230,991 research outputs found

    There Exist some Omega-Powers of Any Borel Rank

    Get PDF
    Omega-powers of finitary languages are languages of infinite words (omega-languages) in the form V^omega, where V is a finitary language over a finite alphabet X. They appear very naturally in the characterizaton of regular or context-free omega-languages. Since the set of infinite words over a finite alphabet X can be equipped with the usual Cantor topology, the question of the topological complexity of omega-powers of finitary languages naturally arises and has been posed by Niwinski (1990), Simonnet (1992) and Staiger (1997). It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, that there exists a context free language L such that L^omega is analytic but not Borel, and that there exists a finitary language V such that V^omega is a Borel set of infinite rank. But it was still unknown which could be the possible infinite Borel ranks of omega-powers. We fill this gap here, proving the following very surprising result which shows that omega-powers exhibit a great topological complexity: for each non-null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers.Comment: To appear in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 2007, Lausanne, Switzerland, September 11-15, 2007, Lecture Notes in Computer Science, (c) Springer, 200

    Continuous semiring-semimodule pairs and mixed algebraic systems

    Get PDF
    We associate with every commutative continuous semiring S and alphabet Σ a category whose objects are all sets and a morphism X → Y is determined by a function from X into the semiring of formal series S⟪(Y⊎Σ)*⟫ of finite words over Y⊎Σ, an X × Y -matrix over S⟪(Y⊎Σ)*⟫, and a function from into the continuous S⟪(Y⊎Σ)*⟫-semimodule S⟪(Y⊎Σ)ω⟫ of series of ω-words over Y⊎Σ. When S is also an ω-semiring (equipped with an infinite product operation), then we define a fixed point operation over our category and show that it satisfies all identities of iteration categories. We then use this fixed point operation to give semantics to recursion schemes defining series of finite and infinite words. In the particular case when the semiring is the Boolean semiring, we obtain the context-free languages of finite and ω-words

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Topological Complexity of omega-Powers : Extended Abstract

    Get PDF
    This is an extended abstract presenting new results on the topological complexity of omega-powers (which are included in a paper "Classical and effective descriptive complexities of omega-powers" available from arXiv:0708.4176) and reflecting also some open questions which were discussed during the Dagstuhl seminar on "Topological and Game-Theoretic Aspects of Infinite Computations" 29.06.08 - 04.07.08
    • …
    corecore