that the reason behind poor 

accuracy values in this scenario is because of the dataset. The information present 

within a presenting complaint is an account of the issues from the patient themselves. 

Secondly, the documents are written in a shorthand format, which lends to a 

significant use of abbreviations. These medical abbreviations can easily be 

Dataset Model Precision Recall F1-Score 

 

All Specialties 

Logistic Regression 0.59 0.61 0.56 

LinearSVC 0.57 0.61 0.56 

MultinomialNB 0.57 0.60 0.54 

Random Forest 0.26 0.33 0.16 

 

General Medicine and  

General Surgery 

Removed 

Logistic Regression 0.56 0.58 0.55 

LinearSVC 0.55 0.58 0.55 

MultinomialNB 0.54 0.57 0.52 

Random Forest 0.27 0.23 0.10 
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misconstrued as one another, as previously shown with named entity recognition 

software in Section 4.3. Finally, the complexity of the problem itself has a 

significant impact. The problem attempts to relate 839,330 documents to eighty-two 

different classes of medical speciality, including a significant class imbalance.   

A potential alternative use for this dataset might be to target significant, high-priority 

illnesses such as strokes or heart attacks based on patient symptoms. However, this 

would require creating a far more specialist model than intended for this project. 

 

5.2 Results gathered from the urology dataset 

The urology dataset presents a unique opportunity to try and classify a series of 

referral letters that will have a significant level of overlap due to the narrow scope of 

the problem. This section first outlines the techniques for initial data exploration 

through clustering followed by the classification of the documents into nine distinct 

urology sub-specialities UR01-UR09.  

5.2.1 Clustering results  

Clustering experiments were performed on this dataset to evaluate the separability of 

documents as an initial stage before any classification was performed. The first issue 

encountered with separation was the incorrect labelling of documents due to health 

board differences as stated in Chapter 4. The initial clustering analysis provided the 

insight needed to understand the problem and produce the rule-based system for 

combining categories. Originally there was eighteen sub-specialities of urology 

coded into the system. The distortion score heuristic has been combined with a k-

means clustering algorithm to determine the number of clusters that best represent 

the data. Figure 5.1 shows that the best compromise between error value and 

computational time requirements as twelve clusters, a reduction of six. 
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Figure 5.1 Distortion score for the urology dataset with all eighteen classes 

While the SSE (Sum of Squared Errors) value is high at 10,407,724 it is related 

solely to this dataset and cannot be compared to other datasets in published literature. 

However, it can be compared to variations of the same dataset. The same heuristic 

process was carried out after the reduction in classes from eighteen to nine 

specialities (UR01-UR09).  

Shown in Figure 5.2, combining several of the categories and removing unwanted 

training/empty values provides a far better distortion score than originally found. 

This seventeen percent reduction in error down to a score of 8,661,501 provides a far 

better representation of the data as the expected best number of clusters is now only 

one away from the actual number of classes. While taking into consideration the 

scores provided by the heuristic, earlier work in related literature has shown that the 

most common method for determining the ability of an algorithm to cluster a dataset 

is to set the number of clusters (K) to the number of existing classes (KI) when 

known (Bradley & Fayyad, 1998; He, et al., 2004; Su & Dy, 2007; Cao, et al., 2009). 
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Figure 5.2 Distortion score for the urology dataset with the combined nine classes 

Correcting the number of classes within a dataset to the nine subspecialities allows 

for additional clustering experiments to be carried out. These experiments focus on 

validating the input of the data into the clustering algorithm: the vectorisation 

method used and the ability to reduce the feature size.   

5.2.1.1 Effect of different vectorisation methods 

The vectorisation process of turning free text documents into usable inputs has a 

significant impact on the quality of clustering and classification. As previously 

discussed in Chapter 2, there are two main variations on this transformation: 

Frequency-based vectors and word embeddings.  

Table 21 Clustering against nine classes with bag of words vectorisation 

Cluster UR01 UR02 UR03 UR04 UR05 UR06 UR07 UR08 UR09 

0 1.3% 0.6% 0.2% 0.4% 0.7% 1.2% 0.3% 2.0% 0.7% 

1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.5% 0.0% 

2 0.8% 1.2% 0.1% 0.3% 1.5% 0.4% 2.4% 0.7% 0.1% 

3 0.0% 0.1% 99.7% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 

4 97.6% 98.1% 0.0% 99.1% 97.5% 97.9% 97.1% 96.8% 99.1% 

5 0.1% 0.0% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 

6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

7 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

8 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 
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The effects of the different transformation techniques are shown in tables Table 21, 

Table 22 and Table 23. The k-means algorithm was instantiated with a specific seed 

(47) to ensure the starting places for the clusters were the same across all 

experiments. The k-means clustering combined with bag of words vectorisation 

shown in Table 21 struggles to separate any specific class apart from UR03.  

Table 22 Clustering against nine classes with TF-IDF vectors 

Cluster UR01 UR02 UR03 UR04 UR05 UR06 UR07 UR08 UR09 

0 2.1% 0.0% 30.7% 0.1% 0.3% 1.2% 0.2% 1.7% 65.0% 

1 2.6% 4.1% 26.4% 73.9% 4.2% 0.6% 6.5% 27.0% 0.7% 

2 55.9% 2.3% 1.4% 0.4% 3.6% 84.1% 1.7% 35.4% 2.4% 

3 2.3% 1.9% 0.3% 0.9% 2.8% 1.7% 3.0% 2.0% 0.7% 

4 2.7% 0.0% 0.6% 2.6% 3.6% 3.8% 2.7% 0.7% 1.6% 

5 0.8% 1.6% 0.6% 0.8% 0.8% 1.0% 0.8% 1.5% 0.9% 

6 0.0% 0.0% 23.1% 0.0% 0.0% 0.0% 0.0% 0.0% 14.3% 

7 33.0% 88.6% 16.8% 16.7% 66.1% 7.2% 81.6% 31.0% 14.4% 

8 0.6% 1.5% 0.1% 4.6% 18.6% 0.4% 3.4% 0.7% 0.0% 

The TF-IDF vectors provided a better separation between the sub-specialities in the 

urology dataset. There are significant overlaps between some of the classes in 

individual clusters, such as UR03 and UR09 sharing cluster 0. This can be explained 

by the types of documents contained within the two classes. One is Penoscrotal and 

the other is Andrology. A lot of the same markers are going to be present as they 

both deal specifically with the male physiology. However, like the bag of words 

vectors, there are some clusters (3, 4, 5) comprised of a very small number of 

documents. 

Table 23 Clustering against nine classes with Doc2Vec word embeddings 

Cluster UR01 UR02 UR03 UR04 UR05 UR06 UR07 UR08 UR09 

0 1.6% 0.9% 0.2% 0.5% 1.1% 1.5% 0.5% 2.2% 1.0% 

1 17.9% 16.7% 17.7% 17.3% 15.9% 14.1% 16.2% 16.7% 15.5% 

2 11.4% 12.4% 12.5% 13.4% 12.7% 13.0% 12.8% 10.1% 13.5% 

3 20.2% 22.1% 22.0% 20.3% 20.8% 22.4% 21.3% 23.6% 19.7% 

4 14.9% 15.6% 16.8% 14.0% 13.9% 10.8% 15.9% 11.8% 15.7% 

5 10.5% 10.3% 9.3% 11.4% 11.9% 13.5% 10.0% 13.3% 10.1% 

6 9.3% 7.3% 8.4% 9.4% 9.0% 9.7% 9.5% 8.6% 9.4% 

7 13.7% 13.5% 12.9% 12.6% 14.3% 14.8% 13.1% 13.0% 14.6% 

8 0.4% 1.2% 0.2% 1.0% 0.4% 0.3% 0.8% 0.7% 0.5% 
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The final method of input transformation discussed in regard to the clustering of the 

urology dataset is Doc2Vec word embeddings. As explained in Section 3.3, The goal 

of creating word embeddings is to reduce the input data into a manageable context 

matrix that captures relationships (instead of frequency) between vocabulary 

members. Unfortunately, the k-means++ algorithm does not interpret the 

relationships created by the word embeddings in a separable way. Every cluster has 

members of every class and there are no outliers. 

5.2.1.2 Impact of incorporating feature reduction 

There are two types of feature reduction applied here to try and improve the 

clustering on the urology dataset. The first is a step taken before clustering to reduce 

the size of the input vectors. The original vocabulary size for the urology dataset 

totalled 66,937 words and phrases when using a range of one to three. By applying 

PCA, the explained variance ratio, which represents the percentage of variance that 

is being conveyed by the currently chosen components, was extracted. The explained 

variance ratio outlined that the number of components needed to represent ninety-

five percent of the data was 14,000 terms, which represents a reduction of seventy 

nine percent.  

Table 24 shows the effects of reducing the vocabulary size. The majority of cases are 

again contained within a small number of clusters with little separation apart from 

UR04.  

Table 24 TF-IDF clustering with a vocabulary of 14,000 terms 

Cluster UR01 UR02 UR03 UR04 UR05 UR06 UR07 UR08 UR09 

0 37.6% 81.8% 53.0% 10.8% 17.4% 14.7% 62.7% 50.9% 30.9% 

1 0.0% 0.0% 23.1% 0.0% 0.0% 0.0% 0.0% 0.0% 13.3% 

2 1.1% 1.6% 17.8% 0.8% 0.9% 1.2% 0.8% 1.7% 43.0% 

3 2.8% 1.9% 0.3% 1.0% 2.9% 3.6% 3.1% 3.7% 1.0% 

4 2.3% 3.6% 3.0% 73.6% 4.5% 0.5% 6.5% 19.2% 0.0% 

5 5.5% 10.6% 1.0% 10.6% 67.2% 1.5% 22.3% 2.9% 0.3% 

6 0.0% 0.0% 0.0% 0.0% 0.6% 0.6% 0.0% 0.0% 1.4% 

7 47.8% 0.4% 1.2% 0.3% 3.7% 75.3% 1.7% 20.9% 9.7% 

8 2.8% 0.0% 0.7% 2.9% 2.9% 2.7% 2.9% 0.7% 0.3% 
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The second feature reduction occurs when trying to visualise the data. Using TSNE  

(van der Maaten & Hinton, 2008) for dimensionality reduction presents an 

understandable representation of the data in low dimensional space. Figure 5.4 

shows 10,000 randomly chosen points within the dataset and through TSNE reduces 

the dimensions to plot them on a two-dimensional graph. These data points are 

colour coded to match the cluster assigned. A look at the data may suggest 

separation between clusters, for example, the blue and red cluster in the top of the 

graph. When comparing the clusters in Figure 5.3 to the actual classes in Figure 5.4, 

however, those same clusters are a combination of multiple different classes. The 

datapoints belonging to the bigger classes in the selection (green, red, blue in Figure 

5.4) are represented well in the clusters.  

TSNE can have issues representing very high dimensional data in a meaningful way. 

PCA can be introduced as an initialisation step before TSNE to reduce the data 

further into a manageable interpretation of the original data. The effect of PCA on 

the representation can be seen in Figure 5.5 and Figure 5.6. The graphs are using the 

same k-means clusters as the input data but with a significantly reduced 

dimensionality, only representing the fifteen most principal components. While the 

number of components does not represent the total variance of the data within the 

system, the outputted graphs provide a clear example of the overlap present between 

classes in the clusters created by the k-means algorithm. 
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Figure 5.3 TSNE representation of clusters within the urology dataset 
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Figure 5.4 TSNE representation of classes within the urology dataset 
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Figure 5.5 TSNE and PCA representation of clusters 
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Figure 5.6 TSNE and PCA representation of classes
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5.2.2 Classification results  

Moving on from clustering, supervised learning techniques for text classification are 

the next tools to apply to the dataset. Again, the first step is to decide the best 

vectorisation method for transforming the raw textual data into a workable series of 

document vectors in which the machine learning algorithms can find and understand 

the similarities and differences between individual cases. The four methods of 

vectorisation used with this dataset while looking at supervised learning techniques 

outside of neural networks are bag of words (frequency counts), one-hot 

vectorisation, TF-IDF, and Doc2Vec (see Chapter 3). For the supervised learning 

techniques discussed in this chapter, there are four algorithms tested and compared. 

A linear kernel support vector machine, logistic regression, multinomial Naïve-

Bayes, and a random forest classifier. 

To accurately portray the performance of these models, a five-fold cross-validation 

technique has been used to randomly sample the dataset into testing and validation 

data. The explanation in Figure 5.7 explains the method behind cross-validation. 

 

Figure 5.7 K-Folds cross validation table when K = 5. 

The cross-validation method splits the data randomly into K data bins wherein K-1 

bins are used for training data and the final bin is used for validation data. This 

process is repeated K times until each bin has been used for testing purposes once. 

The results of the K-fold testing are then averaged for the experiments conducted.  

Table 24 shows the accuracy achieved by the four different models on the urology 

dataset alongside the standard deviation. All methods of vectorisation achieve 

classification results that are similar to one another, with TF-IDF and Doc2Vec 

presenting the highest accuracies. The reason for no result under the Multinomial 

Naïve-Bayes with Doc2Vec is that the algorithm does not work with negative values. 

The alternative would be to scale the input data prior to applying the algorithm but 

this may result in a reduced level of granularity. Table 25 also shows that from the 

t t t t V

t t t V t t = testing 80%

K-Folds t t V t t V= validation 20%

t V t t t

V t t t t
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four model choices, logistic regression and support vector machines are the better 

choice. While the Naïve-Bayes approach provides a good baseline comparison, the 

random forest classifier again fails to classify the data like in the presenting 

complaints dataset (see Table 19). 

Table 25 Five-fold cross validation results on Urology dataset 

 

Count One-Hot TF-IDF Doc2vec 

Accuracy Accuracy Accuracy Accuracy 

Linear SVM 78.5% 78.8% 81.2% 83.8% 

Logistic Regression 80.5% 80.6% 81.1% 83.6% 

Multinomial NB 80.5% 80.3% 70% NaN 

Random Forest  35.7% 35.7% 35.7% 68.5% 

However, accuracy does not produce a full overview of a model’s performance on a 

dataset. Issues that occur when classifying smaller classes can be masked by 

successes on larger classes. Table 26 and Table 27 show this disparity. While the 

logistic regression model scored similar or better accuracies with the five-fold cross 

validation, given a random training and testing set the accuracy is lower than the 

linear support vector machine. The logistic regression model fails to classify any 

document related to UR08 at all and does not outperform the SVM on any class in 

regard to F1-score. 

