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ABSTRACT

Network Based Approaches for Clustering and Location Decisions. (August 2012)

Anurag Verma, B.Tech., IIT Madras; M.E., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Sergiy Butenko
Dr. Gary M. Gaukler

The objective of this dissertation is to study commonly occurring location and cluster-

ing problems on graphs. The dissertation is presented as a collection of results in topics

including finding maximum cliques in large graphs, graph clustering in large scale graphs,

determining location of facilities for pre-positioning emergency relief supplies, and select-

ing nodes to form a virtual backbone in a wireless sensor network.

To begin with, a new clique relaxation called a k-community is defined as a connected

subgraph such that endpoints of every edge have at least k common neighbors within the

subgraph. It is used to develop scale reduction techniques to obtain the maximum clique

on very large scale real life networks. Analytically, the technique is been shown to be very

effective on power-law random graphs. Experimental results on real life graph instances

(Collaboration networks, P2P networks, Social networks, etc) show our procedure to be

much more effective than a regular k-core peeling approach.

Next, a general purpose network clustering algorithm based on the clique relaxation

concept of k-community is presented. A salient feature of this approach is that it does

not use any prior information about the structure of the network. By defining a cluster

as a k-community, the proposed algorithm aims to provide a clustering of a network into

k-communities with varying values of k. Even though the algorithm is not designed to

optimize any particular performance measure, the computational results suggest that it

performs well on a number of criteria that are used in literature to evaluate the quality of a

clustering.



iv

The third topic deals with choosing the locations of disaster response facilities for the

storage of emergency supplies, which is critical to the quality of service provided in a

large scale emergency like an earthquake. In the existing literature, large scale emergency

facility location models have either assumed that disaster response facilities will always

be functioning and available when required, or that the functioning of a facility is inde-

pendent of a particular disaster scenario. In this paper new location models are presented

that explicitly take into consideration the stochastic nature of the impact a disaster can

have on the disaster response facilities and the population centers in surrounding areas. A

comparison of the results obtained using our models with those from models available in

literature using a case study suggests that the locations suggested by the model in this pa-

per significantly reduce the expected cost of transportation of supplies when we consider

the damage a disaster causes to the disaster response facilities and areas near it.

Lastly, a distributed approximate algorithm for forming the communication backbone

in wireless sensor networks is presented. Some of the most popular routing protocols

for wireless sensor networks require a virtual backbone for efficient communication be-

tween the sensors. Connected Dominating Sets (CDS) have been studied as a method of

choosing nodes to be in the backbone. The traditional approach is to assume that the trans-

mission range of each node is given and then minimize the number of nodes in the CDS

representing the backbone. A recently introduced alternative strategy is based on the con-

cept of k-bottleneck connected dominating set (k-BCDS), which, given a positive integer

k, minimizes the transmission range of the nodes that ensures a CDS of size k exists in

the network. This paper provides a 6-approximate distributed algorithm for the k-BCDS

problem. The results of empirical evaluation of the proposed algorithm are also included.
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1. INTRODUCTION

A graph, denoted by G = (V,E), is defined as a set of nodes or vertices V , and a set

of edges E ⊂ V ×V representing the pairs of vertices that are connected. Graphs can be

used to represent information in a very concise manner based on pairwise relationships

between entities. In the course of this dissertation, this generic mathematical concept, and

the tools built around it are used for representing systems – both abstract and physical –

and solving some problems of interest.

The problems studied in this dissertation are classified into two sets – location and

clustering. In location problems, the nodes in the graph represent a physical location.

Consequently, geographical position is an important physical attribute of a node, often de-

termining the presence and weight of an edge connecting two nodes. Selecting a subset

of nodes to perform a task in effect amounts to choosing locations for a particular service

from a given set of possibilities. On the other hand, in clustering problems the physical

location of nodes is irrelevant, and the relationships a node has with other nodes, repre-

sented by edges, are of paramount importance. The task at hand is to find large subsets of

nodes that are highly interconnected with each other.

The tools used for solving these problems vary depending on the needs of the problem

and the computational resources available. For example, one of the topics addressed in this

dissertation involves a long range planning problem of finding good locations for placing

facilities with large quantities of disaster relief supplies. Considering the stochastic nature

of the problem and the permanence of these facilities, a practical approach would be to

model the system as well and in as much detail as possible and to apply appropriate tools

irrespective of the computational requirements, as long as they can be solved in a few

days. On the other extreme, another chapter addresses the problem of choosing nodes

to be a part of a virtual communication backbone in ad-hoc wireless sensor networks in

real-time. Each sensor is represented by a node, and their limited processing power calls

This dissertation follows the style of IIE Transactions.
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for a distributed approach that requires very little computationally from each sensor. In

this case, a practical approach is to forsake optimality for ease of computation. Although

the tools used vary from computationally intensive stochastic programming and branch &

bound to computationally inexpensive approximation algorithms, they all fall under the

umbrella of optimization.

The overarching focus of this dissertation is to model systems as networks and to

develop and apply relevant algorithms to obtain a solution to the problem being studied.

In the following paragraphs, some of the systems and application under consideration are

highlighted. Apart from providing a background for the chapters to follow, each of which

is devoted to different topics under study, the following paragraphs also present a way

of thinking of systems as networks. It is evident that networks capture the most basic

underlying structure of a system where bilateral interactions are of principal importance.

1.1 Graph-Based Data Mining

Network science is an emerging field that studies network representations of data sets

generated by an underlying complex system in order to draw meaningful conclusions re-

garding the system’s properties. In a network representation of a complex system, the

network’s nodes typically denote the system’s entities, while the edges between nodes

represent a certain kind of similarity or relationship between the entities.

Social networks immediately come to mind – each person is represented by a node,

and edges represent friendships. Although made popular by the online social networks

like Facebook and LinkedIn all around us today, social network analysis has been used

by anthropologists and social scientists for many decades. The concise representation of

a complex social system as a network, and the various mathematical structures borrowed

from graph theory allowed for the kind of quantitative analysis that would not possible

otherwise. For example, the criticality of certain individuals and friendships to a social

organization has been studied by using cut vertices and cut edges. The theory of “six de-

grees of separation” borrows from the idea of the diameter of a graph, while the concept of
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cliques has played a major role in measuring the cohesion within a social group. Studies

on structural properties of networks have resulted in models for predicting the dissemina-

tion of information and the spread of epidemics in the society. The usefulness of network

analysis, however, is in no way limited to social sciences. Many science and engineer-

ing disciplines use networks analysis for gaining insights and better understanding of the

overall system. Consider the following network examples that have been conceptualized

and used in the past:

Web graphs/Link graphs: Web graphs are made by considering html web pages as nodes,

and connecting a node to another if the corresponding html page contains a hyper-

link to the other one. In one of the more famous examples, web graphs were used

by the founders of the Google search engine. The search engine uses web graphs to

apply the PageRank algorithm [Page et al., 1999] to rank web pages based on their

importance.

Protein interaction networks: Protein interaction networks are an intuitive way of map-

ping which proteins bind with which other proteins to form a biologically functional

complex [Matsunaga et al., 2009]. Each protein is represented by a node, and an

edge connects proteins that form a bind with each other. These networks are studied

in the bio-informatics community to relate biological functions of different proteins.

Molecular correspondence graphs: Modeling molecules as three dimensional structures,

researchers in molecular biology identify pairs of molecules with similar structure

using graph isomorphism. To this end, a molecular correspondence graph is formed

with nodes as pairs of atoms (one from each molecule being matched), and “nodes

are joined by an edge if the interatomic distances between the pairs of atoms are

the same within a user-defined tolerance” [Gardiner et al., 1998]. The size of the

maximum clique in these correspondence graphs is a measure of the structural sim-

ilarity of the two graphs. This technique has been found useful in drug discovery to

identify alternative chemicals with similar structural properties.
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Over the last two decades, the advent of information technology has resulted in an

abundance of data. As a result, the networks that researchers in science and technology

encounter today have hundreds of millions of nodes, far surpassing anything that was

available before that. Improved computational resources have been key to coping with

the increase in the scale of graphs available today, but not without advances in graph the-

ory and algorithms. As a result of research in computer science and operations research,

improved algorithms for famously hard problems such as graph partitioning, graph cluster-

ing, maximum independent set, vertex coloring, maximum clique, and traveling salesman

have been found. The first part of this dissertation focusses on the maximum clique and

graph clustering problems.

The term clique originates from Old French cliquer (“make a noise”), and, according

to modern dictionaries, describes an exclusive group of people with a common purpose.

The graph-theoretic concept of a clique, which was first introduced in the social science

literature, aims to model “tightly knit” groups of elements, every pair of which share a

common attribute, or are closely related in some clearly defined sense. This concept has

played a key role in many important developments in diverse scientific fields, both theo-

retical and applied, including graph theory, computer science, mathematical optimization,

operations research, and social science.

Not surprisingly, the most common modeling function of cliques is to represent clus-

ters (cohesive groups, modules, communities) in various applied settings. If the studied

entities in a real-life system of interest are described as vertices (nodes) and their pair-

wise associations are expressed as edges (links, arcs) between vertices, then cliques in

this graph-theoretic representation of the system naturally represent clusters of entities. In

general, one may be interested in analyzing all (large) clusters; however, in some cases

detecting one largest clique in the graph is sufficient. The size of such a clique provides

an upper bound on the number of elements in a cluster and can be thought of as a global

characterization of cohesiveness of the system the graph represents.
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The maximum clique problem, which aims to find a clique of the largest size in a graph,

is a classical combinatorial optimization problem that has been extensively studied from

different perspectives during the last several decades. Its extensive list of applications

includes social network analysis, computational biology, study of human brain, coding

theory, and finance, among others. Numerous exact and heuristic algorithms have been

proposed for solving this computationally hard problem and successfully applied in prac-

tice. The maximum clique problem has a rich presence in a number of other mathematical

fields. Although a fairly straightforward problem to state, it has resulted in a number of

significant developments not just in graph theory, but also in integer programming, com-

plexity theory, and global optimization, to name a few.

The importance of graph clustering in various applications has spawned a new area

of clique relaxations, that are developed by relaxing some properties of a clique such as

density and connectivity. Clique relaxations overcome the restrictive nature of cliques and

help in identifying large clusters that may not be cliques, but will fit the definition of a

cluster. The first two chapters in this dissertation will be devoted to the maximum clique

problem and graph clustering, respectively.

1.2 Locating Disaster Response Facilities

Recent years have brought forth a number of devastating large-scale emergency situa-

tions, such as Hurricanes Rita and Katrina that affected the United States as well as por-

tions of the Carribbean in 2005, or the earthquakes in Sichuan, China in 2008, and in Haiti

in 2010. In the United States, this has prompted policy makers at the federal and at the

state level to coordinate the establishment of disaster response facilities. At these facilities,

supplies (food rations, medical items, rescue equipment) are stored for use in the event of

a large-scale emergency. An example of this pre-positioning strategy is the creation of the

Strategic National Stockpile (SNS) [CDC, Last accessed: May 2011]. A crucial aspect of

such pre-positioning strategies is the judicious choice of the pre-positioning sites, which

is a facility location problem.



