21,376 research outputs found

    Towards Secure and Safe Appified Automated Vehicles

    Full text link
    The advancement in Autonomous Vehicles (AVs) has created an enormous market for the development of self-driving functionalities,raising the question of how it will transform the traditional vehicle development process. One adventurous proposal is to open the AV platform to third-party developers, so that AV functionalities can be developed in a crowd-sourcing way, which could provide tangible benefits to both automakers and end users. Some pioneering companies in the automotive industry have made the move to open the platform so that developers are allowed to test their code on the road. Such openness, however, brings serious security and safety issues by allowing untrusted code to run on the vehicle. In this paper, we introduce the concept of an Appified AV platform that opens the development framework to third-party developers. To further address the safety challenges, we propose an enhanced appified AV design schema called AVGuard, which focuses primarily on mitigating the threats brought about by untrusted code, leveraging theory in the vehicle evaluation field, and conducting program analysis techniques in the cybersecurity area. Our study provides guidelines and suggested practice for the future design of open AV platforms

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Pedestrian Flow Simulation Validation and Verification Techniques

    Get PDF
    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this technique is to achieve a certain amount of accuracy required in the simulation model. This method is good at detecting the critical points in the pedestrians walking areas. For the calibration of suitable models we use the results obtained from analyzing the video recordings in Hajj 2009 and these results can be used to check the design sections of pedestrian facilities and exits. As practical examples, we present the simulation of pilgrim streams on the Jamarat bridge. The objectives of this study are twofold: first, to show through verification and validation that simulation tools can be used to reproduce realistic scenarios, and second, gather data for accurate predictions for designers and decision makers.Comment: 19 pages, 10 figure

    Pedestrian Anomaly Detection Using Context-Sensitive Crowd Simulation

    Get PDF
    Detecting anomalies in crowd movement is an area of considerable interest for surveillance and security applications. The question we address is: What constitutes an anomalous steering choice for an individual in the group? Deviation from “normal” behavior may be defined as a subject making a steering decision the observer would not, provided the same circumstances. Since the number of possible spatial and movement configurations is huge and human steering behavior is adaptive in nature, we adopt a context-sensitive approach to assess individuals rather than assume population-wide homogeneity. When presented with spatial trajectories from processed surveillance data, our system creates a shadow simulation. The simulation then establishes the current, local context for each agent and computes a predicted steering behavior against which the person’s actual motion can be statistically compared. We demonstrate the efficacy of our technique with preliminary results using real-world tracking data from the Edinburgh Pedestrian Dataset
    • …
    corecore