Table 26 Classification Report: Linear SVM on urology 

  Precision Recall  F1-Score Support  

UR01 0.81 0.79 0.80 317 

UR02 0.86 0.73 0.79 172 

UR03 0.85 0.90 0.87 1112 

UR04 0.76 0.69 0.72 515 

UR05 0.84 0.90 0.87 355 

UR06 0.74 0.40 0.52 141 

UR07 0.72 0.73 0.73 718 

UR08 0.50 0.15 0.23 74 

UR09 0.85 0.91 0.88 1687 
     

accuracy 
  

0.82 5091 

macro avg. 0.77 0.69 0.71 5091 

weighted avg. 0.81 0.82 0.81 5091 
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Table 27 Classification Report: Logistic regression on Urology 

  Precision Recall  F1-Score Support  

UR01 0.84 0.74 0.78 317 

UR02 0.90 0.65 0.75 172 

UR03 0.85 0.90 0.87 1112 

UR04 0.80 0.61 0.69 515 

UR05 0.85 0.89 0.87 355 

UR06 0.96 0.32 0.48 141 

UR07 0.71 0.75 0.73 718 

UR08 0 0 0 74 

UR09 0.8 0.92 0.85 1687 
     

accuracy 
  

0.81 5091 

macro avg. 0.74 0.64 0.67 5091 

weighted avg. 0.80 0.81 0.80 5091 

 

5.2.2.1 Comparison of classification results between linear and RBF SVM kernels  

With the support vector machine model performing the best out of all the other 

models tested, a comparison was made between the linear kernel and a radial basis 

function (RBF) kernel. The RBF kernel was tested with different values for the 

hyperparameters C and gamma as they have a greater impact on hyperplane 

placement when using a non-linear kernel. The best values of these hyperparameters 

on the urology dataset were found through testing. The value for gamma had a 

greater impact than the value for C, with the best results existing in a range of 0.4 - 

0.6. Using a gamma value of 0.5, it was found that the main impact of the C 

parameter was fitting the data to smaller classes like UR08. However, the overall F1-

Score for the model was not affected by the C parameter unless it was set to one or 

below. Doing so lowered the accuracy of the overall system, as shown in Table 28. 

Table 28 Effects of the C hyperparameter on the RBF SVM when Gamma = 0.5 

C F1-Score 

1.5 0.81 

1 0.80 

0.5 0.80 

0.2 0.78 

0.1 0.75 
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With the hyperparameters tuned, Table 29 shows the performance of the SVM with 

an RBF kernel. The RBF kernel and linear kernel perform similarly, with each 

having classes that produce a higher precision, recall and F1-score than the other.  

Table 29 Classification Report: RBF SVM on urology 

  Precision Recall  F1-Score Support  

UR01 0.77 0.85 0.81 317 

UR02 0.84 0.71 0.77 172 

UR03 0.85 0.89 0.87 1112 

UR04 0.72 0.72 0.72 515 

UR05 0.83 0.89 0.86 355 

UR06 0.83 0.44 0.57 141 

UR07 0.68 0.78 0.73 718 

UR08 0.65 0.15 0.24 74 

UR09 0.88 0.85 0.87 1687 
     

accuracy 
  

0.81 5091 

macro avg. 0.78 0.7 0.72 5091 

weighted avg. 0.81 0.81 0.81 5091 

5.2.2.2 Classification using neural network approaches 

After testing the dataset with traditional machine learning models, it was decided to 

also test the urology dataset using linear and RBF neural networks. All models were 

built using the Keras (Chollet, 2015) Python library. Many architectures were trialled 

for the linear neural network and notable ones are shown in Table 30. The linear 

neural network began to overfit after a single epoch; accuracy would continue to 

increase on the training set but decrease on the validation (testing) set. To counteract 

this, dropout layers were added in as per recommendations in Srivastava et al. 

(2014). A dropout layer randomly selects a portion of the nodes to turn off at each 

stage of training. The goal of the dropout layer is to reduce the overall amount of the 

training data the network sees at any given time, reducing the chance of overfitting. 

A dropout layer of 0.8 was added after the input layer, and dropout layers of 0.5 

were added after each hidden layer. While this increases the computational time till 

convergence, it may improve the generalisation of the model.  
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Table 30 Linear Neural Network architectures used on urology dataset 

Architecture Validation 

Accuracy 

(No dropout) 

Validation 

Accuracy 

(Dropout) 

Input layer: 128 nodes 

Hidden Layer: 64 nodes 

Output Layer: 9 nodes 

 

.83 

(1 epoch) 

 

.83 

(3 epochs) 

Input layer: 2048 nodes 

Hidden Layer(s): 1024 – 512 - 256 - 128 

Output Layer: 9 nodes  

 

.82 

(2 epochs) 

 

.83 

(2 epochs) 

Input layer: 9 nodes 

Hidden Layer: 9 nodes 

Output Layer: 9 nodes 

 

.81 

(1 epoch) 

 

.54 

(2 epochs) 

Input layer: 256 nodes 

Hidden Layer(s): 512 - 512 

Output Layer: 9 nodes 

 

.82 

(1 epoch) 

 

.84 

(11 epochs) 

Table 31 shows the classification report on the same training data as the models in 

Section 5.2.2.1. There are improvements to the performance metrics for all classes 

except UR08, which fell by .05. This overall improvement was made with 

comparable computation time as the previous models due to the immediate 

overfitting after a short number of epochs. 

Table 31 Classification report: best linear neural network 

  Precision Recall  F1-Score Support  

UR01 0.88 0.76 0.82 317 

UR02 0.9 0.69 0.78 172 

UR03 0.87 0.89 0.88 1112 

UR04 0.77 0.72 0.74 515 

UR05 0.82 0.92 0.87 355 

UR06 0.8 0.59 0.68 141 

UR07 0.75 0.78 0.77 718 

UR08 0.57 0.11 0.18 74 

UR09 0.86 0.92 0.89 1687 
     

accuracy 
  

0.84 5091 

macro avg. 0.8 0.71 0.73 5091 

weighted avg. 0.83 0.84 0.83 5091 
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The same process was repeated for the other types of neural networks. An RBF 

neural network with a single hidden layer achieved the same accuracy (.81) as the 

RBF in a support vector machine environment. Two sets of convolutional neural 

networks were tested, one with a single convolutional layer and a second with four 

layers to test deep learning. The CNN with a single layer outperformed the CNN 

with multiple layers with an accuracy of 0.82 compared to 0.79. This may have 

occurred as all the impactful features could be found in a single layer with no benefit 

from further separations, just added noise. The final network architecture, the RNN, 

struggled to produce a comparable accuracy. The best model found had an overall 

accuracy of 0.79 when employing an LSTM architecture. Unfortunately, while the 

other networks discussed in this section trained with a computational time of less 

than a minute for a single epoch, the RNN network averaged thirty-three minutes.  

 

5.2.2.3 Feature reduction techniques applied to the urology letters 

The full vocabulary for the urology dataset with the words and phrases is 66,937. 

This is a large vocabulary for a set of data centred around a small subset of medical 

knowledge. Taking the current approaches further in Section 5.3 with the general 

referral letters will significantly expand the vocabulary. This section outlines steps 

taken to extract a portion of the dataset that still represents the overall relationships. 

As previously stated in Section 5.2.1.2, applying PCA to the dataset found that 

around 14,000 words explained ninety-five percent of the variance present within 

this dataset. This finding presented an initial target size for any other feature 

reduction method discussed. The choices made for this feature reduction include the 

TF-IDF’s max features, employing SVD, a form of recursive feature elimination 

(RFE) (Guyon, et al., 2002), and a vocabulary based purely on a medical dictionary.  

Recursive feature elimination is the process of reducing features in the dataset one 

step at a time until you reach a chosen maximum number of surviving features. 

Guyon et al. (2002) outlines these steps for gene selection in a cancer classification 

problem. After training a support vector machine, features can be ranked according 

to the weight vectors associated with them. After the features are ranked, the feature 

with the smallest ranking criterion is removed and the process repeated until the 

required reduction is completed.  
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Figure 5.8 Top 20 most influential features on the urology dataset 

 

 

The approach taken in this thesis is different to the one set out in Guyon et al. 

(2002). Their approach takes into consideration the positive and negative values for 

each indicated feature to determine the ranking of a specific feature. In contrast, the 

original research presented in thesis used the absolute values of features, which then 

indicates the features that differ the most on average between classes (Furey, et al., 

2000) and thus have a greater impact on classification. The results of carrying out the 

process in this way are shown in Figure 5.8 which shows the top twenty features in 

the dataset according to the sum of absolute weights associated with them after SVM 

training. Rather than perform RFE based as per previous literature, the approach 

taken in this thesis is to instead threshold the data by these absolute weights. Figure 

5.9 displays the code written to extract and evaluate the weights present inside the 

trained SVMs attributes.  
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    coef = classifier.coef_ 

    coef = [abs(element) for element in coef] 

    total_coef = [sum(x) for x in zip(*coef)] 

    total_coef = np.asarray(total_coef) 

    feature_names = np.array(tfidfmodel.get_feature_names()) 

    values_to_test = [0.0 … 3.5] 

    filenames = ['0_0' …  '3_5'] 

    for index, current_val in enumerate(values_to_test): 

        indices = [ ] 

        for idx, val in enumerate(total_coef): 

            if val < current_val: 

                indices.append(idx) 

        reduced_vocab = delete_from_csr(original_vocab, None, indices) 

        current_file = "{}.npz".format(filenames[index]) 

        scipy.sparse.save_npz(current_file, reduced_vocab) 

Figure 5.9 Code for extracting features according to coefficient threshold weights 

 

After evaluation, individual sparse matrices were created using the features that 

existed above the chosen threshold. These sparse matrices were then used as input 

vocabularies for future experiments. Table 32 shows the effect that the thresholding 

has on the size of the vocabulary. By excluding the features that present little overall 

weight to the decision process the size of the vocabulary can be significantly 

reduced. For instance, removing all the features that have an absolute weight below 

1.0 results in a vocabulary size which aligns with the idea of ninety-five percent of 

the variance in the dataset, 14,106.    
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Table 32 Urology vocabulary size changes with linear SVM thresholding 

Threshold 

Weight 
Vocabulary Size 

0.0 55311 

0.1 54487 

0.2 52254 

0.3 48409 

0.4 43185 

0.5 37422 

0.6 31561 

0.7 26109 

0.8 21445 

0.9 17435 

1.0 14106 

1.1 11484 

1.2 9311 

1.3 7573 

1.4 6211 

1.5 5111 

1.6 4193 

1.7 3446 

1.8 2905 

1.9 2424 

2.0 2046 

2.1 1737 

2.2 1468 

2.3 1271 

2.4 1107 

2.5 954 

2.6 851 

2.7 745 

2.8 668 

2.9 584 

3.0 508 

3.1 460 

3.2 419 

3.3 370 

3.4 329 

3.5 301 
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Figure 5.10 Accuracy changes using SVM coefficients and TF-IDF max features 

Purely reducing the dataset to better fit computational time and resources is 

unimportant if the resultant accuracy is worse than the original methods. Figure 5.10 

shows the changes in accuracy that occur when reducing the vocabulary size through 

two of these reduction methods. The accuracy fluctuates until it reaches a small 

vocabulary size wherein it drops rapidly. 

The resultant accuracies of reducing the vocabulary to the size of 14,106 is shown in 

Table 33. The vocabulary column is the original vocabulary size without any feature 

reduction. The TF-IDF column is the result employing the max_features parameter 

with the TF-IDF algorithm. This parameter means that the TF-IDF matrix will only 

keep the top n features after conversion. The SVD column is the result of using SVD 

on the sparse TF-IDF matrix with the entire vocabulary and the SVM coefficient 

column is based upon a threshold level of 1.0 after training with the entire 

vocabulary.  

As Table 33 shows, the only method of feature reduction that provides an overall 

improvement to the representation of the dataset is the thresholded SVM 

coefficients. It produces the same or better result than using the initial vocabulary on 

eight out of nine categories. It presents the best result (bolded) in six out of nine 

categories and overall accuracy and F1-Score. A version of RFE was attempted 

using Sklearn’s (Pedregosa, et al., 2011) RFE implementation with support vector 

regression, but it failed to produce a reduced set of features after hours of training. 
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While the SVD approach presented a better look at UR08 specifically, it runs into an 

issue with computational time and resources. To reduce the dataset from the initial 

vocabulary size to the reduced feature set it took thirty-four minutes and used 

twenty-four gigabytes of RAM to accomplish the task. On a bigger dataset like the 

one in Section 5.3, the memory overhead would be far larger.  

Table 33 Urology data accuracy for different feature reduction methods 

Class Vocabulary TF-IDF SVD SVM Coef. 

UR01 0.80 0.79 0.80 0.80 

UR02 0.78 0.77 0.77 0.78 

UR03 0.87 0.86 0.87 0.88 

UR04 0.72 0.71 0.71 0.71 

UR05 0.87 0.85 0.86 0.87 

UR06 0.52 0.59 0.54 0.55 

UR07 0.72 0.72 0.72 0.73 

UR08 0.19 0.19 0.23 0.22 

UR09 0.88 0.87 0.88 0.88 

Model Acc. 0.82 0.81 0.81 0.82 

Model F1 0.80 0.80 0.81 0.81 

Number of most 

accurate classes 
5 1 3 6 

5.2.2.4 Classifying patient prioritisation from urology letters 

While patient prioritisation was not a goal for the urology dataset, experiments have 

been carried out to allow comparisons between the urology and the general referral 

letters datasets. The linear and RBF support vector machines have been applied to 

tackle the prioritisation problem due to their success when classifying sub-

specialities. With both GP and consultant priorities listed in the dataset, it allows for 

four variations in training and testing labels. Experiments have been carried out with 

each variation, employing the same training and testing set for each. The resulting 

F1-scores for these experiments are listed in Table 34. 
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Selecting consultant priorities for testing labels produced the best results. This 

included using both GP and consultant labels for training. This may suggest that the 

consultant’s priorities are more consistent with the information contained in the letter 

itself while the general practitioner’s priorities are influenced by outside factors. All 

eight models had issues classifying the USC prioritised notes in comparison to the 

other two labels. These cases were attributed mostly to the routine label as the 

precision score for the routine class was lower than the recall and F1-scores meaning 

that more false positives were attributed to that label.  

Table 34 SVMs ability to classify urology prioritisation 

Labels Prioritisation class Linear SVM RBF SVM 

GP train to GP output 

Routine 0.78 0.78 

Urgent 0.88 0.88 

USC 0.55 0.58 

Overall 0.80 0.80 

GP train to consultant 

output 

Routine 0.80 0.80 

Urgent 0.89 0.88 

USC 0.58 0.60 

Overall 0.81 0.81 

Consultant train to GP 

output 

Routine 0.80 0.79 

Urgent 0.89 0.88 

USC 0.58 0.61 

Overall 0.81 0.81 

Consultant train to 

consultant output 

Routine 0.83 0.82 

Urgent 0.90 0.90 

USC 0.64 0.65 

Overall 0.84 0.83 

5.2.3 Observations 

Experimentation with the urology dataset supported the premise that there would be 

significant overlap between the classes. The clustering results in Section 5.2.1 

showed that even though a combination of TF-IDF vectorisation and k-means++ 

clustering produced some measure of separability between the classes, certain 

classes shared locations in Euclidean space. This was due to symptoms present in 

classes like UR03 (penoscrotal) and UR09 (andrology) being highly linked. 
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Classification of specialities was successfully carried out to an accuracy of eighty 

three percent despite these overlaps, with the white box SVM and black box neural 

network producing the best results. The results indicate that with a wider, more 

separable, set of features in the generalised referral dataset (see Section 5.3), the 

same models should be able to classify the data with a higher degree of accuracy. 