6

Many facility location models assume an underlying network structure to represent

infrastructure. In a network representation, cities, potential facility locations and other

points of interest become nodes, whereas the roads are represented by edges. This repre-

sentation works well with the facility location problems because in most cases, the desired

locations are close to the existing transportation infrastructure. Furthermore, the network

representation allows for the use of existing algorithms and systems for solving the mod-

els.

An important consideration that makes emergency facility location significantly differ-

ent from warehouse location, which has been studied extensively, is the dependence of the

demand and availability of a facility on a particular disaster scenario. Under normal cir-

cumstances, there is no demand for emergency supplies. It is the occurrence of a disaster

that generates a localized demand, while simultaneously reducing the supplying capabili-

ties of facilities in that area. For example, it is quite possible for a facility that lies near the

epicenter of an earthquake or on the path of the eye of a hurricane to be severely affected

and not provide services when its immediate neighborhood requires them. This structure

makes the problem very different from conventional facility location, where we usually

consider all demands to be constantly active, and all facilities to be functioning at their full

capacity. Modeling a disaster response facility location problem as a conventional facility

location problem could result in a scenario where a facility is damaged and unable to serve

precisely when it is required the most.

1.3 Virtual Backbone in Wireless Sensor Networks

Wireless sensor networks have applications in domains like military and environmental

tracking to obtain information through the use of sensors. The primary tasks that each

sensor in a network performs – which are critical to the usefulness of the sensor network

– are collection and dissemination of information. The limited battery power supply in

sensors curtails the usefulness of the sensor network by reducing its lifespan, and reducing

the energy consumption of the sensors is a major challenge.
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Communication between sensors, although a critical task, is a major drain on the bat-

tery of a sensor. Many sensor networks aggregate information collected from different

sensors and communicate it to an external terminal where decisions can be made by pro-

cessing the information obtained. A common strategy used in sensor networks for commu-

nication is to designate some nodes to perform communication/coordination tasks while

the others can specialize in collection of information. For example, one set of nodes might

be delegated the task of communicating with the external terminal, while another set might

be given the task of facilitating communication between the sensors primarily collecting

information. The set of nodes that facilitate communication are often collectively called

a virtual communication backbone. The choice of nodes to be in the virtual backbone is

important to the lifespan of the network.

Graphs provide a succinct representation of wireless sensor networks, with each node

representing a sensor, and two nodes being connected if the corresponding sensors are

within each other’s transmission range. This representation facilitates the analysis of the

performance of a given virtual backbone, and also allows us to specify the requirements

from a virtual backbone more clearly.

1.4 Conclusion

To summarize, this dissertation comprises of topics in graph based data mining, wire-

less sensor networks, and locating disaster response facilities. The proposed method of

research consists of developing new models, developing computationally efficient algo-

rithms and evaluating the effectiveness of the new models. The diverse set of problems

addressed result in a variety of solution algorithms and improvements – approximation

algorithms, heuristics, scale reduction, branch & bound, and the L-shaped method – being

developed and used. Chapter 2 will focus on a scale reduction technique for the maximum

clique problem in large scale graphs, Chapter 3 provides a graph clustering algorithm using

clique relaxations, Chapter 4 presents a new model and solution technique for the location

of emergency response facilities, Chapter 5 develops an approximation algorithm for find-
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ing the virtual backbone in a wireless sensor network, and finally, Chapter 6 concludes the

dissertation with a discussion on future research avenues.
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2. MAXIMUM CLIQUE PROBLEM ON VERY LARGE SCALE SPARSE

NETWORKS

2.1 Introduction

A graph, denoted by G = (V,E), is defined as a set of vertices V , and a set of edges

E ⊂ V ×V representing the pairs of vertices that are connected. Graphs can be used

to represent information in a very concise manner based on pairwise relationships be-

tween entities. Graph based data mining refers to obtaining information from a graph

that could be pertinent to a particular task. Its applications have been explored in market-

ing and e-commerce for developing recommender systems, computational biochemistry

& genomics, social network analysis, clustering, the analysis of financial markets and

many other network science applications. For example, consider the network that could

be built by an on-line retailer like Amazon or Overstock. Each node represents a buyer,

and two nodes are connected if the corresponding buyers have purchased at least p items

in common or visited pages of similar products. Finding dense clusters of nodes in this

network can provide useful insight into the purchasing habits of buyers, and could lead to

the development of better recommender systems.

A clique, defined as a subset of vertices such that all the vertices in it are pairwise adja-

cent, is a graph theoretical concept often used to represent these dense clusters. Cliques are

critical components of graph-based data mining approaches for analysis of call graphs, so-

cial networks, communication networks, www graphs and collaboration networks amongst

other examples. In particular, the application of maximum cliques has been explored in

marketing for devising cross selling strategies [Cavique, 2007], computational biochem-

istry and data mining in genomics [Butenko and Wilhelm, 2006, Raymond and Willett,

2002, Matsunaga et al., 2009], analysis of financial markets [Boginski et al., 2005], pro-

tein structure alignment [Strickland et al., 2005] and CAD/VLSI [Corno et al., 1995].

The maximum clique problem is to find a clique of maximum cardinality in the given

graph. It is a celebrated problem that has captured the attention of many researchers in
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computer science and operations research. In fact, it is one of Karp’s original problems

shown to be NP-complete.

The maximum clique problem has received significant attention from researchers in

developing both exact methods like branch & bound, enumerative and scale reduction ap-

proaches [Carraghan and Pardalos, 1990, Corno et al., 1995, Balas and Xue, 1996, Wood,

1997, ?, Tomita and Seki, 2003, Butenko and Trukhanov, 2007] and heuristics [Gendreau

et al., 1993, Protasi et al., 1995, Abello et al., 1999, Katayama et al., 2005], amongst oth-

ers. However, none of the exact methods have been thoroughly tested for graphs with more

than 10,000 vertices. These methods have been well tested for small graphs (n < 10,000),

especially graphs from the 2nd DIMACS implementation challenge [DIMACS2, Last ac-

cessed: November 2011]. On the other hand, the heuristic algorithms developed are not

guaranteed to provide the maximum clique sizes.

Recent advances in information technology has resulted in data sets that are much

larger than what most exact algorithms have been tested on. In fact, many real life net-

works of interest are very large, with tens of millions of nodes, and have extremely low

densities, with the degrees of nodes often following a power law distribution. In this re-

search, we devise an exact method to find the maximum clique in very large sparse graphs.

The method has been tested on graphs with up to 18 million vertices originating from some

real life graph instances. Abello et al. [1999] have attempted solving a maximum clique

problem on a large real life network (AT&T Call graph with 53 million nodes, the authors

could not obtain the dataset). However, they provide a heuristic solution with no guarantee

of optimality. Some other researchers tackle the problem of enumerating all the maximal

cliques of large scale graphs [Modani et al., 2010]. Though in the process they do find

the maximum clique for large graphs, the fact that they are enumerating all other maxi-

mal cliques results in a large amount of time being spent before the maximum clique is

found. Furthermore, we provide a theoretical analysis of some aspects of the algorithm

when applied to power law random graphs.
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2.2 k-Community

In this section, we define a new structure called k-community on an undirected graph

G = (V,E) and study some of its cohesiveness properties that will help us establish it as a

clique relaxation. Before defining a k-community, we need the following two preliminary

definitions.

Definition 2.2.1 (Neighbor of an edge). A node t ∈V is a neighbor of an edge (u,v) ∈ E

if it is connected to both u and v, i.e., (v, t) ∈ E and (u, t) ∈ E.

Definition 2.2.2 (Edge induced subgraph). An edge induced subgraph is a subset of edges

of a graph G together with all the incident vertices.

We are now ready to define a k-community, which can be seen as an edge analogue of

the k-core as follows.

Definition 2.2.3 (k-Community). A k-Community of a graph G is the set of nodes in the

edge induced subgraph with each edge having at least k neighboring vertices in the sub-

graph.

This definition of a k-community is analogous to an edge based k-core (A k-core is a set

of nodes such that in its induced subgraph each node has at least k neighboring nodes). In

simpler words, a k-community of a graph G is the set of nodes in a subgraph such that the

end-points of each edge have at least k common neighbors. Note that while a k-community

of G will be a (k+1)-core of G, the converse is not true. Thus, the k-community is a strictly

stronger clique relaxation when compared to a k-core.

As is the case with the k-core, the k-community of a graph can be found in polynomial

time. Algorithm 1 describes a simple iterative procedure for finding the k-community of

a graph G. In the first iteration, the algorithm removes all the edges from the graph that

have less than k neighboring nodes. If no edges were removed, we have found the k-

community of the graph. If some edges were in fact removed, we do another iteration as

the connectivity of the nodes and edges could have changed.
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This algorithm can be implemented more efficiently by examining an edge only if one

of its neighboring edges was removed in the previous iteration. This limits the number

of times the number of neighbors of an edge is calculated to (2∆+ 1) times, ∆ being the

highest degree of a node in the graph. The overall complexity of finding the k-community

can be shown to be O(mk∆). A brief outline of the proof is as follows: suppose m1 edges

get deleted in the first iteration. Then it is O(m1∆) to delete those edges, and O(m1k∆) to

investigate new ones. The second term arises because O(∆) to investigate one edge, and

there are at most 2m1k edges to be investigated since each of the removed edges affects at

most 2k edges. Similarly, suppose m2 edges get deleted in the next iteration. Then it is

O(m2∆) to delete those edges, and O(m2k∆) to investigate new ones. Similarly define m3,

m4 and so on. Since ∑i mi ≤ m, for any given k, the algorithm is O(mk∆).

Algorithm 1 k−Community(G): Algorithm to Find k-Community of G

1: repeat
2: for every (i, j) ∈ E do
3: if |N(i)∩N( j)|< k then
4: E← E \{(i, j)}
5: end if
6: end for
7: until No edge is removed in the current iteration
8: G(Vk,Ek)← G[E] /* Edge induced subgraph */
9: return Vk

Some properties of the k-community that are worth noting for their usefulness in later

sections are provided below.

Property 2.2.4. A clique of size k is a (k− t)-community for any t ≥ 2.

Property 2.2.5. If the k-community of G is empty, then size of maximum clique is ≤ k+1.

Note that the converse of property 2.2.5 is not true, for if it was, we could solve the

maximum clique problem in polynomial time. The following result establishes the some

cohesiveness properties of k-communities.
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Fig. 2.1.: k-Community with p(k+2)/2+1 nodes and diameter p.

Theorem 2.2.6 (Cohesiveness properties of k-communities). A k-community S satisfies

the following conditions:

1. The diameter of G[S] is at most b2(n−1)
k+2 c.

2. The minimum degree δ (G[S])≥ k+1.

3. The density of G[S] is greater than k+1
|S|−1 .

Proof. For (a) let the diameter of a given k-community with n nodes be p. There exist

vertices u,v in the k-community such that the shortest path between u and v is of length p.

