1,997 research outputs found

    CAPT๋ฅผ ์œ„ํ•œ ๋ฐœ์Œ ๋ณ€์ด ๋ถ„์„ ๋ฐ CycleGAN ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ธ๋ฌธ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ์ง€๊ณผํ•™์ „๊ณต,2020. 2. ์ •๋ฏผํ™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.์™ธ๊ตญ์–ด๋กœ์„œ์˜ ํ•œ๊ตญ์–ด ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ณ ์กฐ๋˜์–ด ํ•œ๊ตญ์–ด ํ•™์Šต์ž์˜ ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์Œ์„ฑ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐœ์Œ ๊ต์œก(Computer-Assisted Pronunciation Training; CAPT) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์กดํ•˜๋Š” ํ•œ๊ตญ์–ด ๋งํ•˜๊ธฐ ๊ต์œก ์‹œ์Šคํ…œ์€ ์™ธ๊ตญ์ธ์˜ ํ•œ๊ตญ์–ด์— ๋Œ€ํ•œ ์–ธ์–ดํ•™์  ํŠน์ง•์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ตœ์‹  ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ๋˜ํ•œ ์ ์šฉ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ฐ€๋Šฅํ•œ ์›์ธ์œผ๋กœ์จ๋Š” ์™ธ๊ตญ์ธ ๋ฐœํ™” ํ•œ๊ตญ์–ด ํ˜„์ƒ์— ๋Œ€ํ•œ ๋ถ„์„์ด ์ถฉ๋ถ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๊ทธ๋ฆฌ๊ณ  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด๋„ ์ด๋ฅผ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์— ๋ฐ˜์˜ํ•˜๊ธฐ์—๋Š” ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CAPT ๊ธฐ์ˆ  ์ „๋ฐ˜์ ์œผ๋กœ๋Š” ์‹ ํ˜ธ์ฒ˜๋ฆฌ, ์šด์œจ ๋ถ„์„, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ๊ฐ™์€ ํŠน์ง• ์ถ”์ถœ์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด์„œ ์ ํ•ฉํ•œ ํŠน์ง•์„ ์ฐพ๊ณ  ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•˜๋Š” ๋ฐ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ์ด๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ณผ์ • ๋˜ํ•œ ๋ฐœ์ „์˜ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ๋ฐ”๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € CAPT ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ๋ฐœ์Œ ๋ณ€์ด ์–‘์ƒ๊ณผ ์–ธ์–ดํ•™์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ๊ณผ ํ•œ๊ตญ์–ด ์›์–ด๋ฏผ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ์„ ๋Œ€์กฐํ•˜๊ณ  ์ฃผ์š”ํ•œ ๋ณ€์ด๋ฅผ ํ™•์ธํ•œ ํ›„, ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์˜์‚ฌ์†Œํ†ต์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ข…์„ฑ ์‚ญ์ œ์™€ 3์ค‘ ๋Œ€๋ฆฝ์˜ ํ˜ผ๋™, ์ดˆ๋ถ„์ ˆ ๊ด€๋ จ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ์— ์šฐ์„ ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ต์ •๋œ ํ”ผ๋“œ๋ฐฑ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ CAPT ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๊ณผ์ œ๊ฐ€ ๋ฐœํ™”์˜ ์Šคํƒ€์ผ ๋ณ€ํ™”์˜ ๋ฌธ์ œ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์•˜์œผ๋ฉฐ, ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง (Cycle-consistent Generative Adversarial Network; CycleGAN) ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. GAN ๋„คํŠธ์›Œํฌ์˜ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋น„์›์–ด๋ฏผ ๋ฐœํ™”์˜ ๋ถ„ํฌ์™€ ์›์–ด๋ฏผ ๋ฐœํ™” ๋ถ„ํฌ์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋ฉฐ, Cycle consistency ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœํ™”๊ฐ„ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ๊ณผ ๋™์‹œ์— ๊ณผ๋„ํ•œ ๊ต์ •์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. ๋ณ„๋„์˜ ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์ด ์—†์ด ํ•„์š”ํ•œ ํŠน์ง•๋“ค์ด CycleGAN ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฌด๊ฐ๋… ๋ฐฉ๋ฒ•์œผ๋กœ ์Šค์Šค๋กœ ํ•™์Šต๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์–ธ์–ด ํ™•์žฅ์ด ์šฉ์ดํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์–ธ์–ดํ•™์  ๋ถ„์„์—์„œ ๋“œ๋Ÿฌ๋‚œ ์ฃผ์š”ํ•œ ๋ณ€์ด๋“ค ๊ฐ„์˜ ์šฐ์„ ์ˆœ์œ„๋Š” Auxiliary Classifier CycleGAN ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ CycleGAN์— ์ง€์‹์„ ์ ‘๋ชฉ์‹œ์ผœ ํ”ผ๋“œ๋ฐฑ ์Œ์„ฑ์„ ์ƒ์„ฑํ•จ๊ณผ ๋™์‹œ์— ํ•ด๋‹น ํ”ผ๋“œ๋ฐฑ์ด ์–ด๋–ค ์œ ํ˜•์˜ ์˜ค๋ฅ˜์ธ์ง€ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ ์ง€์‹์ด ๊ต์ • ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค๋Š” ๋ฐ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ 27๊ฐœ์˜ ๋ชจ๊ตญ์–ด๋ฅผ ๊ฐ–๋Š” 217๋ช…์˜ ์œ ์˜๋ฏธ ์–ดํœ˜ ๋ฐœํ™” 65,100๊ฐœ๋กœ ํ”ผ๋“œ๋ฐฑ ์ž๋™ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ฐœ์„  ์—ฌ๋ถ€ ๋ฐ ์ •๋„์— ๋Œ€ํ•œ ์ง€๊ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ํ•™์Šต์ž ๋ณธ์ธ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ ์ฑ„ ๊ต์ •๋œ ๋ฐœ์Œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ธ ์Œ๋†’์ด ๋™๊ธฐ์‹ ์ค‘์ฒฉ๊ฐ€์‚ฐ (Pitch-Synchronous Overlap-and-Add) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ƒ๋Œ€ ๊ฐœ์„ ๋ฅ  16.67%์ด ํ™•์ธ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Automatic Pronunciation Assessment -- A Review