Inversely, the random forest classifier used in this research produced results that 

could not be considered usable. This is believed to be because the random forest 

classifier can have issues with high dimensional or sparse datasets as mentioned in 

the usage documentation for the sci-kit learn library (Pedregosa, et al., 2011). This 

issue has been seen in prior research where Karlsson & Boström (2014) found that 

when using a sparse medical dataset to predict for adverse drug effects, the random 

forest algorithm was heavily biased towards the majority class which presented a low 

overall performance score. This would also indicate why the algorithm performed 

better with the Doc2Vec inputs as they are a dense matrix of relationships rather than 

a sparse frequency-based matrix. 

5.3 Results gathered from the general referral dataset 

The urology dataset provided an idea of how classification and clustering techniques 

can perform using full-bodied medical letters. The methods applied produced results 

with accuracies above eighty percent and presented a way of reducing the datasets 

vocabulary to one that is smaller but still representative.  

The goal of applying the same Natural Language Processing techniques to this 

referral dataset is then to determine whether a selection of full-bodied letters 

presenting a wider spectrum of specialities are inherently more categorizable. This 

goal comes from the idea that the differences in symptoms for medical conditions are 

more apparent than those in the urology sub-specialties. The steps taken in the 

following sections were based upon the information gathered from the work 

conducted with the urology and presenting complaints data.  
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5.3.1 Clustering results for the general referral letters dataset 

The first stage involved implementing the k-means clustering method and seeing if 

the algorithm could associate clusters with individual or groups of specialties. The 

expectation behind this method was that the cases about specialties like urology 

should be distinctly different and identifiable from other cases assigned to 

dermatology. With cluster analysis being an unsupervised method there is the 

expectation of overlap between certain classes in this dataset that belong to the same 

genre of speciality (community orthopaedic and orthopaedic as an example) but 

fewer overlaps than those present within the urology dataset discussed in Section 

4.2.2. The unbalanced nature of the dataset will also have a significant impact on the 

ability of the algorithm to cluster cases correctly. Without the knowledge of which 

class each case belongs to, the algorithm cannot adjust towards a more correct result. 

To compensate for this, clustering is used to confirm the basis of the belief that the 

dataset is separable.  

While k-means as an algorithm scales well to many datapoints, it struggles with the 

curse of dimensionality. Converting all 111,128 cases to a TF-IDF vector matrix 

using an n-gram range of 1, 5 results in a vocabulary size of 306,936. This affects the 

clustering algorithm in multiple ways. The substantial number of dimensions cause 

an exponential increase in computing power and time needed to cluster the cases, 

and more importantly, it makes individual cases more likely to converge together. 

This convergence occurs because although the vocabulary size of the dataset is 

306,936, the cases exist in sizes of 10-251 and some words within a letter may 

repeat. This results in a sparse document vector, where many of the dimensions will 

have a value of 0 and as such most cases will be inseparable for these dimensions. 

Figure 5.11 shows the results of running the k-means elbow visualiser from the 

Yellowbrick (Bengfort & Bilbro, 2019) Python library on the data for a range of 

clusters between 2 and 29 (the number of classes in the dataset) against a distortion 

score. The alternative method for scoring clusters (the Calinski-Harabasz index 

score) is unsuitable for this larger dataset as it requires a dense dataset instead of a 

sparse dataset, which requires a larger memory profile than was available for this 

project.  
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Figure 5.11 Distortion score for clusters on the NHS Wales referral dataset 

As shown in the graph, the system predicts that the best value for the clusters is 

eighteen according to the distortion score. This result is expected due to the reasons 

stated above: crossovers within the classes and the sparse nature of the input data. 

Following the same approach as the urology dataset in 4.2.2, the choice was made to 

set the number of clusters (K) to the number of existing classes (KI).  

With a high SSE of 106859.34 when looking at 29 clusters, the next stage is to 

consider dimensionality reduction through PCA (Principal Component Analysis) or 

truncated singular value decomposition (SVD). Implementing the PCA function 

from the scikit-learn library allows for the linear reduction in dimensionality through 

Singular Value Decomposition, however the method does not work with sparse data. 

To convert the data to a dense format requires a large amount of memory and while 

this was acceptable for the smaller urology dataset this larger dataset requires more 

memory than is available (251GB). The truncated SVD method is suitable for sparse 

data and is used for the dimensionality reduction that follows. 
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Figure 5.12 Distortion score for clusters on the SVD reduced referral dataset 

 

After reducing the dataset through truncated singular value decomposition down to 

one thousand relevant features, re-running the k-means clustering algorithm with a 

target of twenty-nine clusters gives us a new SSE of 34835.33. The reduction in 

vocabulary results in a significantly faster completion than the earlier runs with the 

full vocabulary of features. With the reduced number of features, the size of the data 

is now of a suitable size to use the Calinski-Harabasz score. Figure 5.13 shows that 

the metric predicts that the variance within the data degrades significantly as the 

number of clusters increases.    
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Figure 5.13 Calinski-Harabasz score for the SVD reduced referral data. 

The predicted clusters can be visualised using t-distributed stochastic neighbour 

embedding (van der Maaten & Hinton, 2008), allowing for the conversion and 

placement of the high dimensional data onto a two-dimensional plane. As there is 

111,128 datapoints within the dataset, the following graphs are a randomized subplot 

of 10,000 examples. Figure 5.14 shows the full dataset plotted onto a two-

dimensional plane, with each colour depicting a predicted cluster. Figure 5.15 shows 

the same data plotted in the same way; except this time the colours stand for the 

actual speciality class that the case belongs to. 

Figure 5.14 and Figure 5.15 show that while several clusters appear to be separable, 

those clusters are made up of a variety of different classes. For instance, cluster 

fifteen on the far left of the graph, while made up of several classes, appears to be a 

densely packed cluster of cases separated from the rest of the examples. This is a 

downside to tSNE in which distance between clusters is not actually indicative of 

anything important. The data presented in Figure 5.14 and Figure 5.15 also show that 

whilst the k-means algorithm manages to cluster large amounts of the same class 

together, using general surgery as an example, the same class can dominate one 

cluster but be a large part of several other clusters. Using the data present in 

Appendix 3, we can see that dermatology is dominant in four different clusters: 28, 

23, 8 and 5. It also has a strong presence in cluster one where the k-means algorithm 

has grouped more than a third of all the existing cases. 
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Figure 5.14 tSNE plot of 10,000 examples without feature reduction coloured to the predicted clusters 
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Figure 5.15 tSNE plot of 10,000 examples without feature reduction coloured to actual classes within the data. 
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Figure 5.16 tSNE subplot of clusters with a vocabulary feature size of 2500 
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Figure 5.17 tSNE subplot of classes with a vocabulary feature size of 2500 
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Figure 5.16 and Figure 5.17, alongside the data present in Appendix 4, show that 

despite the feature reduction the clusters mirror those present in the unmodified 

dataset. This mirroring shows that while there is a large number of words and 

phrases that construct the overall vocabulary, there are only a small portion of 

features that have a significant impact on the separation between documents. This 

means that employing a feature reduction method before classifying the data should 

benefit the resultant model by removing unnecessary, noisy features that would 

otherwise blur the boundaries between classes.   

The clusters pictured match to certain classes within the dataset, usually those 

classes that have a larger number of examples. However, the issue of one large 

cluster is once again present, and clusters such as cluster zero in this example are a 

bucket consisting of a wide variety of classes with no clear indicator towards a 

specific label. Using dermatology again as the example class and excluding the 

largest cluster (cluster five), the reduced dataset has only created one major 

dermatology cluster although small numbers of examples are spread across several 

other clusters.  

The results of clustering show that there are differences between the words present 

within the data for the referral letters and although the algorithm was unable to 

separate for the substantial number of classes (twenty-nine) present for individual 

specialties, clustering on this dataset may be possible for target labels of smaller 

sizes such as assigning patient priorities. The results also show the potential for 

using supervised learning, the ability to tune a model to the pre-existing labels 

should provide the opportunity to help separate the inconsistencies and overlapping 

features present within the data. The following section focuses on exploiting that fact 

to classify the data using both white box and black box techniques.  

5.3.2 Classification results for the general referral letters dataset 

The classification conducted on the general referrals’ dataset follows the same 

methodology that was listed in 5.2.2. The focus will be on mapping the data to 

twenty-nine specific specialities using a range of classification techniques. The 

process again looks at various kinds of vectorisation and their impact on the 

accuracy of the models versus the choice in model itself before moving on to feature 
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reduction methods. This section then compares the ability of classifying specialities 

with a large number of classes to the three patient prioritisations. 

5.3.2.1 Impact of vectorisation choice when classifying  

The effect that vectorisation has on a model’s ability to successfully classifying data 

already been shown in 5.2.2. To ensure that the experiments reflect on the 

vectorisation method instead of the models themselves, the hyperparameters for the 

machine learning techniques were standardised across the experiments using the bag 

of words method, TF-IDF and Doc2Vec (See Section 3.3).  

Using the six classifiers set up as shown in Table 18, 5-fold cross validation is used 

to measure the accuracy and F1-Score of each classifier. Table 35 and Figure 5.18 

show that when the bag of words vectorisation technique is used with scoring goal of 

accuracy (correct classifications over all cases), the outcome is three high performing 

classifiers in Logistic regression, linear support vector machine and stochastic 

gradient descent. While the random forest classifier achieves comparable results with 

the two naïve-bayes techniques, the results are significantly lower than the 

accuracies achieved by the first three techniques. 

Table 35 Accuracy with bag of words vectorisation for six classification models 

 N-Gram Range 

 1, 1  1, 2 1, 3 1, 4 1, 5 2, 5 3, 5 4, 5 

Linear Support 

Vector Machine 89.129 90.967 91.077 91.120 91.116 88.227 76.464 52.340 

Logistic 

Regression 90.432 91.632 91.624 91.630 91.623 88.738 77.111 50.632 

Stochastic 

Gradient 

Descent 88.776 91.076 91.180 91.207 91.208 87.633 77.800 49.165 

Random Forest  83.785 84.655 84.539 84.331 84.231 84.334 72.719 47.825 

Bernoulli 

Naïve-Bayes 84.731 82.009 81.300 81.170 81.043 63.536 40.796 24.741 

Multinomial 

Naïve-Bayes 80.506 76.116 74.434 73.658 73.226 67.543 54.182 37.712 
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Figure 5.18 Accuracy of classifiers using the bag of words vectorisation technique 

Also found in Table 35, the range of n-grams influences the accuracy of the 

supervised learning models. Figure 5.19 shows that an achievable increase in 

accuracy when extending the n-grams beyond single words to include phrases for 

models such as logistic regression and support vector machines. However, the 

random forest and the Bernoulli Naïve-Bayes classifiers struggle to classify the data 

when expanding n-gram ranges to include phrases. 

 

Figure 5.19 Accuracy changes against n-gram range with bag of words 

0

20

40

60

80

100

1, 1 1, 2 1, 3 1, 4 1, 5 2, 5 3, 5 4, 5

%
 A

cc
u

ra
cy

Accuracy metric based classification scores

LinearSVC LogisticRegression SGDClassifier

MultinomialNB RandomForestClassifier BernoulliNB

70.000

75.000

80.000

85.000

90.000

95.000

1, 1 1, 2 1, 3 1, 4 1, 5

Chart Title

LinearSVC LogisticRegression SGDClassifier

MultinomialNB RandomForestClassifier BernoulliNB



 

107 

 

Table 36 F1-Score for bag of words vectorisation on six classification models 

 N-Gram Range 

 1, 1  1, 2 1, 3 1, 4 1, 5 2, 5 3, 5 4, 5 

Linear Support 

Vector Machine 89.101 90.893 90.996 91.039 91.034 88.074 76.304 53.422 

Logistic 

Regression 90.368 91.547 91.532 91.537 91.532 88.521 76.720 50.862 

Stochastic 

Gradient 

Descent 88.607 91.021 91.085 91.043 91.098 87.318 77.315 50.404 

Random Forest  83.774 80.248 79.423 79.191 79.099 60.264 40.422 21.821 

Bernoulli 

Naïve-Bayes 79.555 71.692 69.560 68.666 68.203 61.740 50.555 36.137 

Multinomial 

Naïve-Bayes 83.750 83.655 83.451 83.189 83.066 83.759 71.638 47.091 

 

The F1-Score is a better metric than accuracy to use to correctly identify the efficacy 

of the models. This is due to the GP referral dataset is imbalanced, with some classes 

having 2/125th of the cases than the highest class and that preventing false positives 

and false negatives are more important than just the true positives due to the cost of 

wasting clinician time if referrals are sent to the wrong specialist.  When comparing 

the results in Table 35 and Table 36, the same trend in models is observed. Logistic 

regression, support vector machine and stochastic gradient descent perform 

significantly better than the other three models. Whilst the results are marginally 

lower than those seen when using accuracy as a metric (on average 0.100375 lower 

for logistic regression), the scores suggest that the classifiers are able to model the 

relationships in the data when using bag of words vectorisation. Figure 5.20 displays 

the results of Table 36 in a comparable format. The results shown echo Figure 5.19, 

the same trends exist where three of the models classify data with an F1-Score of 

above ninety percent for all n-gram ranges that include individual words, but no 

model classifies to that level when only including phrases. 
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Figure 5.20 F1-Score using the bag of words vectorisation technique 

The second method of vectorisation is using TF-IDF to produce weighted scores 

according to the rarity in which vocabulary terms appear in the dataset (see Section 

3.2.2). The same 5-fold cross validation technique is used alongside the same six 

models and their associated hyperparameters. The accuracy of these models can be 

seen in Table 37. 