Let u = x0,x1, ...,xp = v be that shortest path. Note that each edge (xi,xi+1), i = 0, ...,(p−

1) should have at least k neighbors. Also, since x0,x1, ...,xp is the shortest path from x0

to xp, the edges (xi,xi+1) and (x j,x j+1) cannot have any common neighbors if |i− j| ≥ 2.

Hence, every alternate edge in the diameter should have at least k unique neighboring

nodes. Thus, the number of nodes in the graph n ≥ (p+1)+ k(d p
2e) ≥ (p+1)+ k( p

2 ) =

1+ p k+2
2 . Hence, p≤ b2(n−1)

k+2 c.

Statement (b) is trivial, and (c) directly follows from (b).

Figure 2.1 shows that the bound on the diameter is tight.
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2.3 Scale Reduction Approaches

In this section, we devise a scale reduction method based on k-communities to find

the maximum clique in a given graph. By scale reduction, we mean removal of vertices

and edges from the graph which we are certain are not a part of the maximum clique, thus

reducing the size of the graph we have to work with. An exact algorithm, like branch

and bound, can then be applied on the smaller reduced graph. The most common scale

reduction technique is peeling, where given a lower bound ωlb on the clique number, we

find the (ωlb−1)-core of the graph.

Algorithms 2 and 3, which are discussed next make use of Property 2.2.5 to find an

upper bound of the clique number, while 4 uses Property 2.2.4 to find the maximum clique.

Algorithm 2 describes a simple binary search strategy for finding an upper bound ωub

of the clique number. The binary search is performed in the interval [ωlb − 2,∆− 2],

where ωlb is the size of a clique found by a greedy strategy (hence a lower bound on

the maximum clique size), and ∆ is a weak upper bound on the maximum clique size.

The algorithm finds the smallest integer k′ such that k′-community(G) is an empty set. By

Property 2.2.5, (k′+1) is an upper bound on the clique number. The worst case complexity

of the algorithm is O(m∆2log(∆)). Since finding the k-community modifies the edge set,

the whole edge set has to be duplicated from the original graph or a previously computed

(ωlb−2)-community after each iteration of the while loop. While this does not affect the

complexity, it can be a time consuming step for large graphs that take large amounts of

memory.

As a result, Algorithm 3 is proposed as a linear search strategy that starts with k =

ωlb− 2, and increments k till the upper bound is found. Since k is incrementing, any

edge that was removed in finding k-community will also be removed in finding (k+ 1)-

community, and so we do not have to duplicate the whole graph in each iteration. Although

the worst case complexity of this algorithm is O(m∆3), it might be a faster algorithm for

large graphs because of lesser overhead cost of memory operations.
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Algorithm 2 UpperBoundKCommBinary(G,ωlb,∆): Binary Search Algorithm for
ωub

1: ku← ∆−2, kl ← ωlb−2, k← ku

2: while ku− kl > 1 do
3: if k−Community(G) is empty then
4: ku← k
5: else
6: kl ← k
7: end if
8: if ku− kl ≤ 1 then
9: k← kl

10: else
11: k = (ku + kl)/2
12: end if
13: end while
14: Return k+2

Algorithm 3 UpperBoundKCommLinear(G,ωlb) : Linear Search Algorithm for ωub

1: k← ωlb−2
2: while k−Community(G) is non-empty do
3: k← k+1
4: end while
5: Return k+1

The overall procedure for finding the maximum clique is described in Algorithm 4.

To begin with, a greedy algorithm is employed to obtain a lower bound ωlb. Next, either

Algorithm 2 or 3 is used to obtain an upper bound ωub on the clique size. Subsequently,

the (ωub− 2)-community(G) is found and a lower bound ωlb on the clique size is then

obtained by using the procedure FindMaxCliqueExact, which can be any exact al-

gorithm developed for finding the maximum cliques on smaller graphs. For this chapter,

we use the algorithm developed by ? as the exact algorithm. It should be noted that Prop-

erty 2.2.5 does not guarantee that the maximum clique is in the (ωub−2)-community(G)

because it might have been pruned away. This is true since if ωub−ωlb > 1, there is a

possibility that a clique of size ω ∈ [ωlb +1,ωub−1] exists. Hence, we go a step further
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and find the (ωlb− 2)-community(G), which is guaranteed to have the maximum clique.

Finally, we either use an exact algorithm [?] on (ωlb−2)-community(G), or if the number

of nodes is higher than what the exact algorithm can take, find the connected components

of (ωlb−2)-community(G) and use the exact algorithm on each component to obtain the

maximum clique of the graph G.

As mentioned earlier, steps 2 and 4 of Algorithm 4 use the maximum clique algorithm

developed by ?. We could as well have used any of the algorithms developed in [Butenko

and Trukhanov, 2007, ?, Carraghan and Pardalos, 1990, Corno et al., 1995, Wood, 1997,

Tomita and Seki, 2003, Balas and Xue, 1996]. A commercial solver, CPLEX 11 was also

tried but performed worse than [?]. It should be noted that none of these algorithms have

been tested extensively on more than 10,000 vertices, and hence cannot be used directly

on the graphs with sizes that we are going to test our algorithms on. Abello et al. [1999]

have attempted using a similar peeling approach using k-cores instead of k-communities,

but could not reduce the size of the graph enough to employ an exact algorithm.

2.4 Extensions of k-Community

We can extend the idea of k-communities to obtain stronger clique relaxations. In each

of the following definitions, consider a simple undirected graph G = (V,E).

Definition 2.4.1. A set of vertices V ′ ⊆V is said to be a vertex-neighborhood-k-core if for

each vertex v ∈V ′ the subgraph G[N(v)] contains a (nonempty) k-core.

Definition 2.4.2. A set of vertices V ′⊆V is said to be a vertex-neighborhood-k-community

if for each vertex v ∈V ′ the subgraph G[N(v)] contains a (nonempty) k-community.

Definition 2.4.3. Consider a set of edges E ′ ⊆ E such that for each edge e ∈ E ′ the sub-

graph G[N(e)] induced by the edge-neighborhood N(e) contains a (nonempty) k-core.

Then the set of vertices V ′ ⊆ V from the edge-induced subgraph G[E ′] is said to be an

edge-neighborhood-k-core.



17

Algorithm 4 FindClique(G): Algorithm to find maximum clique of G

1: ωlb← GreedyClique(G)
2: if (ωlb−2)−Community(G) has < 12000 vertices then
3: return ω ← FindMaxCliqueExact((ωlb−2)−Community(G))
4: end if
5: ωub← UpperBound(G,ωlb,∆)
6: if ωlb < ωub then
7: ωlb←max(ωlb,FindMaxCliqueExact((ωub−2)−Community(G)))
8: end if
9: if ωlb < ωub then

10: if (ωlb−2)−Community(G) has < 12000 vertices then
11: ω ← FindMaxCliqueExact((ωlb−2)−Community(G))
12: else
13: Find the connected components C in (ωlb−2)−Community(G)
14: for each connected component C ∈ C do
15: ω ←max(ω,FindMaxCliqueExact(G[C]))
16: end for
17: end if
18: else
19: ω ← ωlb
20: end if

Definition 2.4.4. Consider a set of edges E ′ ⊆ E such that for each edge e ∈ E ′ the sub-

graph G[N(e)] induced by the edge-neighborhood N(e) contains a (nonempty) k-community.

Then the set of vertices V ′ ⊆ V from the edge-induced subgraph G[E ′] is said to be an

edge-neighborhood-k-community.

These enhancements can be used to obtain both tighter upper bounds and better scale

reduction using the lower bound of the clique size.

2.5 k-Community in Power-Law Random Graphs

A graph G is called a power law graph if the the number of nodes with degree q is

proportional to q−α , where α ∈ (1,3) is a constant. Power-law graphs are ubiquitous in

nature, and many graphs studied in literature have been found to follow this structure.
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Shen et al. [2011] show that the maximum clique cannot be approximated within any

constant factor on large power-law graphs unless NP=ZPP. In this section we characterize

the quality of the upper bound obtained by algorithm 2 for large power-law random graphs.

For this purpose, we use the hidden variable ensemble model for generating random power

law graphs [Bianconi and Marsili, 2006]:

1. Assign a hidden continuous variable qi to each node i according to the power law

distribution.

2. Each pair of nodes with hidden variables q and q′ are linked with probability

r(q,q′) =
qq′

q̄n
(2.5.1)

where q̄ is the expectation of q, equivalently the average degree.

To ensure that the linking probabilities r(q,q′) are less than 1, we introduce a cutoff

Q =
√

q̄n on the power law distribution. Hence, the hidden variable distribution is as

follows:

p(q) =

p0q−α q ∈ [1,Q]

0 otherwise
(2.5.2)

Furthermore, the cutoff Q can be estimated as Q∼ n1/α ,α ∈ (1,2] and Q∼ n1/2,α ∈ (2,3).

It has been shown by Bianconi and Marsili [2006] that,

Ω(n1/3α) = ω = O(n1/2α), α ∈ [1,2) (2.5.3)

Ω(n(3−α)/4) = ω = O(n(3−α)/6), α ∈ (2,3) (2.5.4)

With this model in mind, in the rest of this section we establish some asymptotic results

that hold true with high probability – that is, the probability converges to 1 as the number

of vertices in the random graph n goes to infinity.
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Lemma 2.5.1. For a power law random graph with exponent α ∈ [2,3) obtained using

the hidden variable ensemble, the upper bound ωub of the clique number obtained by

algorithm 2 is O(n(3−α)/2) with high probability. Furthermore, ωub = O(ω3) for α ∈

(2,3).

Proof. Let Ek denote the set of edges in the k-community of G, and Et
k denote the set of

edges remaining after t iterations of removing edges with less than k neighboring nodes.

Further, let Gt
k denote the subgraph G[Et

k] induced by the set of edges Et
k. We proceed by

showing that |Ek| −→ 0 with high probability for k > Θ(n(3−α)/2).

Consider the probability that nodes i & j with hidden variables qi & q j are both con-

nected to node m with hidden variable qm in G:

wn(i, j,qm) = P((i,m) ∈ E, ( j,m) ∈ E) = r(qi,qm)r(q j,qm) (2.5.5)

=
qiqm

q̄n
qiqm

q̄n
(2.5.6)

=
qiq j

q̄2n2 q2
m (2.5.7)

Probability that i & j are both connected to a randomly chosen node in G:

wn(i, j) =

Q∫
1

p(qm)w(i, j,qm)dqm (2.5.8)

=

√
n∫

1

p0q−α
m

qiq j

q̄2n2 q2
mdqm (2.5.9)

'
p0qiq jn−(α+1)/2

3−α
(2.5.10)
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Let η(i, j) denote the number of common neighbors that i & j have in G. We can show

that

E[η(i, j)] = µη(i, j) =
p0qiq jn(1−α)/2

3−α
(2.5.11)

Var[η(i, j)] = σ
2
η(i, j) '

p0qiq jn(1−α)/2

3−α
(2.5.12)

Now, we can observe the following using the one-sided Chebyshev’s inequality,

P(η(i, j)≥ k)≤


σ2

(k−µ)2 k > µη

1 k < µη

(2.5.13)

Note that since qi,q j ∈ [1,
√

n], when k > Θ(n(3−α)/2), we have k� µη . Thus,

P(η(i, j)≥ k)≤ σ2

k2 (2.5.14)

Now consider the expected number of neighbors node i will have in the graph G1
k as n−→

∞.