    Full text link
    Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.Comment: 9 pages, accepted to EMNLP Finding

    Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme

    Get PDF
    Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie

    The Lexicon Graph Model : a generic model for multimodal lexicon development

    Get PDF
    Trippel T. The Lexicon Graph Model : a generic model for multimodal lexicon development. Bielefeld (Germany): Bielefeld University; 2006.Das Lexicon Graph Model stellt ein Modell fรผr Lexika dar, die korpusbasiert sein kรถnnen und multimodale Informationen enthalten. Hierbei wird die Perspektive der Lexikontheorie eingenommen, wobei die zugrundeliegenden Datenstrukturen sowohl vom Lexikon als auch von Annotationen betrachtet werden. Letztere fallen dadurch in das Blickfeld, weil sie als Grundlage fรผr die Erstellung von Lexika gesehen werden. Der Begriff des Lexikons bezieht sich hier sowohl auf den Bereich des Wรถrterbuchs als auch der in elektronischen Applikationen integrierten Lexikondatenbanken. Die existierenden Formalismen und Ansรคtze der Lexikonentwicklung zeigen verschiedene Probleme im Zusammenhang mit Lexika auf, etwa die Zusammenfassung von existierenden Lexika zu einem, die Disambiguierung von Mehrdeutigkeiten im Lexikon auf verschiedenen lexikalischen Ebenen, die Reprรคsentation von anderen Modalitรคten im Lexikon, die Selektion des lexikalischen Schlรผsselbegriffs fรผr Lexikonartikel, etc. Der vorliegende Ansatz geht davon aus, dass sich Lexika zwar in ihrem Inhalt, nicht aber in einer grundlegenden Struktur unterscheiden, so dass verschiedenartige Lexika im Rahmen eines Unifikationsprozesses dublettenfrei miteinander verbunden werden kรถnnen. Hieraus resultieren deklarative Lexika. Fรผr Lexika kรถnnen diese Graphen mit dem Lexikongraph-Modell wie hier dargestellt modelliert werden. Dabei sind Lexikongraphen analog den von Bird und Libermann beschriebenen Annotationsgraphen gesehen und kรถnnen daher auch รคhnlich verarbeitet werden. Die Untersuchung des Lexikonformalismus beruht auf vier Schritten. Zunรคchst werden existierende Lexika analysiert und beschrieben. Danach wird mit dem Lexikongraph-Modell eine generische Darstellung von Lexika vorgestellt, die auch implementiert und getestet wird. Basierend auf diesem Formalismus wird die Beziehung zu Annotationsgraphen hergestellt, wobei auch beschrieben wird, welche MaรŸstรคbe an angemessene Annotationen fรผr die Verwendung zur Lexikonentwicklung angelegt werden mรผssen.The Lexicon Graph Model provides a model and framework for lexicons that can be corpus based and contain multimodal information. The focus is more from the lexicon theory perspective, looking at the underlying data structures that are part of existing lexicons and corpora. The term lexicon in linguistics and artificial intelligence is used in different ways, including traditional print dictionaries in book form, CD-ROM editions, Web based versions of the same, but also computerized resources of similar structures to be used by applications. These applications cover systems for human-machine communication as well as spell checkers. The term lexicon in this work is used as the most generic term covering all lexical applications. Existing formalisms in lexicon development show different problems with lexicons, for example combining different kinds of lexical resources, disambiguation on different lexical levels, the representation of different modalities in a lexicon. The Lexicon Graph Model presupposes that lexicons can have different structures but have fundamentally a similar structure, making it possible to combine lexicons in a unification process, resulting in a declarative lexicon. The underlying model is a graph, the Lexicon Graph, which is modeled similar to Annotation Graphs as described by Bird and Libermann. The investigation of the lexicon formalism contains four steps, that is the analysis of existing lexicons, the introduction of the Lexicon Graph Model as a generic representation for lexicons, the implementation of the formalism in different contexts and an evaluation of the formalism. It is shown that Annotation Graphs and Lexicon Graphs are indeed related not only in their formalism and it is shown, what standards have to be applied to annotations to be usable for lexicon development

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR
    • โ€ฆ
    corecore