Table 37 Accuracy with TF-IDF vectorisation for six classification models 

 N-Gram Range 

 1, 1  1, 2 1, 3 1, 4 1, 5 2, 5 3, 5 4, 5 

Linear Support 

Vector Machine 

90.106 91.989 91.954 91.928 91.914 89.523 79.148 52.415 

Logistic 

Regression 

87.763 88.323 88.306 88.275 88.260 83.357 71.314 48.477 

Stochastic 

Gradient Descent 

85.442 85.828 85.733 85.705 85.690 83.132 76.056 48.863 

Random Forest  84.960 82.369 81.787 81.340 81.303 63.514 40.695 24.707 

Bernoulli Naïve-

Bayes 

80.506 76.116 74.434 73.658 73.226 67.544 54.182 37.712 

Multinomial 

Naïve-Bayes 

78.543 73.746 73.612 73.414 73.331 74.665 66.737 46.305 

In comparison to the accuracy scores given under the bag of words vectorisation, 

most models achieve a lower overall accuracy score. However, the support vector 

machine approach achieves a greater peak than any of the models previously shown. 

Accuracy is an imperative part of this thesis due to the field of study (medical) and 
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as such these improvements should not be overlooked. Figure 5.21 again shows the 

effect that changing the range of n-grams has on the six models’ ability to classify 

the data to the medical specialties. The key difference between the accuracies in the 

bag of words and TF-IDF vectorisation approaches is that the logistic regression and 

SGD classifiers never reach the same level of accuracy as the support vector 

machine, no matter the range used. 

 

Figure 5.21 Accuracy of classifiers using the TF-IDF vectorisation technique 
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Table 38 F1-Score for TF-IDF vectorisation on six classification models 

 N-Gram Range 

 1, 1  1, 2 1, 3 1, 4 1, 5 2, 5 3, 5 4, 5 

Linear Support 

Vector Machine 89.927 91.854 91.813 91.786 91.177 89.320 78.857 53.256 

Logistic 

Regression 87.314 87.772 87.727 87.691 87.675 81.917 68.755 47.178 

Stochastic 

Gradient Descent 84.280 84.656 84.541 84.540 84.525 81.978 75.048 51.207 

Random Forest  83.955 80.879 79.608 79.185 78.957 63.896 53.079 42.467 

Bernoulli Naïve-

Bayes 79.470 72.399 70.546 69.675 69.110 64.493 58.413 54.521 

Multinomial 

Naïve-Bayes 75.067 68.437 68.216 67.950 67.851 69.966 61.961 46.305 

The word embedding matrix approach was also considered for use with the six 

classification models shown in this section. Doc2Vec matrices were employed on the 

first four models, with the Bayesian models excluded due to the issues regarding 

negative feature weights. Two instances of the doc2vec matrices were tested, one 

that was trained with a small number of epoch’s (20) and one with a high number of 

epoch’s (10,000).  

Table 39 Doc2Vec accuracies on referral dataset 

 Low Epoch High Epoch 

Linear SVM 0.24264 0.14798 

Logistic Regression 0.24159 0.34825 

Random Forest 0.15758 0.21376 

 

The resulting results of these two Doc2Vec models are shown in Table 39 which are 

based on an n-gram range of 1, 2. Training the embedding matrix for a significantly 

longer time did not have a significant impact on the accuracy of models learning 

from it, with the linear SVM reporting a lower accuracy with the model that was 

trained for longer. 
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5.3.2.1.1 Classification report comparison for the best white-box techniques 

As seen with the urology dataset, relying solely on using cross validation can mask 

some issues that a model has with the classification of individual classes. Table 40 

and Table 41 compare the ability of the linear SVM and logistic regression when 

given the same seeded training and testing set for the referral data when using TF-

IDF vectorisation.  

Table 40 Classification Report: Linear SVM on referral dataset 

 precision recall f1-score support 

Cardiology 0.95 0.97 0.96 682 

Care of the elderly 0.93 0.66 0.77 59 

Clinical Immunology 0.91 0.81 0.86 88 

Clinical neuro-physiology  0.87 0.75 0.80 44 

Community Orthopaedic 0.73 0.53 0.62 393 

Dermatology 0.96 0.97 0.97 3017 

Dietetics 0.97 0.93 0.95 346 

endocrinology 0.85 0.82 0.83 201 

ENT 0.95 0.98 0.96 2551 

Gastroenterology 0.83 0.88 0.85 987 

General medicine 0.84 0.68 0.75 202 

General Surgery 0.93 0.92 0.93 2875 

Haematology (clinical) 0.94 0.89 0.92 146 

Nephrology 0.97 0.87 0.92 87 

Ophthalmology 0.90 0.88 0.89 126 

Oral/Maxillo facial surgery 0.91 0.79 0.84 218 

Orthopaedic 0.86 0.93 0.89 2327 

Paediatrics 0.91 0.78 0.84 741 

Pain Management 0.88 0.78 0.83 147 

Physiotherapy 0.87 0.87 0.87 1348 

Rapid diagnostic centre 0.93 0.45 0.61 31 

Rehabilitation 0.91 0.90 0.91 128 

Rheumatology 0.91 0.92 0.91 430 

Thoracic medicine 0.94 0.97 0.96 594 

Urology 0.95 0.98 0.97 1766 

Vascular surgery 0.82 0.86 0.84 146 

Gynaecology 0.97 0.97 0.97 2024 

Neurology 0.90 0.87 0.89 441 

Geriatric medicine 0.88 0.79 0.83 81 

Accuracy   0.92 22226 

Macro average 0.90 0.84 0.87 22226 

Weighted average 0.92 0.92 0.92 22226 

From the overall accuracies presented already, it was known that the SVM would 

produce the better overall accuracy. However, it performs significantly better at 

classifying the smaller classes present within the dataset. Using a specific example, 

the rapid diagnostic centre is a class that represents a Welsh NHS service for 
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referring patients for screenings of potential cancer. These screens cover a wide 

range of specialties, which means they will have overlapping features with the other 

classes. The SVM manages to achieve a sixty one percent F1-Score despite the 

issues with sharing features. The logistic regression model in comparison achieves a 

precision, recall and F1-Score of zero. This is reflected in the difference between the 

weighted average and macro averaged F1-Scores for each model’s classification 

report.  

Table 41 Classification Report: Logistic regression on referral dataset 

 precision recall f1-score support 

Cardiology 0.92 0.96 0.94 682 

Care of the elderly 0.76 0.32 0.45 59 

Clinical Immunology 0.95 0.6 0.74 88 

Clinical neuro-physiology  0.81 0.5 0.62 44 

Community Orthopaedic 0.73 0.3 0.43 393 

Dermatology 0.93 0.98 0.95 3017 

Dietetics 0.96 0.87 0.91 346 

endocrinology 0.82 0.72 0.77 201 

ENT 0.91 0.97 0.94 2551 

Gastroenterology 0.77 0.84 0.80 987 

General medicine 0.83 0.52 0.64 202 

General Surgery 0.89 0.91 0.90 2875 

Haematology (clinical) 0.93 0.71 0.80 146 

Nephrology 0.98 0.67 0.79 87 

Ophthalmology 0.92 0.68 0.79 126 

Oral/Maxillo facial surgery 0.91 0.58 0.71 218 

Orthopaedic 0.79 0.92 0.85 2327 

Paediatrics 0.83 0.66 0.74 741 

Pain Management 0.90 0.55 0.68 147 

Physiotherapy 0.80 0.83 0.82 1348 

Rapid diagnostic centre 0 0 0 31 

Rehabilitation 0.95 0.83 0.89 128 

Rheumatology 0.90 0.83 0.86 430 

Thoracic medicine 0.92 0.95 0.94 594 

Urology 0.93 0.96 0.95 1766 

Vascular surgery 0.81 0.65 0.72 146 

Gynaecology 0.95 0.96 0.96 2024 

Neurology 0.85 0.78 0.81 441 

Geriatric medicine 0.92 0.54 0.68 81 

     

Accuracy   0.88 22226 

Macro average 0.85 0.71 0.76 22226 

Weighted average 0.88 0.88 0.88 22226 
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A report using the non-linear RBF kernel (Table 42) produces results that lie 

between the linear SVM and the logistic regression models. The same trends can be 

seen where the classes with less than one hundred members in the testing set have a 

lower F1-Score than those with a greater number of examples. Using the rapid 

diagnostic centre class as the example again, the RBF scores one hundred percent on 

precision, meaning that every case that was attributed to that label was correct. 

However, the recall is only six percent which means that a majority of the cases that 

belonged to the rapid diagnostic centre class were actually classified by the model as 

a different label. 

Table 42 Classification Report: RBF SVM on referral dataset 

 precision recall f1-score support 

Cardiology 0.95 0.96 0.96 682 

Care of the elderly 0.76 0.44 0.56 59 

Clinical Immunology 0.91 0.76 0.83 88 

Clinical neuro-physiology  0.88 0.50 0.64 44 

Community Orthopaedic 0.78 0.32 0.45 393 

Dermatology 0.95 0.97 0.96 3017 

Dietetics 0.97 0.90 0.93 346 

endocrinology 0.84 0.79 0.82 201 

ENT 0.93 0.98 0.95 2551 

Gastroenterology 0.79 0.85 0.82 987 

General medicine 0.83 0.60 0.70 202 

General Surgery 0.89 0.92 0.91 2875 

Haematology (clinical) 0.93 0.77 0.84 146 

Nephrology 0.95 0.72 0.82 87 

Ophthalmology 0.91 0.75 0.83 126 

Oral/Maxillo facial surgery 0.91 0.66 0.77 218 

Orthopaedic 0.82 0.95 0.88 2327 

Paediatrics 0.89 0.69 0.78 741 

Pain Management 0.90 0.65 0.75 147 

Physiotherapy 0.84 0.85 0.84 1348 

Rapid diagnostic centre 1.00 0.06 0.12 31 

Rehabilitation 0.98 0.84 0.90 128 

Rheumatology 0.92 0.87 0.90 430 

Thoracic medicine 0.94 0.96 0.95 594 

Urology 0.95 0.97 0.96 1766 

Vascular surgery 0.83 0.73 0.78 146 

Gynaecology 0.96 0.97 0.96 2024 

Neurology 0.88 0.82 0.85 441 

Geriatric medicine 0.91 0.65 0.76 81 

Accuracy   0.90 22226 

Macro average 0.90 0.76 0.80 22226 

Weighted average 0.90 0.90 0.90 22226 
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5.3.2.2 Classification using neural network approaches 

As shown in Section 5.3.2.1, the word embedding approach struggles on this dataset 

when compared to the frequency-based approaches of TF-IDF and bag of words. 

Unfortunately, due to the size of the dataset’s vocabulary it is impractical to 

transform the sparse matrices into usable inputs for neural network testing.  

Variations on linear neural network architectures were applied to this dataset with 

Doc2Vec embeddings as an input. With the information previously learnt from the 

urology dataset, dropout layers were included from the beginning to reduce the 

chance of overfitting.  

Table 43 Linear Neural Network architectures used on referral dataset 

Architecture Validation  

Accuracy 

Input layer: 128 nodes 

Hidden Layer: 64 nodes 

Output Layer: 29 nodes 

 

.81 

Input layer: 2048 nodes 

Hidden Layer(s): 1024 – 256 - 64  

Output Layer: 29 nodes  

 

.86 

Input layer: 4096 nodes 

Hidden Layer: 2048 – 1024 – 256 – 64  

Output Layer: 29 nodes 

 

.78 

Input layer: 256 nodes 

Hidden Layer(s): 512 - 512 

Output Layer: 29 nodes 

 

.84 

Adapting the other neural network architectures to this dataset did not represent the 

data in a meaningful way. The previously discussed issue with the RNN was 

exemplified with the larger dataset; a single epoch taking six and a half hours to run. 

On the urology dataset, the RNN produced a comparable accuracy to the non-neural 

network models. It barely achieved an accuracy of .64 on the general referral letters 

dataset despite a five-day runtime. The CNN fared even worse than the RNN. 

Although the training was fast in comparison to the RNN, it would often fail to 

converge and models that did successfully begin separating the data would give 
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accuracies between .40 and .60. Accuracies that are not high enough to be considered 

useful when traditional models are offering results above ninety percent.  

The final neural network architecture used in this project the transformer 

architecture. The project employed RoBERTa (Liu, et al., 2019), a pre-trained model 

built upon the original BERT architecture (Devlin, et al., 2018) and has been used as 

the basis for domain specific medical language training in other publications (Monea 

& Marginean, 2021) including the Biomedical Language Understanding and 

Reasoning Benchmark (BLURB) (Gu, et al., 2021). Additionally, the BioLinkBERT 

(Yasunaga, et al., 2022) model which holds the highest position on the BLURB 

leaderboard as of June 2022 has been used to compare the result with the base 

RoBERTa model. The results of training these transformers on the referrals dataset 

are shown in Table 44. 

Table 44 Results of applying transformer architectures to the referral dataset 

Epochs 
RoBERTa-base BioLinkBERT-base 

MCC F1-Score MCC F1-Score 

1st 0.833 0.835 0.883 0.891 

20 0.924 0.930 0.925 0.931 

The transformer architecture outperformed every other neural network based 

approach by a significant margin. The final F1-Scores are higher than all other 

machine learning techniques tested in this thesis for both the specialist and non-

specialist trained models. The only issue that arises during the training of these 

models using existing libraries is the storage space required to save the model at 

different points in the training process. Each checkpoint required 1.39GB of storage 

and, with a large dataset like the referral dataset, there were six checkpoints for every 

epoch.  

5.3.2.3 Impact of feature reduction techniques when classifying  

The vocabulary size of the referral dataset is incredibly large due to the number of 

cases and variety of different specialities present. The number of features causes 

many of the clustering and classification tasks to use a significant amount of 

processing time and power. With some models, like the convolutional neural 

network, it removed the ability to classify the system entirely.  



 

116 

 

The same approach to the one set out in Section 5.2.2.3 was taken, wherein a 

modified version of feature elimination was carried out via thresholding instead of 

recursion. The absolute weights for all features were taken from a linear support 

vector machine, and at each stage the features that fell below the threshold were 

removed. The resulting changes to the vocabulary size are detailed in Table 45. The 

accuracy of a model implementing SVD reduction has not been implemented on this 

dataset due to memory limitations.   