E[|NG1
k
(i)|] =

√
n∫

1

np(q j)r(qi,q j)P(η(i, j)≥ k)dq j (2.5.15)

≤

√
n∫

1

np0q−α

j
qiq j

q̄n
σ2

η

k2 dq j (2.5.16)

≤ n(1−α)/2 p0q2
i

(3−α)k2 n(3−α)/2 (2.5.17)

≤ c
q2

i n2−α

k2 = O(1) (2.5.18)
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since k > Θ(n(3−α)/2) and q2
i ≤ n, ∀i. Similarly, the variance of the number of neighbors

can be found to be

Var[|NG1
k
(i)|]≤ c

q2
i n2−α

k2 (1− q2
i n1−α

k2 ) = O(1), (2.5.19)

Thus, using the one-sided Chebyshev’s inequality, we can claim that as n−→ ∞,

P(NG1
k
(i)≥ k)−→ 0 (2.5.20)

and further that

P(NG2
k
(i) = 0)−→ 1 (2.5.21)

Thus, with high probability all the edges in Gk will be deleted, leaving the k-community

empty for any k > Θ(n(3−α)/2).

Hence, the upper bound ωub is O(n(3−α)/2) with probability tending to one as n−→∞.

From equation 2.5.3, we can deduce that ωub = O(ω3) with high probability.

Lemma 2.5.2. For a power law random graph with exponent α ∈ (1,2) obtained using

the hidden variable ensemble, the upper bound ωub of the clique number obtained by

algorithm 2 is O(n1/α) with high probability. Furthermore, ωub = O(ω3) for α ∈ (1,2).

Proof. We proceed in a similar manner as lemma 2.5.1. Using the same notation, we can

show that

wn(i, j)'
p0qiq jn3/α−1

(3−α)(q̄n)2 (2.5.22)

'
p0qiq jn−1/α−1

(3−α)
(2.5.23)
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and

E[η(i, j)] = µη(i, j) =
p0qiq jn−1/α

3−α
(2.5.24)

Var[η(i, j)] = σ
2
η(i, j) =

p0qiq jn−1/α

3−α
(2.5.25)

Note since qi,q j ∈ [1,n1/α ], when k > Θ(n1/α), k� µη , and we have

P(η(i, j)≥ k)≤ σ2

k2 (2.5.26)

Now consider the expected number of neighbors node i will have in the graph G1
k as n−→

∞.

E[|NG1
k
(i)|] =

n1/α∫
1

np(q j)r(qi,q j)P(η(i, j)> k)dq j (2.5.27)

≤
n1/α∫
1

n1−3/α p2
0q2

i
(3−α)k2 q2−α

j dq j (2.5.28)

≤
n1−3/α p2

0q2
i

(3−α)2k2 n3/α−1 (2.5.29)

≤ c
q2

i
k2 = O(1) (2.5.30)

since k > Θ(n1/α) and qi < n1/α . Finding E[|NG1
k
(i)|] & Var[|NG1

k
(i)|] and using the one-

sided Chebyshev’s inequality as in the proof of Lemma 2.5.1, we can deduce that all the

edges in Gk will be deleted, leaving the k-community of G empty for any k > Θ(n1/α).

Thus, the upper bound we obtain, ωub is O(n1/α). We obtain ωub = O(ω3) by using

equation 2.5.4.

Theorem 2.5.1. Given a power law random graph with coefficient α ∈ (1,2)∪ (2,3), the

upper bound ωub on the maximum clique obtained by algorithm 1 is O(ω3) with high

probability.
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Proof. The theorem follows directly from lemmas 2.5.1 and 2.5.2.

2.6 Computational Results

The test cases were obtained from the Stanford Large Network Dataset Collection

[SNAP, Last accessed: November 2011], referred to as the SNAP, and the 10th DIMACS

implementation challenge [DIMACS10, Last accessed: May 2012]. These databases have

a collection of large network datasets from tens of thousands of nodes and edges to tens of

millions of nodes and edges. They includes social networks, web graphs, road networks,

internet networks, citation networks, collaboration networks, random geometric graphs,

and communication networks. The multitude of domains these networks originate from,

along with the very large sizes of the networks make the two datasets a suitable candidate

for performing computational studies for our algorithm. For conciseness, we consider all

the networks that have at least 30,000 vertices and a few with lesser number of nodes. The

networks in the database that were directed graphs were converted to an undirected graph

by considering the directed edges as undirected. Table 2.1 describes the networks from

the two datasets that were used for this study. The networks in the DIMACS dataset were

further classified into two categories based on whether they follow a heavy tail degree

distribution or not.

Table 2.2 compares the upper bounds obtained by using the scheme described in Algo-

rithm 2 against those found by using the k-cores in Algorithm 2 instead of k-community.

The number of nodes remaining in the corresponding (ωub−1)-core and (ωub−2)-comm-

unity are also provided. The table also provides the lower bounds ωlb found in the course

of Algorithm 4, along with the number of nodes remaining in the corresponding (ωlb−1)-

core and (ωlb−2)-community.

It can be seen that compared to the k-core upper bound, the k-community upper bounds

are significantly lower, almost by a factor of 2. This is because the k-community is a

much tighter relaxation of a clique. Furthermore, the number of nodes remaining in the

corresponding (ωub− 1)-core and (ωub− 2)-community provide further evidence of the
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Table 2.1: Description of the various networks used for computations. More informa-
tion about the graphs can be obtained from [SNAP, Last accessed: November 2011] and
[DIMACS10, Last accessed: May 2012].

Network Type Example/Description
SNAP
Social Networks Epinions.com: Who-trusts-whom network of Epinions.com.

Slashdot Slashdot social network for a month.
Wikipedia who-votes-on-whom network.

Communication Email network from a EU research institution.
Wikipedia talk (communication) network.

Citation Networks Citation network among US Patents.
Arxiv High Energy Physics paper citation network.

Web graphs Web graph of Stanford.edu.
Web graph from Google.

Product Co-purchasing Amazon product co-purchasing network for a day.
Internet P2P Gnutella peer to peer network for a day.

DIMACS10-HeavyTail
Clustering Used as benchmarks in the graph clustering.
Coauthors Social networks are created from co-authorships and citations.
Random Geometric Generated from random points in the unit square. Edges

connect vertices whose Euclidean distance is below 0.55log(n)/n.
Kronecker Synthetic graphs created with the Kronecker generator.

DIMACS10-QuasiRegular
Matrix Florida Sparse Matrix Collection.
Walshaw Benchmarks for graph partitioning algorithms.

tightness of k-communities. The lower bounds ωlb were obtained by running an exact

algorithm on the corresponding (ωub−1)-cores and (ωub−2)-communities of the graphs.

In many cases, especially when the degree distribution of the graph does not follow a

power law, the (ωub−1)-cores have a large number of nodes, and the lower bounds cannot

be found. In such cases, the lower bound obtained from the greedy algorithm is reported

(marked by an asterisk).

Table 2.3 provides the maximum clique sizes as found by the Algorithm 4, with the

time taken by six variants of the algorithm. These variants differ in the clique relaxation

used for scale reduction (k-core, k-comunity, and hybrid) and the search procedure used to

find the upper bounds (linear and binary search). The hybrid scale reduction uses a k-core

based in the beginning, and if a sufficient reduction is not found, resorts to a k-community

reduction.
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Table 2.2: Comparison of the upper bounds (ωub) and lower bounds (ωlb) obtained by a
k-core scheme vs a k-comm scheme. Comparison of the number of nodes in the corre-
sponding (ωub−1)-core, (ωub−2)-community, (ωlb−1)-core, and (ωlb−2)-community,
(nωub and nωlb) is also included. The nωub and nωlb values are in bold when they are larger
than 12,000. An asterisk marks the ωlb value when the best lower bound was obtained
from the greedy algorithm.

k-core k-comm
Graph n m ωub nωub ωlb nωlb ωub nωub ωlb nωlb

SNAP
Wiki-Vote 7115 100762 54 336 17 2316 23 50 17 458
p2p-Gnutella04 10876 39994 8 365 3 8379 4 12 4 12
p2p-Gnutella25 22687 54705 6 6091 4 9764 4 25 4 25
p2p-Gnutella24 26518 65369 6 7480 4 11478 4 41 4 41
Cit-HepTh 27770 352285 38 52 22 7278 30 48 21 366
Cit-HepPh 34546 420877 31 40 18 11284 25 36 18 193
p2p-Gnutella30 36682 88328 8 14 3* 20194 4 42 4 42
p2p-Gnutella31 62586 147892 7 1004 4* 24222 4 57 4 57
soc-Epinions1 75879 405740 68 486 23 5004 33 61 23 402
Slashdot0811 77360 469180 55 129 26 5050 35 87 26 164
Slashdot0902 82168 504230 56 134 27 5043 36 96 27 165
Amazon0302 262111 899792 7 286 7 286 7 105 7 105
Email-EuAll 265214 364481 38 292 16 1691 20 62 16 157
web-Stanford 281903 1992636 72 387 18* 34325 62 64 61 128
web-NotreDame 325729 1090108 156 1367 155 1367 155 155 155 155
Amazon0312 400727 2349869 11 27046 9* 244256 11 4534 11 4534
Amazon0601 403394 2443408 11 32886 11* 32886 11 5361 11 5361
Amazon0505 410236 2439437 11 32632 8* 295845 11 4878 11 4878
web-BerkStan 685230 6649470 202 392 201 392 201 392 201 392
web-Google 875713 4322051 45 48 44 103 44 48 44 48
WikiTalk 2394385 4659565 132 700 26 15807 53 237 26 1559
cit-Patents 3774768 16518947 65 106 10 354843 36 83 10 3131

