43 research outputs found

    IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis

    Full text link
    We conduct the most comprehensive study of WLAN traces to date. Measurements collected from four major university campuses are analyzed with the aim of developing fundamental understanding of realistic user behavior in wireless networks. Both individual user and inter-node (group) behaviors are investigated and two classes of metrics are devised to capture the underlying structure of such behaviors. For individual user behavior we observe distinct patterns in which most users are 'on' for a small fraction of the time, the number of access points visited is very small and the overall on-line user mobility is quite low. We clearly identify categories of heavy and light users. In general, users exhibit high degree of similarity over days and weeks. For group behavior, we define metrics for encounter patterns and friendship. Surprisingly, we find that a user, on average, encounters less than 6% of the network user population within a month, and that encounter and friendship relations are highly asymmetric. We establish that number of encounters follows a biPareto distribution, while friendship indexes follow an exponential distribution. We capture the encounter graph using a small world model, the characteristics of which reach steady state after only one day. We hope for our study to have a great impact on realistic modeling of network usage and mobility patterns in wireless networks.Comment: 16 pages, 31 figure

    Minimum-Delay Routing for Integrated Aeronautical Ad Hoc Networks Relying on Real Flight Data in the North-Atlantic Region

    Get PDF
    Relying on multi-hop communication techniques, aeronautical ad hoc networks (AANETs) seamlessly integrate ground base stations (BSs) and satellites into aircraft communications for enhancing the on-demand connectivity of planes in the air. The goal of the paper is to assess the performance of the classic shortest-path routing algorithm in the context of the real flight data collected in the North-Atlantic Region. Specifically, in this integrated AANET context we investigate the shortest-path routing problem with the objective of minimizing the total delay of the in-flight connection from the ground BS subject to certain minimum-rate constraints for all selected links in support of lowlatency and high-speed services. Inspired by the best-first search and priority queue concepts, we model the problem formulated by a weighted digraph and find the optimal route based on the shortest-path algorithm. Our simulation results demonstrate that aircraft-aided multi-hop communications are capable of reducing the total delay of satellite communications, when relying on real historical flight data

    Location inaccuracies in WSAN placement algorithms

    Get PDF
    The random deployment of Wireless Sensor and Actuator Network (WSAN) nodes in areas often inaccessible, results in so-called coverage holes – i.e. areas in the network that are not adequately covered by nodes to suit the requirements of the network. Various coverage protocol algorithms have been designed to reduce or eliminate coverage holes within WSANs by indicating how to move the nodes. The effectiveness of such coverage protocols could be jeopardised by inaccuracy in the initial node location data that is broadcast by the respective nodes. This study examines the effects of location inaccuracies on five sensor deployment and reconfiguration algorithms – They include two algorithms which assume that mobile nodes are deployed (referred to as the VEC and VOR algorithms); two that assume static nodes are deployed (referred to as the CNPSS and OGDC algorithms); and a single algorithm (based on a bidding protocol) that assumes a hybrid scenario in which both static and mobile nodes are deployed. Two variations of this latter algorithm are studied. A location simulation tool was built using the GE Smallworld GIS application and the Magik programming language. The simulation results are based on three above-mentioned deployment scenarios; mobile, hybrid and static. The simulation results suggest the VOR algorithm is reasonably robust if the location inaccuracies are somewhat lower than the sensing distance and also if a high degree of inaccuracy is limited to a relatively small percentage of the nodes. The VEC algorithm is considerably less robust, but prevents nodes from drifting beyond the boundaries in the case of large inaccuracies. The bidding protocol used by the hybrid algorithm appears to be robust only when the static nodes are accurate and there is a low degree of inaccuracy within the mobile nodes. Finally the static algorithms are shown to be the most robust; the CPNSS algorithm appears to be immune to location inaccuracies whilst the OGDC algorithm was shown to reduce the number of active nodes in the network to a better extent than that of the CPNSS algorithm. CopyrightDissertation (MSc)--University of Pretoria, 2010.Computer Scienceunrestricte

    Communication Aware Mobile Robot Teams

    Get PDF
    The type of scenarios that could benefit from a team of robots that are able to self configure into an ad-hoc multi-hop mobile communication network while completing a task in an unknown environment, range from search and rescue in a partially collapsed building to providing a security perimeter around a region of interest. In this thesis, we present a hybrid system that enables a team of robots to maintain a prescribed end-to-end data rate while moving through a complex unknown environment, in a distributed manner, to complete a specific task. This is achieved by a systematic decomposition of the real-time situational awareness problem into subproblems that can be efficiently solved by distributed optimization. The validity of this approach is demonstrated through multiple simulations and experiments in which the a team of robots is able to accurately map an unknown environment and then transition to complete a traditional situational awareness task. We also present MCTP, a lightweight communication protocol that is specifically designed for use in ad-hoc multi-hop wireless networks composed of low-cost low-power transceivers. This protocol leverages the spatial diversity found in mobile robot teams as well as recently developed robust routing systems designed to minimize the variance of the end-to-end communication link. The combination of the hybrid system and MCTP results in a system that is able to complete a task, with minimal global coordination, while providing near loss-less communication over an ad-hoc multi-hop network created by the members of the team in unknown environments

    Twin-Component Near-Pareto Routing Optimization for AANETs in the North-Atlantic Region Relying on Real Flight Statistics