Table 45 Referral vocabulary size and resultant F1-Scores when thresholding 

Threshold 

Weight Vocabulary Size F1-Score (COEF) F1-Score (TF-IDF) 

0.0 309325 0.91609 0.91609 

0.1 266991 0.91613 0.91644 

0.2 232686 0.91634 0.91615 

0.3 199571 0.91607 0.91569 

0.4 166804 0.91552 0.91575 

0.5 137137 0.91494 0.91540 

0.6 111842 0.91542 0.91493 

0.7 91172 0.91500 0.91476 

0.8 74518 0.91374 0.91294 

0.9 61313 0.91275 0.91122 

1.0 50805 0.91067 0.91129 

1.1 42605 0.90961 0.90961 

1.2 35973 0.90803 0.90821 

1.3 30888 0.90696 0.90692 

1.4 26724 0.90496 0.90603 

1.5 23266 0.90260 0.90355 

1.6 20447 0.90102 0.90377 

1.7 18113 0.89986 0.90237 

1.8 16121 0.89842 0.90016 

1.9 14435 0.89743 0.89979 

2.0 12990 0.89475 0.89850 

2.1 11709 0.89220 0.89617 

2.2 10626 0.89078 0.89445 

2.3 9718 0.88971 0.89302 

2.4 8932 0.88772 0.89133 

2.5 8243 0.88606 0.89000 

2.6 7611 0.88637 0.88850 

2.7 7006 0.88493 0.88660 

2.8 6514 0.88340 0.88570 

2.9 6016 0.88208 0.88297 

3.0 5570 0.88009 0.88101 

3.1 5185 0.87871 0.88033 
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3.2 4844 0.87722 0.87684 

3.3 4524 0.87688 0.87483 

3.4 4235 0.87451 0.87374 

3.5 3957 0.87287 0.87218 

 

The results show that if the vocabulary were to be reduced to the same threshold as 

the urology dataset (1.0), then the vocabulary size would be reduced by 73.5 percent 

for a reduction in accuracy by only 0.00542 percent. However, reducing the 

vocabulary size also reduces the accuracy of models because there are some noisy 

features. Using a threshold of 0.1 or 0.2 for features provides a better F1-Score with 

both TF-IDF max features and linear coefficients. 

 

Figure 5.22 F1-Score changes using SVM coefficients and TF-IDF max features 

Figure 5.22 graphs the information from Table 45. The line follows the same trend 

that was shown in the urology dataset. The model’s accuracy fluctuates around the 

same point within one or two percent until reducing the vocabulary to a small 

number of features. It reaches this point at an earlier threshold than previously seen; 

in the referral dataset it occurs at 0.8 in comparison to 1.6 in the urology dataset. 

This is due to the number of classes evaluated for this task and the size of the initial 

vocabulary. Words that are still useful for classification but appear across multiple 

documents will have a lower initial weight value to the TF-IDF method of 

vectorisation. For the weights assigned by the SVM itself, the impact of a feature 
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depends on how much it effects the classification towards a single class. Features 

that exist across multiple classes will not convey the same level of positive or 

negative weighting as was seen in the urology dataset. However, for certain classes 

like the rapid diagnostic centre or for separating community orthopaedic from 

normal orthopaedic, these overlapping features are the most important.  

5.3.2.3.1 Effects of stemming and lemmatisation on general referral letters 

As previously discussed in this thesis, the use of stemming and lemmatisation has 

been avoided due to the specific language used within medical texts including 

treatments, symptoms, and tests. This reasoning for not adjusting the original texts  

has also been seen in Section 4.3 o, where the clinical named entity recognition 

mistook several specific features as other medical terms.  

Table 46 The effects of pre-processing on model performance 

 precision recall f1-score 

Baseline 5 3 5 

Stemmed 6 5 3 

Lemmatised 3 3 4 

Table 46 shows which method of presenting the data resulted in the greatest 

accuracy for each performance metric. Focussing on the F1-Score, which is the 

metric used to evaluate the models in this thesis, only twelve out of the twenty-nine 

categories have an F1-Score that is higher than the other two methods.  The full 

classification reports for the model’s using stemming and lemmatisation can be 

found in Appendix 5 Classification reports for stemming and lemmatising referrals. 

5.3.2.4 Classification techniques applied around prioritising patients 

Patient prioritisation is another element of the dataset that is valued by the company 

partner on this project. As stated in Section 4.2.3.3 with Figure 4.7, there is a 

significant difference in the priority a general practitioner will initially assign to a 

patient and the resultant priority assigned by the consultant. This discrepancy has 

shown to change alongside the version numbers attached to each of the cases, with 

the most dramatic change appearing between the initial letter (version number 1) and 

the first iteration (version number 2). The support vector machine that produced the 

best result on the speciality classification problem has been used for the prioritisation 
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problem as well. Table 47 shows the results of modelling with all the notes and a 

subset of the dataset that only looks at the initial referral letters. 

Table 47 Performance prioritising letters for all notes and just initial notes 

 All notes Version 1 only 

 precision recall f1-score precision recall f1-score 

Routine 0.87 0.97 0.92 0.88 0.96 0.92 

Urgent 0.87 0.55 0.68 0.87 0.56 0.68 

USC 0.84 0.88 0.86 0.84 0.89 0.86 

       

Accuracy 0.87 0.87 

Across the entire dataset, the GP priorities align with the consultant priorities ninety 

one percent of the time. The support vector machine does not manage to achieve the 

same accuracy as a medical professional assigning priorities to a patient. However, 

due to the method of communication between the GP and consultant, any case that 

has a version number of two or greater is more likely to match as it is a combination 

of both clinician’s opinions. To that extent the most important cases within the 

dataset to look at are the initial letters (labelled as version one). The support vector 

machine approach matches the GP’s accuracy for cases associated with routine and 

USC cases but struggles on urgent cases. This mirrors the issues shown in Figure 

4.7, the most common change in case prioritisation between GP and consultant 

occurring within the urgent class. 

While an accuracy of eighty seven percent is acceptable as a research goal, an 

increase in accuracy is needed to make the model viable for implementation as a 

medical system. With the goal of providing a system that can help clinicians rather 

than replace clinicians, a way to tackle this issue is to reduce the number of letters 

classified to only those cases where the system is confident in the prediction. 

Table 48 Accuracy of the SVM at different confidence levels 

Confidence Accuracy 

 

Total prioritised 

Percentage of letters 

requiring clinical 

review 

Priority 

unchanged 

Priority 

upgraded 

Priority 

downgraded 

> 60% 88% 68.41% 2.34% 7.25% 78% 22% 

> 70% 91% 59.99% 1.25% 4.75% 66% 34% 

> 80% 94% 47.89% 1.20% 2.50% 51% 49% 

> 90% 96% 25.68% 1.46% 0.87% 28% 72% 

> 95% 98% 10.44% 0.35% 0.21% 11% 89% 

> 98% 98% 1.92% 0.06% 0.03% 2% 98% 
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Table 48 indicates how the confidence level effects the accuracy of the model. 

Depending on the threshold chosen, the impact the system has as a support tool 

changes. Choosing a high confidence threshold like ninety five percent results in an 

accuracy value of ninety eight percent. The number of prioritised letters decreases 

alongside this increase in accuracy, with eleven percent of the documents classified 

by the system. Given the dataset analysed, an 11% reduction is 12,224 notes. This 

represents a significant reduction in work otherwise invested by clinicians.  

 

5.3.3 Observations 

Experiments carried out on the referral dataset proved the hypothesis set out at the 

end of 5.2.3, that the main issue with classification during the testing on the urology 

dataset was due to the sub-specialities existing within close proximity of each other. 

A wider set of features present in the referral dataset showed that multiple different 

methods of classification could be used to successfully represent the relationships 

between features and an associated speciality.  

Again, feature reduction techniques were able to reduce the size of the dataset 

without impacting the performance of the models until a certain point. Using the 

thresholds calculated from the linear SVM’s coefficients, a reduction of thirty five 

percent of the vocabulary could be achieved before the model suffered a loss in 

accuracy. The impact of stemming and lemmatisation was minimal on the data, and 

not worth implementing in a full system. Doing so would incur a computational 

overhead to the system wherein every new input by a clinician would require an 

added level of pre-processing. 

The results on the prioritisation classes are useful for presenting the idea that a 

clinician need not review every document for that purpose. While the model is not fit 

for purpose when looking at every inputted document, incorporating a high 

confidence threshold results in a model that could reduce the workload of clinicians 

by upwards of eleven percent. 
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5.4 Creation of a multiple output explainable system 

Research question one is to create a generalised repository of knowledge that could 

serve as a basis for a clinical support system, rather than a classification model that 

replaces the medical professional. Therefore, the scenario presents a unique 

opportunity. A system can be created that both displays multiple potential outputs to 

the clinician interacting with the system and gives reasoning behind which features 

have influenced that decision.  

To do so, however, eliminates the prospect of using deep learning models as the 

methodologies are black box. No information can be gleaned about the actual 

computations that are carried out between the input vectors and the output 

classification. Weights can be extracted, but they will not directly correlate to any 

feature in the vocabulary. Instead, the focus will be on the white box techniques that 

have shown to perform as well as these deep learning techniques: support vector 

machines and logistic regression. Figure 5.23 contains the code which extends a 

pipeline to output the top three classes found on a testing set to a pandas dataframe 

(top_class). 
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#Calculate probabilities from the model 

proba = model.predict_proba(X_test)  

best_probs = np.argsort(-proba, axis=1)[:, :3] 

 

#Create a dataframe with the probabilities for each class 

top_class = model.classes_[best_probs] 

top_class_df = pd.DataFrame(data=top_class) 

results = pd.DataFrame(y_test, columns=['correct']) 

results = pd.merge(results, top_class_df, left_index=True, right_index=True) 

results['indices'] = indices_test 

 

# Fetch top 3 results 

top3 = [ 

    (results.iloc[:, 0] == results[0]), 

    (results.iloc[:, 0] == results[1]), 

    (results.iloc[:, 0] == results[2])] 

top3_choices = [1, 1, 1] 

# Fetch top 2 results 

top2 = [ 

    (results.iloc[:, 0] == results[0]), 

    (results.iloc[:, 0] == results[1])] 

top2_choices = [1, 1] 

# Fetch Top result 

top1_conditions = [(results.iloc[:, 0] == results[0])] 

top1_choices = [1] 

 

# Create the success columns 

results['Top 3 Successes'] = np.select(top3, top3_choices, default=0) 

results['Top 2 Successes'] = np.select(top2, top2_choices, default=0) 

results['Top 1 Successes'] = np.select(top1_conditions, top1_choices, default=0) 

 

# Output the accuracy of the system when looking at the top x results 

print("Predicted Accuracy using .predict_proba(top 1)= ", sum(results['Top 1 Successes'])/results.shape[0]) 

print("Predicted Accuracy using .predict_proba(top 2)= ", sum(results['Top 2 Sucessses'])/results.shape[0]) 

print("Predicted Accuracy using .predict_proba(top 3)= ", sum(results['Top 3 Successes'])/results.shape[0]) 

Figure 5.23 Code used to output top probabilities to a user 

This dataframe is then merged with the actual output (y_test) and the original 

document number (indices_test) to create the dataframe shown in Table 49. 
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Table 49 Results dataframe after initial merging 

Correct 0 1 2 Indices 

Actual class label Predicted 

label  

Second highest 

predicted label 

Third highest 

predicted label 

Document 

number 

From this dataframe, three lists are made: top3, top2 and top1. Each list creates a 

binary output as to whether the class number predicted in a column matches the 

correct column. These lists alongside the choice lists (top3/top2/top1_choices) can 

be used with numPy’s select function to return a binary array representing whether 

the correct class was successfully found in the top n predictions by the model. In the 

example these arrays have been assigned to columns in the results dataframe and the 

effect of the conditions shown in Table 50. 

Table 50 Success Columns added to Results dataframe 

Top 3 Successes Top 2 Successes Top 1 Successes 

1: if prediction in top 3 

0: if prediction not in top 3 

1: if prediction in top 2 

0: if prediction not in top 2 

1: if prediction in top 1 

0: if prediction not in top 1 

To achieve this result requires models that can output interpretable probabilities. If 

using a library like scikit-learn (Pedregosa, et al., 2011) the default linearSVC 

(SVM) model cannot output probabilities. Instead, the SVC model must be 

employed with a linear kernel and the probability parameter set to true. This method 

enables the use of Platt scaling (Platt, 1999) to transform the outputs of the support 

vector machine to a probability distribution. The outputs of the accuracy calculations 

with these two models with a different number of predictions is shown in Table 51.  

Table 51 Testing if the correct answer is within the top three probabilities using 

SVM and Logistic regression 

Number of predictions given SVM Logistic Regression 

One 0.9069 0.8829 

Two 0.9763 0.9649 

Three 0.9919 0.9844 

The results in Table 51 show that when classifying against twenty-nine categories of 

medical speciality, the support vector machine is ninety-nine percent effective when 

three possibilities are outputted to the user. As expected, a percentage of the 

misclassifications are due to overlapping medical terms between classes amongst 

other problems. The additional benefit to approaching the problem in this way 
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besides the accuracy score is that the probabilities given to each output are visible to 

the end user. This allows the system proposed in Section 5.4.2 to output the 

predicted values to the screen to support a decision made by a clinician.  

5.4.1 Problems within letters resolved by offering multiple predictions 

This section outlines examples of misclassifications in the original classification 

system that have been resolved by offering an alternative option. It outlines some of 

the issues the models encountered due to the medical nature of the dataset. 

this year old gentleman was diagnosed with coeliac disease in england in he 

is a newly registered patient and states his symptoms are usually well 

controlled but admits to finding this hard at times he is keen to have a 

dietetic review thank you for your help 

Figure 5.24 Coeliac disease letter 

The first example, Figure 5.24, was assigned as a gastroenterology letter instead of a 

dietetics letter. This example highlights an issue a computer has when interpreting 

the intention of a letter. The condition coeliac disease is a gastroenterology problem, 

but the intended result is to see a dietician to manage the condition. By offering an 

alternative the system was able to offer both gastroenterology and dietetics as 

speciality choices.   

this lady has a serum oestrogen she has had amenorrhea since January 

something similar happened a few years ago but her periods restarted after 

some months serum oestradiol level pmol serum prolactin level mu lserum 

lh level serum fsh level in view of her low serum oestradiol levels we 

would value your opinion 

Figure 5.25 Amenorrhea letter 

Figure 5.25 shows a case that potentially had the wrong speciality assigned by the 

GP. In the dataset, the speciality assigned was General medicine. A speciality that 

had been discussed in the presenting complaints dataset (see Section 4.2.1) as a 

universal label when a case does not fit a more specialist class. Using information 

found via the NHS website (National Health Service, 2019), a person suffering from 

amenorrhea should be referred to a gynaecologist or an endocrinologist. Both of 
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these options were presented as the number one and number two predictions, with 

general medicine being the third prediction. 

 

5.4.2 Potential for producing an integral system 

All clinicians within Wales interact with the Wales Clinical Portal (WCP) for a 

variety of reasons including dealing with referrals. For a machine learning system 

like the one discussed in this thesis to be implemented into the NHS as a tool, it must 

be integrable into this portal. Figure 5.26 presents a rough outline of how such a tool 

could fit into the referral section of the clinical portal. Once information has been 

entered into the Presenting complaint section of the referral, a speciality advice 

button could provide options for assigning a specific referral speciality when 

hovered over. These options will then highlight key terms present within the text that 

indicate that the case should be referred to a consultant belonging to that speciality.  