DIMACS10-HeavyTail
as-22july06 22963 48436 26 71 17 144 17 45 17 45
cond-mat-2005 40421 175691 30 30 30 30 30 30 30 30
kron g500-simple-logn16 65536 2456071 433 694 136 6885 285 676 136 2513
G n pin pout 100000 501198 8 74227 3* 99942 4 4 4 4
preferentialAttachment 100000 499985 6 100000 6* 100000 6 7 6 7
smallworld 100000 499998 8 99737 5* 100000 6 14749 6* 14749
caidaRouterLevel 192244 609066 33 92 16* 4021 19 36 17 58
coAuthorsCiteseer 227320 814134 87 87 87 87 87 87 87 87
citationCiteseer 268495 1156647 16 67 10 35093 13 13 13 13
coAuthorsDBLP 299067 977676 115 115 115 115 115 115 115 115
cnr-2000 325557 2738969 84 86 84 86 84 86 84 86
coPapersCiteseer 434102 16036720 845 845 845 845 845 845 845 845
coPapersDBLP 540486 15245729 337 337 337 337 337 337 337 337
eu-2005 862664 16138468 389 405 387 405 387 391 387 391
in-2004 1382908 13591473 489 491 489 491 489 490 489 490
rgg n 2 21 s0 2097152 14487995 19 19 19 19 19 19 19 19
rgg n 2 22 s0 4194304 30359198 20 20 20 20 20 20 20 20
rgg n 2 23 s0 8388608 63501393 21 22 21 22 21 22 21 22
rgg n 2 24 s0 16777216 132557200 21 82 21 82 21 44 21 44
uk-2002 18520486 261787258 944 944 944 944 944 944 944 944

DIMACS10-QuasiRegular
luxembourg.osm 114599 119666 3 93000 2* 114599 3 204 3 204
wave 156317 1059331 9 119747 5* 156311 7 9 6 389
audikw1 943695 38354076 48 687633 36* 937779 39 135 36 185805
ldoor 952203 22785136 35 900844 21* 952203 21 952203 21* 952203
ecology1 1000000 1998000 3 1000000 2* 1000000 2 1000000 2* 1000000
belgium.osm 1441295 1549970 4 5 3 1238894 3 7113 3 7113
333SP 3712815 11108633 5 2261408 3* 3712815 4 28 4 28
cage15 5154859 47022346 26 27712 6* 5135355 6 520172 6* 520172
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Table 2.3: Maximum clique sizes as found by the Algorithm 4, and the time taken by
variants k-comm, k-core, and hybrid scale reductions when using binary and linear search
for finding the upper bound. The best time for each instance is in bold. A strike marks
the cases in which optimality of the clique found could not be validated, and a

:::::::::::
under-wave

marks those in which an extension of k-community was used to establish optimality. A
∗ is marks cases where connected components of the (ωlb − 1)-core or the (ωlb − 2)-
community had to be found.

Binary Linear
Graph n m ω k-Core k-Comm Hybrid k-Core k-Comm Hybrid

SNAP
Wiki-Vote 7115 100762 17 0.19 0.23 0.22 0.19 0.20 0.19
p2p-Gnutella04 10876 39994 4 1.75 0.05 0.69 1.06 0.06 1.06
p2p-Gnutella25 22687 54705 4 3.65 0.08 1.56 3.62 0.06 1.48
p2p-Gnutella24 26518 65369 4 4.35 0.08 1.47 4.27 0.11 1.37
Cit-HepTh 27770 352285 23 1.70 1.06 0.55 1.45 1.08 1.61
Cit-HepPh 34546 420877 19 3.71 0.27 0.97 3.71 0.25 1.51
p2p-Gnutella30 36682 88328 4 0.25∗ 0.22 0.34 0.14∗ 0.20 0.28
p2p-Gnutella31 62586 147892 4 0.36∗ 0.02 0.23 0.19∗ 0.02 0.09
soc-Epinions1 75879 405740 23 1.08 1.14 0.87 1.47 1.06 1.51
Slashdot0811 77360 469180 26 1.11 0.23 0.64 1.56 0.20 1.61
Slashdot0902 82168 504230 27 1.15 0.23 0.59 1.68 0.25 1.67
Amazon0302 262111 899792 7 2.04 0.89 1.98 0.34 0.39 0.34
Email-EuAll 265214 364481 16 0.25 0.25 0.23 0.22 0.23 0.28
web-Stanford 281903 1992636 61 6.21 4.87 6.32 2.68 4.87 2.70
web-NotreDame 325729 1090108 155 0.30 0.27 0.31 0.30 0.25 0.31
Amazon0312 400727 2349869 11 14.93 3.31 6.27 10.76 2.43 3.85
Amazon0601 403394 2443408 11 5.77 2.09 6.44 1.48 2.03 3.40
Amazon0505 410236 2439437 11 17.64 3.29 5.91 13.78 2.01 2.79
web-BerkStan 685230 6649470 201 16.51 33.14 16.44 11.76 33.71 11.83
web-Google 875713 4322051 44 4.76 3.89 4.90 1.97 2.90 1.92
WikiTalk 2394385 4659565 26 13.26∗ 12.29 16.29 9.91∗ 12.20 12.84
cit-Patents 3774768 16518947 11 59.38∗ 23.76 37.11 43.06∗ 18.95 20.72

DIMACS10-HeavyTail
as-22july06 22963 48436 17 0.02 0.02 0.03 0.02 0.02 0.02
cond-mat-2005 40421 175691 30 0.03 0.02 0.03 0.03 0.03 0.03
kron g500-simple-logn16 65536 2456071 136 820.11 953.54 821.00 818.93 955.55 822.07
G n pin pout 100000 501198 4 2.45∗ 0.23 0.81 2.20∗ 0.12 0.39
preferentialAttachment 100000 499985 6 1.12 0.09 1.11 0.16 0.11 0.38
smallworld 100000 499998 6 2.08∗ 0.41∗ 0.62∗ 1.76∗ 0.27∗ 0.39∗

caidaRouterLevel 192244 609066 17 0.52 0.16 0.53 0.47 0.13 0.44
coAuthorsCiteseer 227320 814134 87 0.13 0.20 0.11 0.09 0.59 0.13
citationCiteseer 268495 1156647 13 2.59∗ 1.05 2.43 1.59 1.08 1.61
coAuthorsDBLP 299067 977676 115 0.13 0.14 0.14 0.14 0.14 0.14
cnr-2000 325557 2738969 80 23.99 17.83 23.85 4.76 17.83 4.59
coPapersCiteseer 434102 16036720 845 4.01 5.82 4.17 3.98 6.01 4.01
coPapersDBLP 540486 15245729 337 2.26 3.57 2.18 2.29 3.62 2.23
eu-2005 862664 16138468 387 104.71 351.32 104.66 16.97 2061.41 17.43
in-2004 1382908 13591473 489 17.54 67.53 17.75 17.66 67.27 17.68
rgg n 2 21 s0 2097152 14487995 19 1.44 1.61 1.44 1.36 1.56 1.40
rgg n 2 22 s0 4194304 30359198 20 3.04 3.09 3.09 3.00 3.21 3.00
rgg n 2 23 s0 8388608 63501393 21 5.88 5.98 5.91 5.94 5.93 5.96
rgg n 2 24 s0 16777216 1.33E+08 21 29.64 19.78 30.06 21.94 19.98 22.12
uk-2002 18520486 2.62E+08 944 225.89 472.05 225.28 162.69 5106.09 164.13

DIMACS10-QuasiRegular
luxembourg.osm 114599 119666 3 0.38∗ 0.17 0.33 0.28∗ 0.08 0.27
wave 156317 1059331 6 1.47∗ 1.56 2.34 0.94∗ 0.97 1.89
audikw1 943695 38354076 36∗ˆ

::::::
50.16∗

::::::
122.81∗

:::::::
175.97∗

::::::
24.88∗

::::::
120.65∗

:::::::
157.58∗

ldoor 952203 22785136 21 15.43∗ 57.91 64.94 7.46∗ 31.06 27.61
ecology1 1000000 1998000 2 2.89∗ 1.42 2.08 2.06∗ 1.08 1.36
belgium.osm 1441295 1549970 3 3.85∗ 4.09 3.68 2.98∗ 2.15 2.78
333SP 3712815 11108633 4 89.37∗ 21.40 133.49 128.16∗ 10.76 72.40
cage15 5154859 47022346 6 994.55∗ 22.11 56.08 983.58∗ 15.79 34.88
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It can be observed that for almost all the graphs, the maximum clique was found within

ten minutes, which is remarkable considering the size of the graphs. The relative tightness

of k-communities when compared to k-cores is apparent not just from the upper bounds

found in Table 2.2, but also from the fact that many instances that could not be solved

using a k-core reduction were solved by the k-community reduction. The linear upper

bound search, which was introduced as a less memory intensive algorithm targeting large

graphs, does prove to be effective in reducing the time taken by the algorithm for the larger

instances. A glance at Table 2.2 also suggests that the upper bounds are fairly tight, and

that the lower bounds obtained are very close to the clique number. Amongst the three

variants, the hybrid scale reduction method with linear search seems to perform the best

overall. The results presented in this table also highlights the main contribution of this

research is that we are able to obtain the maximum cliques for very large scale graphs with

a proof of optimality for all but one of the graphs tested. The pool of test instances taken

is diverse, with both power law and fairly regular graphs present. In fact, the one graph for

which the proof of optimality does not have a power law distribution.

Also note that although the residual graphs ((ωub− 2)-communities and (ωub− 1)-

cores) are quite large for the DIMACS2 graphs, the greedy clique is the same size as the

upper bound found, not requiring an exact algorithm at all. An exception is the graph

audikw1 for which the upper bound obtained by k-community is 39, whereas the greedy

lower bound is 36. However, the enhancement edge-neighborhood-k-core defined in sec-

tion 2.4 is used to establish that the upper bound on the clique size is 36, and hence the

optimalilty of the greedy clique is established.

2.7 Conclusion

This chapter introduces a new clique relaxation, and an algorithm based on it to find the

maximum cliques in large low density graphs. Using the methodology developed in this

chapter we were able to find the maximum cliques for graphs with up to 18 million nodes,

which has not been achieved till date. Furthermore, any advancements in exact algorithms
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for dense but smaller graphs will directly impact the performance of this methodology

in a positive manner. The scheme might be useful for clique relaxations like k-plex too.

In future, we would like to explore clustering techniques based on the k-community and

evaluate their effectiveness.
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3. NETWORK CLUSTERING VIA CLIQUE RELAXATIONS: A COMMUNITY

BASED APPROACH

3.1 Introduction

Network (graph) based data mining is an emerging field that studies network represen-

tations of data sets generated by an underlying complex system in order to draw meaning-

ful conclusions regarding the system’s properties. In a network representation of a com-

plex system, the network’s nodes typically denote the system’s entities, while the edges

between nodes represent a certain kind of similarity or relationship between the entities.

Network clustering, aiming to partition a network into clusters of similar elements, is an

important task frequently arising within this context. The form of each cluster in the par-

titioning is commonly specified through a predefined graph structure. Since a cluster is

typically understood as a “tightly knit” group of elements, the graph theoretic concept of

a clique, which is a subset of nodes inducing a complete subgraph, is a natural formaliza-

tion of a cluster that has been used in many applications. This results in partitioning into

“ideal” clusters, with the highest possible level of cohesiveness one can hope for.

