1,510 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Virtual user in the IoT: definition, technologies and experiments

    Get PDF
    Virtualization technologies are characterizing major advancements in the Internet of Things (IoT) arena, as they allow for achieving a cyber-physical world where everything can be found, activated, probed, interconnected, and updated at both the virtual and the physical levels. We believe these technologies should apply to human users other than things, bringing us the concept of the Virtual User (VU). This should represent the virtual counterpart of the IoT users with the ultimate goal of: (i) avoiding the user from having the burden of following the tedious processes of setting, configuring and updating IoT services the user is involved in; (ii) acting on behalf of the user when basic operations are required; (iii) exploiting to the best of its ability the IoT potentialities, always taking always account the user profile and interests. Accordingly, the VU is a complex representation of the user and acts as a proxy in between the virtual objects and IoT services and application; to this, it includes the following major functionalities: user profiling, authorization management, quality of experience modeling and management, social networking and context management. In this respect, the major contributions of this paper are to: provide the definition of VU, present the major functionalities, discuss the legal issues related to its introduction, provide some implementation details, and analyze key performance aspects in terms of the capability of the VU to correctly identify the user profile and context

    Empowering cultural heritage professionals with tools for authoring and deploying personalised visitor experiences

    Get PDF
    This paper presents an authoring environment, which supports cultural heritage professionals in the process of creating and deploying a wide range of different personalised interactive experiences that combine the physical (objects, collection and spaces) and the digital (multimedia content). It is based on a novel flexible formalism that represents the content and the context as independent from one another and allows recombining them in multiple ways thus generating many different interactions from the same elements. The authoring environment was developed in a co-design process with heritage stakeholders and addresses the composition of the content, the definition of the personalisation, and the deployment on a physical configuration of bespoke devices. To simplify the editing while maintaining a powerful representation, the complex creation process is deconstructed into a limited number of elements and phases, including aspects to control personalisation both in content and in interaction. The user interface also includes examples of installations for inspiration and as a means for learning what is possible and how to do it. Throughout the paper, installations in public exhibitions are used to illustrate our points and what our authoring environment can produce. The expressiveness of the formalism and the variety of interactive experiences that could be created was assessed via a range of laboratory tests, while a user-centred evaluation with over 40 cultural heritage professionals assessed whether they feel confident in directly controlling personalisation

    Semantic-aware Digital Twin for Metaverse: A Comprehensive Review

    Full text link
    To facilitate the deployment of digital twins in Metaverse, the paradigm with semantic awareness has been proposed as a means for enabling accurate and task-oriented information extraction with inherent intelligence. However, this framework requires all devices in the Metaverse environment to be directly linked with the semantic model to enable faithful interpretation of messages. In contrast, this article introduces the digital twin framework, considering a smart industrial application, which enables semantic communication in conjugation with the Metaverse enabling technologies. The fundamentals of this framework are demonstrated on an industrial shopfloor management use case with a digital twin so as to improve its performance through semantic communication. An overview of semantic communication, Metaverse, and digital twins is presented. Integration of these technologies with the basic architecture as well as the impact on future industrial applications is presented. In a nutshell, this article showcases how semantic awareness can be an effective candidate in the implementation of digital twins for Metaverse applications.Comment: 9 pages, 5 figures, 1 tabl

    Managing Event-Driven Applications in Heterogeneous Fog Infrastructures

    Get PDF
    The steady increase in digitalization propelled by the Internet of Things (IoT) has led to a deluge of generated data at unprecedented pace. Thereby, the promise to realize data-driven decision-making is a major innovation driver in a myriad of industries. Based on the widely used event processing paradigm, event-driven applications allow to analyze data in the form of event streams in order to extract relevant information in a timely manner. Most recently, graphical flow-based approaches in no-code event processing systems have been introduced to significantly lower technological entry barriers. This empowers non-technical citizen technologists to create event-driven applications comprised of multiple interconnected event-driven processing services. Still, today’s event-driven applications are focused on centralized cloud deployments that come with inevitable drawbacks, especially in the context of IoT scenarios that require fast results, are limited by the available bandwidth, or are bound by the regulations in terms of privacy and security. Despite recent advances in the area of fog computing which mitigate these shortcomings by extending the cloud and moving certain processing closer to the event source, these approaches are hardly established in existing systems. Inherent fog computing characteristics, especially the heterogeneity of resources alongside novel application management demands, particularly the aspects of geo-distribution and dynamic adaptation, pose challenges that are currently insufficiently addressed and hinder the transition to a next generation of no-code event processing systems. The contributions of this thesis enable citizen technologists to manage event-driven applications in heterogeneous fog infrastructures along the application life cycle. Therefore, an approach for a holistic application management is proposed which abstracts citizen technologists from underlying technicalities. This allows to evolve present event processing systems and advances the democratization of event-driven application management in fog computing. Individual contributions of this thesis are summarized as follows: 1. A model, manifested in a geo-distributed system architecture, to semantically describe characteristics specific to node resources, event-driven applications and their management to blend application-centric and infrastructure-centric realms. 2. Concepts for geo-distributed deployment and operation of event-driven applications alongside strategies for flexible event stream management. 3. A methodology to support the evolution of event-driven applications including methods to dynamically reconfigure, migrate and offload individual event-driven processing services at run-time. The contributions are introduced, applied and evaluated along two scenarios from the manufacturing and logistics domain
    corecore