 

Figure 5.26 Prototype of integrated support tool 

As per research question three, any support tool that would be incorporated into the 

Welsh clinical portal would need to be computationally inexpensive and intuitive. A 

support tool that hinders the speed of a clinician to perform their job would be 

impractical and ignored.   
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5.4.2.1 How existing machine learning explainers provide classification insights 

An indication into how such a system would function can be garnered from the use 

of existing machine learning explainers. Both LIME (Ribeiro, et al., 2016)) and 

SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) offer approaches to 

model interpretation. Out of the two approaches, LIME presents the information 

surrounding a single prediction in a more understandable format. Figure 5.27 shows 

an example of how LIME interprets the case passed into an explainer, and outputs 

weights associated with individual features. 

 

Figure 5.27 LIME showing features contributing to an endocrinology classification 

While LIME produces an output in a readable format, it is important to acknowledge 

that the associated probabilities, features, and weights are produced by creating a 

simplified version of the original dataset. Any distance calculations performed will 

reflect this new dataset and the linear model associated with LIME, rather than the 

original predictions modelled. As such, the outputs may not represent the 

information correctly if the original model is using a more complex classifier. 

5.5 Chapter conclusion 

The results outlined in this chapter communicate the importance of having high 

quality data and enough variation between the class labels. Starting with the 

Accident and Emergency presenting complaints dataset, the modelling results 

improved with each subsequent dataset. The chapter shows the importance of each 

choice made across the entire modelling process, including the impact each choice 

has on both accuracy values and computing power requirements. 
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The results themselves reflect the ability to classify data effectively against medical 

specialities and patient prioritisations with the general referral letters dataset. The 

methods chosen in this research achieve results of 92% and 87% against the two sets 

of class labels. With regards to the patient specialities, diverging from the common 

path of classification and instead producing a probabilistic output of two or three 

options results in an accuracy of 99%. For patient prioritisation, as there are only 

three labels to be assigned, the research instead looks at employing confidence 

thresholds. By doing so the research undertaken shows that 11% of letters could be 

automatically prioritised by a system with 98% accuracy. 

This chapter also outlines an alternative to Recursive Feature Elimination (RFE), 

using absolute values of SVM weight vectors to rank features within a vocabulary. 

The resultant output has shown a comparative feature reduction ability to other 

methods and can be performed on large datasets that would otherwise require 

segmentation to use PCA. 

The next chapter concludes this thesis, highlights contributions to knowledge, offers 

suggestions for future work and presents final comments. 
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Chapter 6  Conclusion 

This concluding chapter presents a summary and assessment of the research 

accomplished in this thesis. It draws on the research aims and objectives that were 

established in the introductory chapter of this thesis alongside the results shown in 

individual chapters to justify the conclusions. 

6.1 Research objectives 

The main aim of this research was to demonstrate the effectiveness of document 

classification within the clinical domain without the need of external clinical 

dictionaries. The research in this thesis has successfully shown that words and 

phrases contained within a medical letter between a general practitioner and a 

consultant provides enough information to model relationships about the associated 

medical speciality and patient priority. The success of this aim was attributed to the 

completion of four research objectives. 

• To investigate machine learning and its existing use within the clinical 

domain alongside the fundamental decision making of clinicians when 

referring patients to hospital. 

This objective was completed across this thesis. Beginning in Chapter 2, this thesis 

outlined the process that a patient undergoes to receive a referral from a general 

practitioner to a consultant. This includes indicators (symptoms, test results, etc.) 

used by clinicians to determine the specialist required and urgency of the case. It 

then goes onto introduce natural language processing and the classification pipeline 

being used for this research. 

The initial investigation into Natural Language Processing within the clinical domain 

found that the most prominent subtask was named entity recognition. This is due to 

the nature of medical texts which tend to include abbreviations for items like 

pharmaceuticals and test results. Publications for clinical document classification 

were found to mostly include a pre-trained NER system during feature generation, 

with only a few newer publications using systems that did not include medical 

ontologies (see Section 2.4). The applicability of these pre-trained NER systems was 

tested in Section 4.2. The outcomes of which found that issues can occur when 
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implementing such a system. On the examples tested, the annotations were often 

obscure and unrelated to the rest of the document.  

• To assess the impact that different feature generation techniques can have on 

the ability for a machine learning algorithm to model relationships in the 

data. 

Chapter 3 introduced the two methods of feature generation: frequency-based models 

and context-based models. Within these sections, the main techniques used for 

feature generation were explained including the processes for transforming raw text 

data into numbers that can be understood by a computer. 

Chapter 3 also compares both approaches, explaining the benefits and issues that can 

occur when using them. This comparison was taken further in Chapter 5 wherein the 

classification results for both the urology (see Section 5.2.2) and general referral 

dataset (see Section 5.3.2) included accuracy comparisons using different feature 

generation methods like TF-IDF and Doc2Vec. 

• To develop a natural language processing classification pipeline that takes in 

raw text data and outputs labels according to medical speciality or priority. 

Each stage of a classification pipeline has been expressed in this thesis. For the 

explicit development of a pipeline, Section 4.2 and Section 4.3 demonstrate the 

initial pre-processing of each dataset, alongside the models chosen for classification 

and their associated hyperparameters. Chapter 5 then shows the results of the created 

pipeline for both patient priority and medical speciality. Following this, Section 5.4 

describes the creation of a multiple output system that explains the decisions made 

by a classifier to an end user. It shows the benefits of adding choices to the final 

decision in terms of both accuracy improvements as well as highlighting problems 

that may arise within clinical text (See Section 5.4.1). 

• To evaluate the contributing factors to a successful classification including 

feature generation, model selection and feature reduction. 

The contributing factors of classification are displayed in Chapter 5 for each of the 

datasets used in testing. The results firstly compare the different feature generation 

algorithms and their impact on accuracy for the different machine learning models. 
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Following this, an evaluation of traditional machine learning techniques compared to 

neural networks is carried out. The ability of each model to classify against the pre-

labelled data is tested and considerations are made in relation to whether the benefits 

of being able to understand exactly how a model has predicted an outcome 

outweighs a drop in overall accuracy. 

Finally, Section 5.2.2.3 and Section 5.3.2.3 evaluate different methods of feature 

reduction to reduce the time and power requirements needed to train a large machine 

learning model whilst not affecting the performance of a model. The sections discuss 

existing methods like PCA and thresholding during feature generation as well as 

introducing a method of feature reduction using weights produced by a linear SVM. 

6.2 Contributions to Knowledge 

The research described in this thesis falls under the categories of medical subdomain 

classification with an onus on presenting the information in a format that a clinical 

professional interested in the process can follow. Contributions made in regard to 

this topic are stated in this section. 

6.2.1 Flexibility in research outputs 

This research shows the potential for machine learning models to support existing 

manual processes within the clinical domain. It incorporates multiple different 

machine learning techniques to fulfil the goal of classifying medical data, achieving 

this goal accurately with both unsupervised and supervised learning. It also contains 

comparisons between each of the approaches and the benefits/downsides to using 

them. 

The research also shows the advantage of not being restricted to a single 

classification. By eliminating the requirement for the system to only show its most 

confident classification choice, the accuracy of the system was increased 

significantly (to 99%). The only remaining letters that the system then struggled to 

classify had underlying issues and are outlined in Section 5.4.1. 

6.2.2 Interpretation of a practical dataset 

Natural language processing tasks in the clinical domain often struggle to find an 

appropriate dataset for the hypothesis being tested. This research uses three datasets 

taken from within the DHCW data warehouse, which consist of live patient data, to 
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ensure that the features used for training mirror what would be found in an actual 

referral letter. Furthermore, the key difference that sets this research apart from other 

publications on clinical document classification is that the selection of input data was 

random. No modifications were made to the data to better accommodate 

classification, such as limiting the number of classes or manually curating the data to 

fit a specific goal. The only condition enforced on the data collection process was a 

date range of two years (2017-2019). As previously discussed in Section 2.4, this 

method of data procurement is objectively more representative of an actual 

healthcare system than some existing publications.    

6.3 Future Work 

This section describes the next steps that could be taken to further this research, 

based on the results shown in this thesis. 

6.3.1 Implementation of a system into the Welsh clinical portal 

With the main research aim achieved, the next stage would be to determine the 

transferability of the research into a consumer environment. While this thesis 

presents sufficient results to show the models worth in a research environment (see 

Section 5.4), a public implementation would be required to take it a step further. To 

do so, however, will require the system to be created using a user-centric design, 

with a substantial number of hours spent shadowing and liaising with clinicians on 

both ends of the referral process to understand the information needed to ensure 

patient safety. The concerns around patient safety are explained in The Digital 

Doctor (Wachter, 2015). However, some of the worries surrounding the replacement 

of clinicians are already covered by the support aspect of the proposed system.  

The other need for clinical input on a consumer facing system questions whether the 

full picture of a person’s case can be extracted by the presenting complaint alone. 

With the integration of computing systems into healthcare, what was once the entire 

referral letter has been broken up into several different text boxes that are filled in by 

the general practitioner or consultant separately. There may not be a need to include 

the information about the patient’s medical history in the presenting complaint. By 

doing so a consultant may find indicators that a patient needs to be assigned a 

different speciality or prioritisation in the medical history that was overlooked by a 

general practitioner. The presence of certain symptoms directing a system towards a 



 

132 

 

specific speciality may exist because of such an indicator. As an example, blood in 

urine may be caused by a urological issue but can also be a result of a history of 

smoking. Again, this level of knowledge would need to be achieved by shadowing 

and liaising with clinicians directly and appropriately.  

Existing classification systems within a clinical context do exist, primarily image 

classification systems that aim to detect the existence of cancer indicators from 

photos and radiology reports. None of these systems replace the clinicians or 

technicians working with the original images. Human input is required before and 

after the classification model decides what it believes to be a melanoma or tumour. It 

is this prospect that leads to the belief that the same type of system can be influential 

with textual documents to improve the speed of clinical pathways undertaken by 

patients.  

6.4 Final Remarks 

The natural language processing pipeline and its associated techniques demonstrated 

in this research demonstrates an effective methodology for approaching a machine 

learning task with an unstructured clinical dataset. The research shows that there are 

fundamental relationships present within the clinical referral letters evaluated that 

can be used to interpret key labels such as speciality department and patient 

prioritisation. The accurate results achieved across a variety of machine learning 

techniques like support vector machines and artificial neural networks show the 

strength of these relationships, avoiding the use of external dictionaries that are 

commonly found within literature in this area.   

The research also establishes an alternate approach to feature elimination using the 

absolute values of the SVM weight vectors as thresholding points. This is in contrast 

to existing approaches that approach the feature elimination process recursively. 

Such techniques can then be combined to find the best vocabulary size between the 

two most accurate thresholds. The results of thresholding the data using SVM weight 

vectors show comparable results with other feature reduction techniques like TF-IDF 

values and PCA. Unlike PCA there is no data transformation that creates a large 

memory overhead, meaning that the method shown in this research can be used on 

large datasets under strict hardware constraints. 
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Due to the highly technical language used within clinical data representing 

symptoms, medical procedures, and medication, creating a system that can perfectly 

determine the nature of a patient’s problem is incredibly difficult. However, the 

approach taken in this research shows that a system that offers one or two 

alternatives to the best match presents the user with choices that represent over 99% 

accuracy in terms of matching case description to outcome. The system’s ability to 

capture and share medical expertise makes available a wealth of useful information 

to help in decision making. Such a system has the potential to better direct more 

patients to the right specialist earlier in the process than is currently the case. In 

addition, clinical expertise captured in this way may be particularly impactful in 

developing countries where the availability of second opinions may be sparse. 
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Appendix 

Appendix 1 Presenting Complaints Dataset Event Frequency Table 

Speciality Frequency 

General Medicine 236961 

General Surgery 131112 

Paediatrics 126321 

Trauma & Orthopaedics 92147 

Cardiology 37612 

Gynaecology 34088 

Accident & Emergency 30945 

Geriatric Medicine 22050 

Paediatric Surgery 21587 

ENT 19965 

Urology 17798 

Respiratory Medicine 16107 

Plastic Surgery 14398 

Gastroenterology 10825 

Oral Surgery 10038 

Endocrinology 7484 

Adult Mental Illness 4506 

Nephrology 3898 

Neurosurgery 3127 

Anaesthetics 2924 

Midwifery Service 2319 

Obstetrics 2150 

Cardiothoracic Surgery 1523 

Clinical Haematology 1180 

Ophthalmology 951 

Infectious Diseases 780 

Rehabilitation Service 691 

Medical Oncology 644 

Neurology 634 

Diabetic Medicine 618 

Old Age Psychiatry 509 

Clinical Oncology (Radiotherapy) 451 

Clinical Pharmacology 377 

Palliative Medicine 377 

GP Other than Maternity 348 

Stroke Medicine 282 

Paediatric Neurology 193 

Burns Care 87 

Rheumatology 86 
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Vascular Surgery 78 

Dermatology 76 

Paediatric Burns Care 59 

Child & Adolescent Psychiatry 53 

Colorectal Surgery 51 

Paediatric Plastic Surgery 42 

Paediatric Neurosurgery 29 

Learning Disability 24 

Orthodontics 24 

Paediatric Cardiology 20 

Paediatric Dentistry 19 

Dental Medicine 16 

Community Medicine 14 

Critical Care Medicine 14 

Forensic Psychiatry 14 

Cardiac Surgery 12 

Paediatric Intensive Care 12 

Paediatric Trauma and Orthopaedics 12 

Maxillo-Facial Surgery 11 

Medical Microbiology 10 

Neonatology 10 

Restorative Dentistry 9 

Breast Surgery 7 

Paediatric ENT 6 

Upper Gastrointestinal Surgery 6 

Antenatal Clinic 5 

Pain Management 5 

Radiology 5 

Nursing Activity 3 

Physiotherapy 3 

Postnatal Clinic 3 

Paediatric Medical Oncology 2 

Thoracic Surgery 2 

Dietetics 1 

Hepatobiliary & Pancreatic Surgery 1 

Hepatology 1 

Intermediate Care 1 

Paediatric Gastroenterology 1 

Paediatric Opthamology 1 

Paediatric Respiratory Medicine 1 

Spinal Injuries 1 

Spinal Surgery Service 1 

Well Babies 1 
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Appendix 2 Complaints Dataset Subset Frequency Table 