The flawlessness of the clique structure as a theoretical formalization of a cohesive

cluster turns into a “curse of perfection” when it comes to practical applications. Since

each node in a clique is required to be connected to all other nodes in the clique, a highly

cohesive structure might not get identified as a cluster by the mere absence of a few edges.

In real life data sets, this is of critical importance because some edges could be missing

either naturally or due to erroneous data collection. Moreover, given that networks arising

in many important applications tend to be very large with respect to the number of nodes

and very sparse in terms of the relative number of edges, the clique clustering usually

results in meaninglessly large number of clusters in such situations. In addition, comput-

ing large cliques and good clique partitions are computationally challenging problems, as

finding a maximum clique and a minimum clique partition in a graph are classical NP-hard

problems Garey and Johnson [1979a].
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To circumvent these drawbacks of cliques, researchers in several applied fields, such

as social network analysis and computational biology, have defined and studied structures

that relax some of the properties of cliques, and hence are aptly called clique relaxations.

Some of the popular clique relaxations include s-plexes, that require each vertex to be

connected to all but s other vertices Seidman and Foster [1978]; s-clubs, that require the

diameter of the induced subgraph to be at most s Alba [1973]; and γ-quasi-cliques, which

require the density of the induced subgraph to be at least γ Abello et al. [2002]. It should

be noted that each of 1-plex, 1-club and 1-clique represents a clique. By relaxing the

properties of a clique, namely the degree, diameter, and density, these clique relaxations

capture clusters that are strongly but not completely connected. However, like the clique

model, these clique relaxations still suffer from the drawback of being computationally

expensive.

In 1983, Seidman Seidman [1983] introduced the concept of a k-core that restricts the

minimum number k of direct links a node must have with the rest of the cluster. Using

k-cores to model clusters in a graph has considerable computational advantages over the

other clique clique relaxation models mentioned above. Indeed, the problem of finding the

largest k-core can be easily solved in polynomial time by recursively removing vertices

of degree less than k. As a result, the k-core model has gained significant popularity as a

network clustering tool in a wide range of applications. In particular, k-core clustering has

been used as a tool to visualize very large scale networks Alvarez-Hamelin et al. [2005],

to identify highly interconnected subsystems of the stock market Idicula [2004], and to

detect molecular complexes and predict protein functionsBader and Hogue [2003], Altaf-

Ul-Amin et al. [2003]. On the downside, the size of a k-core may be much larger than k,

creating a possibility of a low level of cohesion within the resulting cluster. Because of

this, a k-core itself may not be a good model of a cluster, however, it has been observed that

k-cores tend to contain other, more cohesive, clique relaxation structures, such as s-plexes,

and hence computing a k-core can be used as a scale-reduction step while detecting other

structures Balasundaram et al. [2011].
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Most recently, the authors of the current paper proposed yet another clique relaxation

model of a cluster, referred to as k-community, that aims to benefit from the positive

properties of k-cores while ensuring a higher level of cohesion. More specifically, a k-

community is a connected subgraph such that endpoints of every edge have at least k com-

mon neighbors within the subgraph. As seen in the previous chapter, the k-community

structure has proven to be extremely effective in reducing the scale of very large, sparse

instances of the maximum clique problem. This research explores the potential of using

the k-community structure as a network clustering tool. Even though the proposed clus-

tering algorithm does not aim to optimize any of the quantitative measures of clustering

quality, the results of numerical experiments show that it performs quite well with respect

to most of such measures available in the literature.

The remainder of this chapter is organized as follows. Section 3.2 provides the nec-

essary background information. Section 3.3 outlines the proposed network clustering al-

gorithm. Section 3.4 reports the results of numerical experiments on several benchmark

instances, and Section 3.5 concludes the chapter.

3.2 Background

In this chapter, a network is described by a simple undirected graph G = (V,E) with

the set V = {1,2, . . . ,n} of nodes and the set E of edges. We call a pair of nodes u and

v such that (u,v) ∈ E adjacent or neighbors. For a node u, let NG(u) = {v : (u,v) ∈ E}

denote the neighborhood of u in G. Then the degree degG(u) of u in G is given by the

number of elements in NG(u). Let δ (G) denote the minimum degree of a node in G. For

a subset C of nodes, G[C] = (C,E ∩ (C×C)) denotes the subgraph induced by C. Next

we define two clique relaxation concepts, namely k-core and k-community, that play a key

role in this research.

Definition 3.2.1 (k-core). A subset of nodes C is called a k-core if G[C] is a connected

graph and δ (G[C])≥ k.
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Algorithm 5 k−Community(G): Algorithm to find the k-Communities of G

1: repeat
2: for every (i, j) ∈ E do
3: if |NG(i)∩NG( j)|< k then
4: E← E \{(i, j)}
5: end if
6: end for
7: until No edge is removed in the current iteration
8: G(Vk,Ek)← Ge[E] /* Edge induced subgraph */
9: return Vk← Connected components of G(Vk,Ek). /* Each set of connected vertices

forms a k-community*/

Before defining a k-community, we need the following two preliminary definitions.

Definition 3.2.2 (Neighbor of an edge). A node t ∈V is a neighbor of an edge (u,v) ∈ E

if it is connected to both u and v, i.e., (v, t) ∈ E and (u, t) ∈ E.

Definition 3.2.3 (Edge induced subgraph). An edge induced subgraph, denoted by Ge[F ],

is a subset of edges F of a graph G together with all the incident vertices.

We are now ready to define a k-community, which can be seen as an edge analogue of

the k-core as follows.

Definition 3.2.4 (k-Community). A k-Community of a graph G is the set of nodes in the

connected edge induced subgraph Ge[Ek] with each edge in Ek having at least k neighbor-

ing vertices in the subgraph Ge[Ek]. If Ge[Ek] is disconnected, then each component forms

a k-community by itself.

Given a positive integer k, both of these structures are in essence trying to find a cluster

of vertices that satisfies some minimum node degree requirements. In the case of k-core,

the presence of each node has to be supported by the presence of at least k neighbors, while

in the case of k-community, the presence of each edge has to be supported by the presence

of at least k alternative edge-disjoint paths of length two. It is instructive to note that every

k-community is also a (k+1)-core, but the converse is not true.
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Algorithm 6 Basic k-Community Clustering(G): Basic algorithm to find clus-
ters in G

1: G′← G
2: C ← /0
3: repeat
4: k← highest integer such that k-community(G′) is non-empty.
5: Find all the k-Communities in G′ and add them to C .
6: Find the set of vertices L that are not yet clustered.
7: G′← G[L].
8: until k ≤ l or G′ is empty
9: for every v ∈ L do

10: Add v to the cluster C ∈ C which maximizes |N(v)∩C|.
11: end for
12: return C

Given a positive integer k, all the maximal k-communities of a graph G can be easily

computed as outlined in Algorithm 5.

3.3 Clustering Algorithm

The algorithm described in this section is based on the idea of finding k-communities

for large k and placing them in different clusters. To this end, we identify the largest k′ such

that the k′-community of G is non-empty, and place all k′-communities formed in distinct

clusters. Once this has been done, all the nodes that have been placed in clusters are

removed from G and the whole procedure is repeated till either k becomes small (reaches

a lower bound l provided by the user) or no vertices are left to cluster. If any vertex is left

to cluster, we attach it to the cluster that contains the most neighbors of that vertex. This

basic procedure is described in Algorithm 6.

In this algorithm, we stop when k becomes small enough so that a k-community be-

comes meaningless. For example, any set of vertices that induce a tree will form a 0-

community. While in some cases this might be the best possible option (the original graph

is a forest), for most clustering instances we would like the vertices in a cluster to share
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Fig. 3.1.: Clustering found by Algorithm 6 using the k-core and k-community-based ap-
proaches on some illustrative graphs. The diagram highlights the cases where community
based approach is better than the core-based approach, and also when none of them per-
form well.

more than just one edge with the remaining nodes. For this chapter, the lower bound l was

set to 1 in Algorithm 6.

It should be noted that the clustering provided by Algorithm 6 does not aim to optimize

any criteria provided such as modularity, performance, average isolated inter-cluster con-

ductance (aixc), average isolated inter-cluster expansion (aixe), and minimum intra-cluster
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Algorithm 7 Enhanced k-Community Clustering(G): Enhanced algorithm to
find clusters in G

1: G′← G
2: C ← /0, best mod←−1/2
3: repeat
4: k← highest integer such that k-community(G′) is non-empty.
5: Find all the k-Communities in G′ and add them to C .
6: Find the set of vertices L that are not yet clustered.
7: G′← G[L].
8: if k ≤ u then
9: C k← C

10: for every v ∈ L do
11: Add v to the cluster Ck ∈ C k which maximizes |N(v)∩Ck|.
12: end for
13: if Modularity(C k) < best mod then
14: C ← C k−1

15: break
16: else
17: best mod← Modularity(C k)
18: end if
19: end if
20: until k=l or G′ is empty
21: for every v ∈ L do
22: Add v to the cluster C ∈ C which maximizes the increase in Modularity(C ).
23: end for
24: LocalSearch(C )
25: return C

density (mid) as described in the DIMACS 2011 challenge DIMACS10 [Last accessed:

May 2012].

3.3.1 Enhancements

If optimizing a given measure is indeed the aim, an enhanced version of the basic

algorithm is provided in Algorithm 7. The description of the enhanced Algorithm 7 uses

modularity as a measure, but can as well have any other measure. A major improvement in

Algorithm 7 over Algorithm 6 is that the decision of the what k is too small to be used for
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finding k-communities as clusters is made dynamically. Given a range [l,u], the algorithm

checks the modularity of the clustering found at each k ≤ u and stops as soon as reducing

k also reduces modularity. In this manner, the formation of k-communities for small k

that don’t contribute to increasing modularity can be avoided. Furthermore, local search

is done to increase modularity by moving vertices from one cluster to another cluster such

that the increase in modularity is maximized. For the results in this chapter, the range [l,u]

was set to [1,6], and the time spent in local search was restricted to 10,000 seconds.

An advantage of both these algorithms is that they do not use any prior information

about the graph such as the number of clusters, degree distribution, etc. This makes it a

very general approach that is applicable even when no information about the structure of

the graph is available. Furthermore, although we use k-core and k-community to define

clusters, new structures that fit the users description of a cluster can be incorporated into

the algorithm fairly easily.

In both the Algorithms 6 & 7, we can replace k-community in steps 4-5 with k-core,

with the remaining steps of the algorithm as they are, to obtain a k-core-based clustering

algorithm.

Some illustrations of clusterings found by the k-core and k-community approach de-

scribed in this section are provided in Figure 3.1. It should be noted that, although k-

communities are strictly stronger relaxations, the clustering formed by the core-based

approach can in some cases be better than that obtained using the community-based ap-

proach.