    Get PDF
    Integrated ground-air-space (IGAS) networks intrinsically amalgamate terrestrial and non-terrestrial communication techniques in support of universal connectivity across the globe. Multi-hop routing over the IGAS networks has the potential to provide long-distance highly directional connections in the sky. For meeting the latency and reliability requirements of in-flight connectivity, we formulate a multi-objective multi-hop routing problem in aeronautical ad hoc networks (AANETs) for concurrently optimizing multiple end-to-end performance metrics in terms of the total delay and the throughput. In contrast to single-objective optimization problems that may have a unique optimal solution, the problem formulated is a multi-objective combinatorial optimization problem (MOCOP), which generally has a set of trade-off solutions, called the Pareto optimal set. Due to the discrete structure of the MOCOP formulated, finding the Pareto optimal set becomes excessively complex for large-scale networks. Therefore, we employ a multi-objective evolutionary algorithm (MOEA), namely the classic NSGA-II for generating an approximation of the Pareto optimal set. Explicitly, with the intrinsic parallelism of MOEAs, the MOEA employed starts with a set of candidate solutions for creating and reproducing new solutions via genetic operators. Finally, we evaluate the MOCOP formulated for different networks generated both from simulated data as well as from real historical flight data. Our simulation results demonstrate that the utilized MOEA has the potential of finding the Pareto optimal solutions for small-scale networks, while also finding a set of high-performance nondominated solutions for large-scale networks

    Network Based Approaches for Clustering and Location Decisions

    Get PDF
    The objective of this dissertation is to study commonly occurring location and clustering problems on graphs. The dissertation is presented as a collection of results in topics including finding maximum cliques in large graphs, graph clustering in large scale graphs, determining location of facilities for pre-positioning emergency relief supplies, and selecting nodes to form a virtual backbone in a wireless sensor network. To begin with, a new clique relaxation called a k-community is defined as a connected subgraph such that endpoints of every edge have at least k common neighbors within the subgraph. It is used to develop scale reduction techniques to obtain the maximum clique on very large scale real life networks. Analytically, the technique is been shown to be very effective on power-law random graphs. Experimental results on real life graph instances (Collaboration networks, P2P networks, Social networks, etc.) show our procedure to be much more effective than a regular k-core peeling approach. Next, a general purpose network clustering algorithm based on the clique relaxation concept of k-community is presented. A salient feature of this approach is that it does not use any prior information about the structure of the network. By defining a cluster as a k-community, the proposed algorithm aims to provide a clustering of a network into k-communities with varying values of k. Even though the algorithm is not designed to optimize any particular performance measure, the computational results suggest that it performs well on a number of criteria that are used in literature to evaluate the quality of a clustering. The third topic deals with choosing the locations of disaster response facilities for the storage of emergency supplies, which is critical to the quality of service provided in a large scale emergency like an earthquake. In the existing literature, large scale emergency facility location models have either assumed that disaster response facilities will always be functioning and available when required, or that the functioning of a facility is independent of a particular disaster scenario. In this paper new location models are presented that explicitly take into consideration the stochastic nature of the impact a disaster can have on the disaster response facilities and the population centers in surrounding areas. A comparison of the results obtained using our models with those from models available in literature using a case study suggests that the locations suggested by the model in this paper significantly reduce the expected cost of transportation of supplies when we consider the damage a disaster causes to the disaster response facilities and areas near it. Lastly, a distributed approximate algorithm for forming the communication backbone in wireless sensor networks is presented. Some of the most popular routing protocols for wireless sensor networks require a virtual backbone for efficient communication be- tween the sensors. Connected Dominating Sets (CDS) have been studied as a method of choosing nodes to be in the backbone. The traditional approach is to assume that the transmission range of each node is given and then minimize the number of nodes in the CDS representing the backbone. A recently introduced alternative strategy is based on the concept of k-bottleneck connected dominating set (k-BCDS), which, given a positive integer k, minimizes the transmission range of the nodes that ensures a CDS of size k exists in the network. This paper provides a 6-approximate distributed algorithm for the k-BCDS problem. The results of empirical evaluation of the proposed algorithm are also included

    Variable rate adaptive modulation (VRAM) for introducing small-world model into WSNs

    Get PDF
    Data communication has a strong impact on the design of a Wireless Sensor Network (WSN), since the data transmission energy cost is typically higher than the data processing cost. In order to reduce the data transmission cost, small world phenomenon is introduced into WSNs. Networks that do not have the small world structure can be converted to achieve a small world property by the addition of few extra links. The problem is that most large scale WSNs are inherently unstructured and a node has no precise information of the overall model of the network and thus has to rely on the knowledge of its neighbor. For this reason, in most unstructured networks, information is propagated using gossiping. In this paper, we exploit this information propagation mechanism and use Neighbor Avoiding Walk (NAW), where the information is propagated to node that has not been visited previously and which is not the neighbor of a previously visited node. Using this, a novel approach is presented, in which nodes with highest betweenness centrality form a long distance relay path by using a lower order modulation scheme and therefore resulting in a relatively reduced data rate, but maintaining the same bit error rate. Our empirical and analytical evaluations demonstrate that this leads to a significant reduction in average path length and an increase in node degree

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks
    corecore