Speciality Frequency 

General Medicine 32456 

General Surgery 16971 

Trauma & Orthopaedics 11282 

Paediatrics 7247 

Cardiology 4997 

Gynaecology 4309 

Accident & Emergency 3774 

Geriatric Medicine 3140 

ENT 2361 

Urology 2306 

Respiratory Medicine 2117 

Gastroenterology 1548 

Plastic Surgery 1322 

Oral Surgery 1146 

Endocrinology 1080 

Adult Mental Illness 575 

Nephrology 572 

Neurosurgery 385 

Anaesthetics 352 

Obstetrics 255 

Midwifery Service 247 

Cardiothoracic Surgery 204 

Paediatric Surgery 196 

Clinical Haematology 166 

Infectious Diseases 115 

Rehabilitation Service 106 

Ophthalmology 100 

Medical Oncology 82 

Old Age Psychiatry 79 

Neurology 76 

Diabetic Medicine 72 

GP Other than Maternity 62 

Palliative Medicine 62 

Clinical Oncology (Radiotherapy) 54 

Clinical Pharmacology 50 

Stroke Medicine 31 

Vascular Surgery 16 

Paediatric Neurology 12 

Rheumatology 11 

Child & Adolescent Psychiatry 8 

Dermatology 8 

Learning Disability 5 
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Colorectal Surgery 4 

Dental Medicine 3 

Medical Microbiology 3 

Orthodontics 3 

Paediatric Neurosurgery 3 

Paediatric Plastic Surgery 3 

Restorative Dentistry 3 

Community Medicine 2 

Forensic Psychiatry 2 

Nursing Activity 2 

Paediatric Burns Care 2 

Radiology 2 

Antenatal Clinic 1 

Breast Surgery 1 

Burns Care 1 

Critical Care Medicine 1 

Maxillo-Facial Surgery 1 

Paediatric Dentistry 1 

Paediatric Intensive Care 1 

Paediatric Trauma and Orthopaedics 1 

Spinal Surgery Service 1 

Upper Gastrointestinal Surgery 1 
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Appendix 3 Referral Dataset Predicted Clusters 

Cluster Labels  
0 1477 

Cardiology 1 
Gastroenterology 4 
General Surgery 1370 
Gynaecology 5 
Orthopaedic 1 
Paediatrics 73 
Pain Management 1 
Physiotherapy 3 

Urology 19 
1 35929 

Cardiology 667 
Care of the elderly 177 
Clinical Immunology 290 
Clinical Neuro-physiology 8 
Community Orthopaedic 339 
Dermatology 2783 
Dietetics 1440 
Endocrinology 871 
ENT 2747 
Gastroenterology 1103 

General Medicine 929 
General Surgery 2733 
Geriatric Medicine 341 
Gynaecology 2209 
Haematology 488 
Nephrology 338 
Neurology 1863 
Ophthalmology 557 
Oral/Maxilo 758 
Orthopaedic 4092 
Paediatrics 1801 
Pain Management 468 

Physiotherapy 1984 
Rapid Diagnostic Center 29 
Rehabilitation 609 
Rheumatology 1797 
Thoracic Medicine 676 
Urology 3178 
Vascular Surgery 654 

2 2145 

Care of the elderly 2 
Dietetics 6 
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Endocrinology 2 
ENT 3 
Gastroenterology 743 
General Medicine 2 
General Surgery 1313 
Gynaecology 25 
Haematology 3 
Orthopaedic 4 
Paediatrics 7 
Rapid Diagnostic Center 9 
Rehabilitation 4 
Rheumatology 2 

Thoracic Medicine 2 
Urology 18 

3 3869 

Cardiology 1 
Care of the elderly 3 
Community Orthopaedic 828 
Dermatology 7 
Dietetics 19 
General Surgery 6 
Neurology 1 
Orthopaedic 1862 
Paediatrics 10 

Pain Management 9 
Physiotherapy 1074 
Rheumatology 47 
Vascular Surgery 2 

4 3024 

Cardiology 48 
Care of the elderly 11 
Clinical Immunology 22 
Clinical Neuro-physiology 5 
Community Orthopaedic 32 
Dermatology 393 
Dietetics 29 

Endocrinology 45 
ENT 271 
Gastroenterology 160 
General Medicine 41 
General Surgery 366 
Geriatric Medicine 10 

Gynaecology 297 
Haematology 30 
Nephrology 22 
Neurology 97 
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Ophthalmology 62 
Oral/Maxilo 34 
Orthopaedic 316 
Paediatrics 123 
Pain Management 38 
Physiotherapy 149 
Rapid Diagnostic Center 5 
Rehabilitation 16 
Rheumatology 57 
Thoracic Medicine 76 
Urology 221 
Vascular Surgery 48 

5 5644 

Dermatology 5124 
ENT 86 
Gastroenterology 1 
General Surgery 54 
Gynaecology 66 
Neurology 1 
Ophthalmology 77 
Oral/Maxilo 155 
Orthopaedic 19 
Paediatrics 7 
Rapid Diagnostic Center 1 

Thoracic Medicine 8 
Urology 45 

6 1232 

Dietetics 7 
ENT 548 
General Medicine 2 
General Surgery 2 
Gynaecology 1 
Neurology 12 
Paediatrics 142 
Pain Management 1 
Rheumatology 1 

Thoracic Medicine 516 
7 4666 

Care of the elderly 3 
Community Orthopaedic 1 
Endocrinology 2 
Gastroenterology 2 
General Medicine 1 
General Surgery 5 
Gynaecology 45 
Haematology 5 
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Nephrology 28 
Paediatrics 70 
Pain Management 2 
Physiotherapy 4 
Rapid Diagnostic Center 5 
Urology 4493 

8 2579 

Clinical Immunology 101 
Dermatology 2156 
Endocrinology 1 
Gastroenterology 2 
General Medicine 2 

General Surgery 27 
Gynaecology 6 
Haematology 3 
Nephrology 5 
Ophthalmology 1 
Oral/Maxilo 4 
Orthopaedic 3 
Paediatrics 220 
Physiotherapy 1 
Rapid Diagnostic Center 1 
Rheumatology 32 
Thoracic Medicine 4 

Urology 7 
Vascular Surgery 3 

9 221 

Cardiology 18 
Community Orthopaedic 6 
Dermatology 22 
Dietetics 3 
ENT 21 
Gastroenterology 9 
General Medicine 4 
General Surgery 72 
Geriatric Medicine 3 

Gynaecology 11 
Haematology 4 
Nephrology 2 
Neurology 8 
Oral/Maxilo 1 
Orthopaedic 6 

Paediatrics 2 
Pain Management 1 
Physiotherapy 3 
Rehabilitation 2 
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Rheumatology 4 
Thoracic Medicine 9 
Urology 10 

10 910 

Cardiology 21 
Dermatology 63 
Dietetics 45 
ENT 42 
Gastroenterology 18 
General Surgery 326 
Geriatric Medicine 1 
Gynaecology 85 

Haematology 7 
Neurology 1 
Orthopaedic 149 
Pain Management 12 
Physiotherapy 45 
Rheumatology 12 
Thoracic Medicine 16 
Urology 67 

11 1655 

Care of the elderly 1 
Community Orthopaedic 16 
Dermatology 2 

Dietetics 6 
Endocrinology 1 
ENT 1 
General Surgery 6 
Geriatric Medicine 4 
Gynaecology 2 
Haematology 1 
Neurology 1 
Orthopaedic 1201 
Paediatrics 1 
Pain Management 12 
Physiotherapy 387 

Rapid Diagnostic Center 2 
Rehabilitation 1 
Rheumatology 8 
Urology 2 

12 1068 

Cardiology 28 
Clinical Immunology 9 
Clinical Neuro-physiology 5 
Community Orthopaedic 40 
Dermatology 107 
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Dietetics 34 
Endocrinology 1 
ENT 96 
Gastroenterology 61 
General Medicine 31 
General Surgery 165 
Geriatric Medicine 10 
Gynaecology 55 
Haematology 9 
Nephrology 4 
Neurology 14 
Oral/Maxilo 6 

Orthopaedic 76 
Paediatrics 54 
Pain Management 18 
Physiotherapy 94 
Rehabilitation 17 
Rheumatology 19 
Thoracic Medicine 34 
Urology 81 

13 4514 

Care of the elderly 1 
Dermatology 15 
Endocrinology 1 

ENT 4303 
Gastroenterology 1 
General Surgery 3 
Neurology 8 
Oral/Maxilo 9 
Orthopaedic 1 
Paediatrics 172 

14 422 

Clinical Immunology 1 
Dermatology 68 
Endocrinology 5 
ENT 56 

Gastroenterology 14 
General Surgery 81 
Gynaecology 39 
Haematology 2 
Nephrology 2 
Neurology 7 

Ophthalmology 4 
Oral/Maxilo 12 
Orthopaedic 58 
Paediatrics 5 
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Pain Management 4 
Rapid Diagnostic Center 6 
Rheumatology 3 
Thoracic Medicine 5 
Urology 40 
Vascular Surgery 10 

15 1629 

Cardiology 38 
Care of the elderly 12 
Clinical Immunology 4 
Clinical Neuro-physiology 9 
Community Orthopaedic 12 

Dermatology 248 
Dietetics 5 
Endocrinology 33 
ENT 219 
Gastroenterology 21 
General Medicine 10 
General Surgery 251 
Geriatric Medicine 2 
Gynaecology 187 
Haematology 11 
Nephrology 11 
Neurology 17 

Ophthalmology 7 
Oral/Maxilo 19 
Orthopaedic 182 
Paediatrics 48 
Pain Management 6 
Physiotherapy 14 
Rapid Diagnostic Center 4 
Rehabilitation 1 
Rheumatology 31 
Thoracic Medicine 35 
Urology 174 
Vascular Surgery 18 

16 5855 

Dermatology 4 
Endocrinology 1 
ENT 2 
Gastroenterology 1 
General Medicine 1 

General Surgery 30 
Gynaecology 5354 
Haematology 3 
Paediatrics 6 
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Pain Management 5 
Physiotherapy 242 
Thoracic Medicine 1 
Urology 205 

17 5071 

Dermatology 22 
Dietetics 2 
ENT 1 
General Surgery 5023 
Gynaecology 1 
Haematology 1 
Ophthalmology 1 

Orthopaedic 3 
Paediatrics 12 
Pain Management 1 
Rheumatology 2 
Thoracic Medicine 1 
Urology 1 

18 1825 

Care of the elderly 2 
Clinical Immunology 6 
Dermatology 2 
ENT 1715 
General Surgery 2 

Neurology 3 
Oral/Maxilo 1 
Paediatrics 86 
Thoracic Medicine 8 

19 1928 

Dermatology 1868 
ENT 19 
General Surgery 1 
Ophthalmology 10 
Oral/Maxilo 30 

20 4912 

Cardiology 2781 

Care of the elderly 28 
Clinical Immunology 1 
Dermatology 4 
Dietetics 5 
Endocrinology 6 
ENT 63 
Gastroenterology 28 
General Medicine 50 
General Surgery 18 
Geriatric Medicine 27 
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Gynaecology 1 
Haematology 8 
Nephrology 13 
Neurology 26 
Orthopaedic 17 
Paediatrics 298 
Pain Management 1 
Physiotherapy 9 
Rapid Diagnostic Center 8 
Rehabilitation 2 
Rheumatology 3 
Thoracic Medicine 1495 

Urology 7 
Vascular Surgery 13 

21 1957 

Care of the elderly 2 
Clinical Neuro-physiology 197 
Community Orthopaedic 10 
Dermatology 9 
General Surgery 2 
Neurology 76 
Orthopaedic 1564 
Paediatrics 1 
Pain Management 2 

Physiotherapy 57 
Rehabilitation 1 
Rheumatology 29 
Vascular Surgery 7 

22 6676 

Cardiology 1 
Care of the elderly 32 
Clinical Immunology 6 
Dermatology 5 
Dietetics 66 
Endocrinology 14 
ENT 31 

Gastroenterology 2982 
General Medicine 22 
General Surgery 2418 
Geriatric Medicine 4 
Gynaecology 259 
Haematology 130 

Nephrology 11 
Neurology 1 
Oral/Maxilo 2 
Orthopaedic 2 
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Paediatrics 466 
Pain Management 4 
Physiotherapy 4 
Rapid Diagnostic Center 69 
Rehabilitation 3 
Rheumatology 7 
Thoracic Medicine 5 
Urology 115 
Vascular Surgery 17 

23 996 

Dermatology 989 
ENT 2 

General Surgery 1 
Orthopaedic 2 
Rapid Diagnostic Center 2 

24 1512 

Gastroenterology 1 

General Surgery 1 
Gynaecology 1505 
Urology 5 

25 3926 

Care of the elderly 1 
Clinical Neuro-physiology 1 
Community Orthopaedic 443 

Dermatology 1 
Dietetics 15 
Endocrinology 4 
Gastroenterology 5 
General Surgery 11 

Geriatric Medicine 4 
Gynaecology 28 
Haematology 14 
Neurology 33 
Orthopaedic 1141 
Paediatrics 8 
Pain Management 213 

Physiotherapy 1904 
Rapid Diagnostic Center 11 
Rheumatology 65 
Thoracic Medicine 1 
Urology 18 
Vascular Surgery 5 

26 2200 

Cardiology 2 
Community Orthopaedic 320 
Dermatology 24 
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ENT 1 
General Surgery 8 
Neurology 3 
Orthopaedic 709 
Pain Management 9 
Physiotherapy 1098 
Rheumatology 22 
Thoracic Medicine 4 

27 2438 

Clinical Immunology 3 
Endocrinology 2 
ENT 2302 

Gastroenterology 54 
General Medicine 1 
General Surgery 17 
Haematology 1 
Oral/Maxilo 8 
Paediatrics 34 
Thoracic Medicine 16 

28 848 

Clinical Immunology 1 
Dermatology 844 
General Medicine 2 
Gynaecology 1 

Grand Total 111128 
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Appendix 4 Clusters on referral data after reducing the features to a 

vocabulary of 2500. 