3.4 Computational Results

In this section we provide computational results obtained by using the k-community

and k-core clustering on the graph sets provided in the 10th DIMACS challenge DI-

MACS10 [Last accessed: May 2012]. The computational results were obtained on a

desktop machine (Intel Xeon E5620@2.40GHz, 16 cores, 12GB RAM). All computa-

tions except for the final steps of attaching leftover vertices to already formed clusters and
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Table 3.1: Modularity of clustering found by the basic Algorithm 6 using the k-community
based and k-core based approaches. The modularity that is higher between the two meth-
ods is highlighted in bold.

k-core-based k-community-based
Graphs n m Mod Clusters Time(s) Mod Clusters Time(s)

celegans metabolic 453 2025 0.267 19 0.00 0.331 30 0.02
email 1133 5451 0.342 15 0.03 0.394 72 0.03
polblogs 1490 16715 0.243 8 0.03 0.219 32 0.06
power 4941 6594 0.295 24 0.05 0.851 189 0.09
PGPgiantcompo 10680 24316 0.755 398 0.47 0.732 655 0.64
astro-ph 16706 121251 0.539 918 1.70 0.538 1480 1.95
memplus 17758 54196 0.555 1238 0.56 0.554 1256 0.58
as-22july06 22963 48436 0.473 33 0.41 0.519 162 0.59
cond-mat-2005 40421 175691 0.509 2469 3.85 0.508 4016 4.99
kron g500-simple-logn16 65536 2456071 -0.018 6 15.31 -0.013 28 38.60
preferentialAttachment 100000 499985 0.000 1 1.01 0.145 299 14.85
G n pin pout 100000 501198 0.065 2 4.23 0.136 4479 33.93
smallworld 100000 499998 0.000 4 0.48 0.570 11129 9.64
luxembourg.osm 114599 119666 0.000 1 10.50 0.955 68 95.47
rgg n 2 17 s0 131072 728753 0.752 7539 9.91 0.612 15572 13.64
caidaRouterLevel 192244 609066 0.625 5436 55.83 0.605 6005 78.57
coAuthorsCiteseer 227320 814134 0.701 17185 102.99 0.690 23562 127.65
citationCiteseer 268495 1156647 0.481 2145 91.69 0.433 11499 194.66
coPapersDBLP 540486 15245729 0.670 31213 1429.25 0.669 34267 1557.58
eu-2005 862664 16138468 0.304 18403 1965.33 0.404 30380 2570.01
audikw1 943695 38354076 0.241 10190 550.23 0.389 22076 1151.01
ldoor 952203 22785136 0.091 361 20.23 0.392 2 42.06
kron g500-simple-logn20 1048576 44619402 -0.026 5 1554.64 -0.025 1788 3155.71
in-2004 1382908 13591473 0.632 29528 2774.93 0.625 43454 3416.69
belgium.osm 1441295 1549970 0.000 2 889.65 0.983 2326 7118.33
cage15 5154859 47022346 0.813 4958 14451.30 0.544 174163 259.33

the local search used only one core. The local search and attaching leftover vertices were

parallelized using OpenMP with 16 threads.

Table 3.1 presents the modularity and number of clusters found by Algorithm 6 using

the k-core and k-community clustering for 27 graphs. For each graph, the higher of the

two modularities as found be the two methods is highlighted in bold. It can be seen that

k-community clustering is better on about half of the instances (14 of the 27 graphs tested).

However, a closer look suggests that when the k-community based clustering significantly

outperforms (difference in modularity more than 0.2) k-core clustering in 5 of those 14

instances, while k-community based clustering is significantly outperformed by k-core
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clustering only once out of the remaining 13 instances. Some noteworthy examples are

the preferentialAttachment, smallworld, luxembourg.osm and belgium.osm graphs, where

the almost all nodes in the graph are identified as 4-, 6-, 1- & 1-cores respectively and

placed in one huge cluster by the k-core clustering. On the other hand, the k-community

clustering is able to identify a more meaningful clustering. The examples provided in

Figure 3.1 point to some potential reasons why k-cores are not able to cluster these graphs

as well as k-communities do.

Table 3.2: Modularity of clustering found by the enhanced Algorithm 7 using the k-
community based and k-core based approaches. The modularity that is higher between
the two methods is highlighted in bold. The improvement in modularity when compared
to the basic Algorithm 6 and the time taken are also provided.

k-core-based k-community-based
Graphs n m Mod Improv Time(s) Mod Improv Time(s)

celegans metabolic 453 2025 0.360 0.092 0.16 0.402 0.071 0.17
email 1133 5451 0.477 0.134 0.98 0.542 0.148 0.62
polblogs 1490 16715 0.419 0.176 2.75 0.426 0.206 0.16
power 4941 6594 0.759 0.464 0.55 0.860 0.009 0.50
PGPgiantcompo 10680 24316 0.835 0.080 1.54 0.848 0.116 1.59
astro-ph 16706 121251 0.651 0.112 25.93 0.646 0.108 6.94
memplus 17758 54196 0.537 -0.017 4.62 0.537 -0.017 4.45
as-22july06 22963 48436 0.513 0.041 113.67 0.603 0.084 43.85
cond-mat-2005 40421 175691 0.625 0.116 273.29 0.620 0.112 16.13
kron g500-simple-logn16 65536 2456071 0.023 0.040 10019.40 0.014 0.027 1700.88
preferentialAttachment 100000 499985 0.000 0.000 22.00 0.243 0.097 10041.40
G n pin pout 100000 501198 0.065 0.000 131.02 0.212 0.076 10047.00
smallworld 100000 499998 0.000 0.000 19.63 0.753 0.184 43.99
luxembourg.osm 114599 119666 0.000 0.000 29.00 0.958 0.003 233.72
rgg n 2 17 s0 131072 728753 0.871 0.119 35.77 0.800 0.188 72.29
caidaRouterLevel 192244 609066 0.776 0.151 5447.02 0.821 0.216 340.88
coAuthorsCiteseer 227320 814134 0.823 0.122 397.66 0.817 0.127 211.66
citationCiteseer 268495 1156647 0.639 0.157 10142.10 0.709 0.276 483.39
coPapersDBLP 540486 15245729 0.716 0.046 2581.11 0.715 0.046 2720.36
eu-2005 862664 16138468 0.671 0.367 15205.00 0.757 0.353 11874.90
audikw1 943695 38354076 0.325 0.084 10826.60 0.637 0.248 11231.10
ldoor 952203 22785136 0.092 0.001 6130.62 0.392 0.000 847.84
kron g500-simple-logn20 1048576 44619402 -0.024 0.002 11626.20 0.010 0.036 13737.80
in-2004 1382908 13591473 0.924 0.292 6033.33 0.926 0.302 5887.41
belgium.osm 1441295 1549970 0.000 0.000 55142.10 0.983 0.000 7112.92
cage15 5154859 47022346 0.816 0.004 25787.80 0.709 0.165 71808.90
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Table 3.3: The modularity (Mod), coverage (Cov), mirror coverage (MCov), performance
(Perf), average isolated inter-cluster conductance (Aixc), average isolated inter-cluster ex-
pansion (Aixe), and minimum intra-cluster density (Mid) found by the basic Algorithm 6
and enhanced Algorithm 7 using k-community.

Algorithm 6 (Basic) Algorithm 7 (Enhanced)
Graph Mod Cov Mcov Perf Aixc Aixe Mid Mod Cov Mcov Perf Aixc Aixe Mid

celegans metabolic 0.33 0.57 0.86 0.85 0.50 3.25 0.05 0.40 0.58 0.88 0.87 0.34 2.17 0.06
email 0.39 0.44 0.96 0.96 0.58 5.26 0.02 0.54 0.62 0.93 0.93 0.38 3.15 0.03
polblogs 0.22 0.39 0.91 0.91 0.09 1.79 0.02 0.43 0.93 0.68 0.68 0.01 0.04 0.04
power 0.85 0.86 0.99 0.99 0.16 0.48 0.02 0.86 0.87 0.99 0.99 0.15 0.44 0.02
PGPgiantcompo 0.73 0.74 1.00 1.00 0.21 0.96 0.01 0.85 0.89 0.95 0.95 0.11 0.52 0.00
astro-ph 0.54 0.54 1.00 1.00 0.39 2.85 0.04 0.65 0.66 1.00 1.00 0.58 1.89 0.01
memplus 0.55 0.63 0.99 0.99 0.24 1.09 0.01 0.54 0.83 0.76 0.76 0.21 1.21 0.00
as-22july06 0.52 0.72 0.86 0.86 0.33 1.17 0.00 0.60 0.73 0.90 0.90 0.32 1.08 0.00
cond-mat-2005 0.51 0.51 1.00 1.00 0.45 2.40 0.01 0.62 0.62 1.00 1.00 0.71 1.92 0.01
kron g500-simple-logn16 -0.01 0.33 0.73 0.72 0.00 0.17 0.00 0.01 0.67 0.47 0.47 0.00 0.06 0.00
preferentialAttachment 0.15 0.47 0.56 0.56 0.90 24.23 0.00 0.24 0.38 0.88 0.87 0.77 7.30 0.00
G n pin pout 0.14 0.52 0.60 0.60 0.80 8.79 0.00 0.21 0.47 0.74 0.74 0.75 7.72 0.00
smallworld 0.57 0.57 1.00 1.00 0.49 4.91 0.13 0.75 0.75 1.00 1.00 0.28 2.81 0.02
luxembourg.osm 0.96 0.99 0.96 0.96 0.03 0.07 0.00 0.96 0.99 0.96 0.96 0.02 0.06 0.00
rgg n 2 17 s0 0.61 0.61 1.00 1.00 0.45 4.71 0.20 0.80 0.80 1.00 1.00 0.22 2.50 0.06
caidaRouterLevel 0.61 0.62 0.99 0.99 0.38 1.81 0.00 0.82 0.85 0.97 0.97 0.96 2.13 0.00
coAuthorsCiteseer 0.69 0.69 1.00 1.00 0.31 1.83 0.01 0.82 0.82 1.00 1.00 0.17 1.38 0.00
citationCiteseer 0.43 0.45 0.98 0.98 0.48 3.69 0.00 0.71 0.72 0.99 0.99 0.29 2.49 0.00
coPapersDBLP 0.67 0.67 1.00 1.00 0.44 9.65 0.15 0.72 0.72 1.00 1.00 0.30 8.75 0.10
eu-2005 0.40 0.41 0.99 0.99 0.67 21.32 0.00 0.76 0.81 0.98 0.98 0.23 6.69 0.00
audikw1 0.39 0.51 0.90 0.90 0.83 51.18 0.00 0.64 0.77 0.87 0.87 0.04 2.96 0.00
ldoor 0.39 1.00 0.39 0.39 0.00 0.11 0.00 0.39 1.00 0.39 0.39 0.00 0.11 0.00
kron g500-simple-logn20 -0.03 0.37 0.79 0.79 0.01 0.53 0.00 0.01 0.67 0.59 0.59 0.00 0.01 0.00
in-2004 0.62 0.63 1.00 1.00 0.40 12.63 0.00 0.93 0.94 0.99 0.99 0.19 2.33 0.00
belgium.osm 0.98 0.98 1.00 1.00 0.04 0.11 0.00 0.98 0.98 1.00 1.00 0.04 0.11 0.00
cage15 0.54 0.55 1.00 1.00 0.67 10.87 0.00 0.71 0.71 1.00 1.00 0.48 9.58 0.00

In addition, Table 3.1 also reports the time taken by the two approaches on each of the

graphs. It can be seen that our approach scales well for large graphs, with graphs with up

to 5 million vertices solved in reasonable time on a desktop machine.