Clusters  
0 4311 

Cardiology 172 
Care of the elderly 9 
Clinical Immunology 14 
Clinical Neuro-physiology 4 
Community Orthopaedic 59 
Dermatology 329 
Dietetics 60 

Endocrinology 82 
ENT 259 
Gastroenterology 253 
General Medicine 47 

General Surgery 326 
Geriatric Medicine 37 
Gynaecology 394 
Haematology 50 
Nephrology 28 
Neurology 249 
Ophthalmology 139 
Oral/Maxilo 51 

Orthopaedic 481 
Paediatrics 163 
Pain Management 110 
Physiotherapy 203 
Rapid Diagnostic Center 1 
Rehabilitation 26 
Rheumatology 195 
Thoracic Medicine 136 
Urology 382 
Vascular Surgery 52 

1 1569 

Cardiology 5 

Dermatology 7 
Dietetics 708 
Endocrinology 411 
ENT 1 
Gastroenterology 6 
General Medicine 313 
General Surgery 7 
Gynaecology 3 
Haematology 1 
Nephrology 58 
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Neurology 2 
Ophthalmology 2 
Oral/Maxilo 1 
Orthopaedic 3 
Paediatrics 1 
Pain Management 2 
Rapid Diagnostic Center 2 
Rehabilitation 2 
Rheumatology 5 
Thoracic Medicine 2 
Urology 23 
Vascular Surgery 4 

2 1927 

Care of the elderly 3 
General Surgery 1 
Gynaecology 14 
Nephrology 17 
Paediatrics 20 
Physiotherapy 1 
Rapid Diagnostic Center 1 
Thoracic Medicine 2 
Urology 1868 

3 3008 

Cardiology 48 

Care of the elderly 10 
Clinical Immunology 23 
Clinical Neuro-physiology 5 
Community Orthopaedic 38 
Dermatology 448 
Dietetics 28 
Endocrinology 36 
ENT 242 
Gastroenterology 151 
General Medicine 37 
General Surgery 355 
Geriatric Medicine 10 

Gynaecology 287 
Haematology 26 
Nephrology 20 
Neurology 90 
Ophthalmology 58 
Oral/Maxilo 33 

Orthopaedic 355 
Paediatrics 119 
Pain Management 41 
Physiotherapy 164 
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Rapid Diagnostic Center 7 
Rehabilitation 16 
Rheumatology 55 
Thoracic Medicine 76 
Urology 186 
Vascular Surgery 44 

4 5476 

Dermatology 5 
ENT 3 
Gastroenterology 1 
General Surgery 33 
Gynaecology 5086 

Haematology 4 
Oral/Maxilo 1 
Paediatrics 3 
Pain Management 2 
Physiotherapy 220 
Thoracic Medicine 1 
Urology 117 

5 36140 

Cardiology 342 
Care of the elderly 153 
Clinical Immunology 369 
Clinical Neuro-physiology 17 

Community Orthopaedic 633 
Dermatology 5914 
Dietetics 629 
Endocrinology 324 
ENT 2419 
Gastroenterology 262 
General Medicine 510 
General Surgery 2313 
Geriatric Medicine 289 
Gynaecology 1984 
Haematology 272 
Nephrology 55 

Neurology 1584 
Ophthalmology 420 
Oral/Maxilo 685 
Orthopaedic 6382 
Paediatrics 1607 
Pain Management 550 

Physiotherapy 3615 
Rapid Diagnostic Center 13 
Rehabilitation 574 
Rheumatology 1692 



 

167 

 

Thoracic Medicine 304 
Urology 1634 
Vascular Surgery 595 

6 5256 

Dermatology 30 
Dietetics 2 
General Surgery 5200 
Gynaecology 1 
Haematology 1 
Ophthalmology 1 
Oral/Maxilo 1 
Orthopaedic 3 

Paediatrics 12 
Pain Management 1 
Rheumatology 2 
Thoracic Medicine 1 
Urology 1 

7 778 

Cardiology 5 
Care of the elderly 15 
Dermatology 2 
Dietetics 6 
Endocrinology 2 
ENT 7 

Gastroenterology 453 
General Medicine 5 
General Surgery 108 
Geriatric Medicine 1 
Gynaecology 67 
Haematology 72 
Nephrology 4 
Neurology 1 
Oral/Maxilo 1 
Paediatrics 6 
Rapid Diagnostic Center 2 
Rehabilitation 6 

Rheumatology 4 
Thoracic Medicine 2 
Urology 8 
Vascular Surgery 1 

8 2129 

Cardiology 2 
Community Orthopaedic 317 
Dermatology 43 
ENT 1 
General Surgery 9 
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Neurology 1 
Orthopaedic 690 
Pain Management 10 
Physiotherapy 1029 
Rheumatology 23 
Thoracic Medicine 4 

9 2290 

Care of the elderly 1 
Clinical Immunology 3 
Dermatology 4 
ENT 2183 
Gastroenterology 39 

General Medicine 1 
General Surgery 12 
Geriatric Medicine 1 
Oral/Maxilo 7 
Paediatrics 30 
Thoracic Medicine 9 

10 871 

Cardiology 512 
Care of the elderly 10 
Clinical Immunology 2 
Dermatology 1 
Dietetics 6 

Endocrinology 2 
ENT 10 
Gastroenterology 4 
General Medicine 4 
General Surgery 1 
Geriatric Medicine 3 
Haematology 5 
Nephrology 10 
Neurology 2 
Orthopaedic 1 
Paediatrics 11 
Rapid Diagnostic Center 1 

Rehabilitation 2 
Rheumatology 3 
Thoracic Medicine 278 
Vascular Surgery 3 

11 1466 

Cardiology 1 
Gastroenterology 3 
General Surgery 1360 
Gynaecology 5 
Orthopaedic 3 
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Paediatrics 71 
Pain Management 1 
Physiotherapy 3 
Urology 19 

12 145 

Dermatology 22 
Endocrinology 4 
ENT 16 
Gastroenterology 4 
General Surgery 16 
Gynaecology 17 
Nephrology 1 

Neurology 8 
Ophthalmology 4 
Oral/Maxilo 4 
Orthopaedic 28 
Paediatrics 4 
Pain Management 1 
Rheumatology 4 
Thoracic Medicine 2 
Urology 6 
Vascular Surgery 4 

13 7916 

Dermatology 7349 

ENT 96 
Gastroenterology 1 
General Surgery 52 
Gynaecology 67 
Neurology 1 
Ophthalmology 88 
Oral/Maxilo 186 
Orthopaedic 25 
Paediatrics 7 
Thoracic Medicine 3 
Urology 41 

14 1628 

Cardiology 38 
Care of the elderly 12 
Clinical Immunology 4 
Clinical Neuro-physiology 9 
Community Orthopaedic 12 
Dermatology 248 
Dietetics 5 
Endocrinology 33 
ENT 219 
Gastroenterology 20 
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General Medicine 10 
General Surgery 251 
Geriatric Medicine 2 
Gynaecology 187 
Haematology 11 
Nephrology 11 
Neurology 17 
Ophthalmology 7 
Oral/Maxilo 19 
Orthopaedic 182 
Paediatrics 48 
Pain Management 6 

Physiotherapy 14 
Rapid Diagnostic Center 4 
Rehabilitation 1 
Rheumatology 31 
Thoracic Medicine 35 
Urology 174 
Vascular Surgery 18 

15 2552 

Dermatology 91 
Endocrinology 1 
ENT 2284 
Gastroenterology 1 

General Surgery 4 
Neurology 3 
Oral/Maxilo 15 
Paediatrics 152 
Rheumatology 1 

16 9349 

Cardiology 19 
Care of the elderly 28 
Clinical Immunology 11 
Dermatology 23 
Dietetics 174 
Endocrinology 68 

ENT 129 
Gastroenterology 2935 
General Medicine 74 
General Surgery 1776 
Geriatric Medicine 20 
Gynaecology 1024 

Haematology 247 
Nephrology 222 
Neurology 23 
Oral/Maxilo 7 
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Orthopaedic 13 
Paediatrics 641 
Pain Management 6 
Physiotherapy 17 
Rapid Diagnostic Center 100 
Rehabilitation 6 
Rheumatology 25 
Thoracic Medicine 20 
Urology 1701 
Vascular Surgery 40 

17 604 

Dermatology 4 

General Surgery 3 
Paediatrics 94 
Urology 503 

18 1857 

Care of the elderly 2 

Clinical Immunology 6 
Dermatology 3 
ENT 1742 
General Surgery 2 
Neurology 3 
Oral/Maxilo 1 
Paediatrics 93 

Thoracic Medicine 5 
19 1946 

Endocrinology 1 
Gastroenterology 2 
General Surgery 3 

Haematology 3 
Nephrology 3 
Orthopaedic 1 
Pain Management 2 
Urology 1929 
Vascular Surgery 2 

20 2091 

Cardiology 1 
Care of the elderly 2 
Clinical Neuro-physiology 11 
Community Orthopaedic 107 
Dermatology 121 
Dietetics 2 
Endocrinology 16 
ENT 455 
General Medicine 4 
General Surgery 101 
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Geriatric Medicine 4 
Gynaecology 1 
Haematology 9 
Neurology 63 
Oral/Maxilo 21 
Orthopaedic 471 
Paediatrics 37 
Pain Management 46 
Physiotherapy 585 
Rheumatology 25 
Thoracic Medicine 2 
Urology 3 

Vascular Surgery 4 
21 3987 

Cardiology 1 
Care of the elderly 3 
Community Orthopaedic 837 
Dermatology 9 
Dietetics 19 
General Surgery 6 
Neurology 1 
Orthopaedic 1936 
Paediatrics 10 
Pain Management 10 

Physiotherapy 1105 
Rheumatology 48 
Vascular Surgery 2 

22 966 

Gastroenterology 1 
General Surgery 1 
Gynaecology 958 
Urology 6 

23 3274 

Care of the elderly 2 
Dietetics 4 
Endocrinology 1 

ENT 3 
Gastroenterology 977 
General Medicine 2 
General Surgery 2184 
Gynaecology 30 
Haematology 5 
Orthopaedic 4 
Paediatrics 25 
Rapid Diagnostic Center 11 
Rehabilitation 4 
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Rheumatology 2 
Thoracic Medicine 1 
Urology 19 

24 1067 

Cardiology 28 
Clinical Immunology 9 
Clinical Neuro-physiology 5 
Community Orthopaedic 40 
Dermatology 107 
Dietetics 34 
Endocrinology 1 
ENT 96 

Gastroenterology 61 
General Medicine 31 
General Surgery 163 
Geriatric Medicine 10 
Gynaecology 55 
Haematology 9 
Nephrology 4 
Neurology 14 
Oral/Maxilo 6 
Orthopaedic 77 
Paediatrics 54 
Pain Management 18 

Physiotherapy 94 
Rehabilitation 17 
Rheumatology 19 
Thoracic Medicine 34 
Urology 81 

25 3435 

Cardiology 2383 
Care of the elderly 21 
Dietetics 5 
Endocrinology 7 
ENT 130 
Gastroenterology 10 

General Medicine 35 
General Surgery 6 
Geriatric Medicine 27 
Gynaecology 2 
Haematology 1 
Nephrology 2 

Neurology 54 
Orthopaedic 1 
Paediatrics 251 
Pain Management 1 
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Physiotherapy 3 
Rehabilitation 2 
Thoracic Medicine 489 
Urology 2 
Vascular Surgery 3 

26 981 

Clinical Neuro-physiology 174 
Community Orthopaedic 2 
Neurology 47 
Orthopaedic 738 
Physiotherapy 16 
Rheumatology 3 

Vascular Surgery 1 
27 2137 

Care of the elderly 1 
ENT 2096 
Neurology 7 

Orthopaedic 1 
Paediatrics 32 

28 1972 

Cardiology 49 
Care of the elderly 3 
Clinical Immunology 3 
Community Orthopaedic 2 

ENT 138 
Gastroenterology 26 
General Medicine 25 
General Surgery 19 
Geriatric Medicine 2 

Haematology 4 
Nephrology 1 
Neurology 2 
Orthopaedic 13 
Paediatrics 155 
Physiotherapy 3 
Rapid Diagnostic Center 10 

Rheumatology 4 
Thoracic Medicine 1506 
Urology 3 
Vascular Surgery 4 

Grand Total 111128 
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Appendix 5 Classification reports for stemming and lemmatising referrals 

 precision recall f1-score support 

Cardiology 0.95 0.97 0.96 682 

Care of the elderly 0.93 0.64 0.76 59 

Clinical Immunology 0.9 0.81 0.85 88 

Clinical neuro-physiology  0.87 0.75 0.8 44 

Community Orthopaedic 0.77 0.53 0.63 393 

Dermatology 0.96 0.98 0.97 3017 

Dietetics 0.97 0.93 0.95 346 

endocrinology 0.85 0.82 0.84 201 

ENT 0.95 0.97 0.96 2551 

Gastroenterology 0.83 0.88 0.86 987 

General medicine 0.84 0.68 0.75 202 

General Surgery 0.93 0.93 0.93 2875 

Haematology (clinical) 0.93 0.87 0.9 146 

Nephrology 0.96 0.87 0.92 87 

Ophthalmology 0.9 0.87 0.89 126 

Oral/Maxillo facial surgery 0.9 0.79 0.84 218 

Orthopaedic 0.87 0.93 0.9 2327 

Paediatrics 0.91 0.77 0.83 741 

Pain Management 0.88 0.78 0.83 147 

Physiotherapy 0.86 0.87 0.87 1348 

Rapid diagnostic centre 0.93 0.45 0.61 31 

Rehabilitation 0.93 0.9 0.92 128 

Rheumatology 0.91 0.92 0.92 430 

Thoracic medicine 0.94 0.96 0.95 594 

Urology 0.95 0.98 0.97 1766 

Vascular surgery 0.84 0.87 0.86 146 

Gynaecology 0.97 0.98 0.97 2024 

Neurology 0.89 0.87 0.88 441 

Geriatric medicine 0.88 0.79 0.83 81 

 
    

Accuracy 

  
0.92 22226 

Macro average 0.9 0.84 0.87 22226 

Weighted average 0.92 0.92 0.92 22226 
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 precision recall f1-score support 

Cardiology 0.95 0.97 0.96 682 

Care of the elderly 0.93 0.64 0.76 59 

Clinical Immunology 0.89 0.84 0.87 88 

Clinical neuro-physiology  0.86 0.7 0.78 44 

Community Orthopaedic 0.76 0.53 0.62 393 

Dermatology 0.96 0.97 0.97 3017 

Dietetics 0.96 0.94 0.95 346 

endocrinology 0.86 0.83 0.84 201 

ENT 0.94 0.97 0.96 2551 

Gastroenterology 0.84 0.88 0.86 987 

General medicine 0.85 0.68 0.76 202 

General Surgery 0.93 0.93 0.93 2875 

Haematology (clinical) 0.92 0.89 0.91 146 

Nephrology 0.96 0.86 0.91 87 

Ophthalmology 0.89 0.89 0.89 126 

Oral/Maxillo facial surgery 0.89 0.77 0.82 218 

Orthopaedic 0.86 0.93 0.89 2327 

Paediatrics 0.9 0.76 0.83 741 

Pain Management 0.9 0.79 0.84 147 

Physiotherapy 0.86 0.87 0.86 1348 

Rapid diagnostic centre 1 0.39 0.56 31 

Rehabilitation 0.93 0.9 0.92 128 

Rheumatology 0.9 0.92 0.91 430 

Thoracic medicine 0.94 0.97 0.95 594 

Urology 0.95 0.98 0.96 1766 

Vascular surgery 0.81 0.86 0.83 146 

Gynaecology 0.97 0.97 0.97 2024 

Neurology 0.9 0.86 0.88 441 

Geriatric medicine 0.89 0.77 0.82 81 

 
    

Accuracy 

  
0.92 22226 

Macro average 0.9 0.84 0.86 22226 

Weighted average 0.92 0.92 0.92 22226 

 

 