Table 3.2 presents the modularity and number of clusters found by Algorithm 7 using

the k-core and k-community clustering for the same 27 graphs. It can be seen that k-

community based clustering outperforms k-core based clustering in 19 of the 27 instances.

On an average, the improvement in the modularity was 0.099 for the k-core based clus-

tering and 0.122 for the k-community based clustering. The time required for clustering

increases, but is still within reasonable limit. A user can decide for or against using en-
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hancements depending on the trade-off between the extra time required and the increase

in modularity.

Table 3.3 presents the modularity, coverage, mirror coverage, performance, average

isolated inter-cluster conductance, average isolated inter-cluster expansion, and minimum

intra-cluster density for the clusterings found by the basic Algorithm 6 and the enhanced

Algorithm 7 using the k-community based approach. It can be noted that while the en-

hanced Algorithm 7 increases the modularity, it does not always have a positive effect on

other clustering measures. This is an important observation that suggests that modularity

maximization should not be used as the sole measure of good clustering.

3.5 Conclusion

This chapter introduces k-community clustering, which can be thought of as something

between k-core clustering and clique partitioning. The use of polynomially computable

k-community not only provides a faster approach, but also provides a more effective clus-

tering method by being able to identify cohesive structures that might not be cliques. k-

Community clustering also provides advantages over k-core clustering due to the more

cohesive nature of a k-community. As our computational results show, both the k-core and

k-communities perform well for certain graphs, but k-community approach outperforms

the k-core approach in general.
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4. PRE-POSITIONING DISASTER RESPONSE FACILITIES FOR LARGE SCALE

EMERGENCIES

4.1 Introduction

To provide responsive and timely service in the event of natural disasters and terror-

ist attacks, government agencies are developing large disaster response facilities to pre-

position emergency supplies [Balcik and Beamon, 2008]. For example, in the United

States, significant research interest has been generated in the location planning of these

facilities after the Centers for Disease Control and Prevention (CDC) were entrusted with

the task of establishing the Strategic National Stockpile (SNS). According to the CDC web

site [CDC, Last accessed: May 2011]:

Strategic National Stockpile (SNS) has large quantities of medicine and med-

ical supplies to protect the American public if there is a public health emer-

gency (terrorist attack, flu outbreak, earthquake) severe enough to cause local

supplies to run out. Once Federal and local authorities agree that the SNS is

needed, medicines will be delivered to any state in the U.S. within 12 hours.

This research focuses on the optimal placement of disaster response facilities like the SNS

that will be used to pre-position emergency supplies. Emergency supplies can include

food, medicine, potable water, but also medical equipment, generators, tents etc. In de-

ciding on suitable locations for pre-positioning warehouses, decision makers need to con-

sider disasters that may affect large geographical areas, with the potential to devastate

entire cities. Earthquakes are a typical example, but hurricanes, large scale fires, and even

non-natural events such as terrorist attacks are equally applicable.

Many models for locating facilities for pre-positioning emergency supplies have as-

sumed that facilities are robust and will be functioning even in the wake of a natural dis-

aster [Balcik and Beamon, 2008, Duran et al., 2011]. There exist models that consider

facilities that might not be always available at their full capacity [Jia et al., 2007, Paul and
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Fig. 4.1.: Illustration to show the shortcomings of the emergency facility location models
in literature.

Batta, 2008, Beraldi et al., 2004]. These models assume that a disaster reduces the capac-

ity of a facility by a certain fraction. However, as we will see in the literature review, these

models decouple the chances of functioning of a facility from the actual disaster scenario.

To observe how the assumption that damage to disaster response facilities is indepen-

dent of a given disaster scenario can impact the placement of facilities, consider a simple

stylized example: suppose there are two cities A and B where population is concentrated,

and four potential facility sites - one at A, one at B, and two between A and B as shown in

the Figure 4.1. We will refer to the two cities as the demand points. The distances are as

marked on the figure, and the chance of a disaster occurring at any of the two cities is the

same. For the purpose of exposition, we assume that A and B are high risk areas where

disasters might occur, and that the possibility of a disaster occurring at other locations is

small enough to be ignored.

Suppose we want to construct two disaster response facilities. Existing location models

developed by Jia et al. [2007], Paul and Batta [2008] and Beraldi et al. [2004] assume

that the reduction in capacity of facilities is unrelated to where the disaster occurs, and

would therefore suggest locating the facilities at sites 1 and 4. However, if a devastating

earthquake occurs at city A, most likely facility 1 will be damaged because of its proximity

to the disaster and may not be able to satisfy all demands. Aid would have to come from

facility 4 which is far away. Similarly, if an earthquake occurs near city B, facility 4 would

not be functioning, and aid would have to come all the way from facility 1. This intuitively
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poor placement decision occurs because these large scale emergency models assume that

facility availability is independent of disaster location, whereas in actuality this is not true.

If one were to condition the functioning of the disaster response facilities on the actual

disaster, better solutions might be found. Indeed, the model we present in this chapter

suggests locating the facilities at sites 2 and 3. When a disaster happens at A, 2 and

3 being relatively far away from the disaster site will still be functioning at a slightly

reduced capacity and can combine to send aid. When a disaster happens at B, the same

holds true. Locating facilities at sites 2 and 3 saves transportation cost and also reduces

response times.

In addition, this chapter also addresses other important issues such as the stochastic

nature of the damage due to disaster and the effect of a disaster on multiple cities. We

address these issues by explicitly modeling the damage a disaster causes to the cities and

facilities in its vicinity as a random variable that is correlated to the location of the disaster.

This modeling approach is based on the intuition that locating a disaster response facility

very close to a high risk city or population region may not be optimal as the facility itself

might be damaged when needed. This distance-dependence is a reasonable assumption

because typically the damage from natural and man-made disasters are highest closest to

the primary impact of a disaster such as the epicenter of an earthquake or the track of a

hurricane [Schultz et al., 2007].

In this chapter, we formulate the distance-dependent large scale emergency pre-positio-

ning model, and we also provide a solution algorithm. This solution algorithm is an

improvement over Benders decomposition. Our algorithm is aimed at solving the pre-

positioning models developed in this chapter, but can also be applied to a much larger

class of location problems. We use a case study on earthquakes in the state of California

to show the performance of our model and to demonstrate the necessity of incorporating

the modeling improvements for locating disaster response facilities.

The remainder of this chapter is organized as follows. In Section 4.2, we present

an overview of the existing literature. Section 4.3 provides an improved formulation to
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the problem that considers the effect of a disaster on the facilities and population centers

close by, while Section 4.4 provides effective solution algorithms for solving the mod-

els. Section 4.5 provides a numerical study of the new model, and Section 2.7 concludes

this chapter with a discussion of the contribution of this paper, as well as future research

directions.

4.2 Literature Survey

The literature on facility location under uncertainty can be broadly classified into two

categories: models where the facilities are constantly in use, like warehouses, and models

where facilities come into use after some rare event, such as emergency supply ware-

houses being used after an earthquake. In the first category, it is reasonable to have models

in which the functioning of a facility is independent of externalities like demand. How-

ever, the same does not hold true for the second category. Here we have to couple the

functioning of a facility with the rare event that causes a demand.

The literature on facility location under uncertainty is fairly advanced for the first cat-

egory of problems that were discussed in the preceding paragraph, as can be seen from

[Berman et al., 2003, 2007, Snyder and Daskin, 2005]. Berman et al. [2003] discuss the

location of facilities whose reliability is dependent on the distance between the facility

and the demand point. However, their model was developed for a constant demand class

of problems. The chance of providing uninterrupted service goes down as the distance

increases. They take into account the uncertainty in roads and transportation links being

available and functioning, but they do not take into account the functioning of the facility

itself. This is a realistic assumption since these models were designed for a firm pro-

viding constant service. However, this assumption makes these models less suitable for

emergency facility location. The difference to the emergency facility location problem

also becomes evident in their assumption that the probability of a facility not being able

to provide service is zero at distance zero, and is a monotonically increasing function of
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distance. This is in complete disagreement with an emergency scenario, where at distance

zero, the facility tends to be severely damaged and will not serve.

Berman et al. [2007] describe a p-median model using a different definition to consider

uncertainty in the working of facilities. They define r j to be the probability that the facility

is working at any point of time. Using this setup, they show that co-location of facilities

(locating facilities next to each other, or over each other) is a phenomenon observed in

such cases. As the failure probability grows, facilities become more and more centralized.

Snyder and Daskin [2005] define the reliability k-median problem to incorporate uncer-

tainty into classical facility location models. These models have been discussed keeping a

supply chain in mind, and do not apply directly to an emergency facility location problem.

We now review the available literature in the second category of problems. Jia et al.

[2007] use k-median and k-center models to solve to emergency facility location problem

under uncertainty. They account for reduction in service capability through a parameter

p j in their model, which is defined as the fraction of full capacity a facility j is working

at in the event of a disaster. However, p j is taken to be independent of external factors

such as the location of disaster itself. Paul and Batta [2008] present a model for hospital

location that is similar to [Jia et al., 2007]. They also use a factor fk to denote the fractional

capacity of a hospital located at site k in the wake of a disaster. However, fk is taken to be

independent of the disaster even here. We build on their model and discuss it in detail in

the next section.

Murali et al. [2009] extend the model from [Jia et al., 2007] by making the coverage

a facility can provide dependent on the distance from the demand point. They argue that

the farther a facility is from the demand point, the lesser the chances of providing proper

coverage due to damage to the transportation infrastructure. Rawls and Turnquist [2010]

discuss a scenario based location and flow model. Each scenario is characterized by chang-

ing arc capacities resulting in uncertainties in the flow that can go through the network.

Although damage to the transport infrastructure is considered here, damage to the facility

itself is not. The difference is important. When damage to the transport infrastructure is
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considered, service availability decreases as distance of facility from disaster increases.

This is because the likelihood of roads between facility and disaster being damaged is

higher when facilities are far away. On the other hand, when we model a facility not work-

ing, the service availability increases as distance of a facility from disaster increases. This

is because damage to facility increases as distance from disaster decreases.

Duran et al. [2011] present a model to place warehouses to minimize the average of

weighted response times for different demand scenarios that might occur in a disaster.

Balcik and Beamon [2008] provide a deterministic covering model for determining the

locations and capacities of facilities for pre-positioning supplies. Both papers, however,

assume that the facilities will keep functioning at their full capacity.

Barbarosoglu and Arda [2004] provide a stochastic programming model to plan the

transportation for emergency supplies in the event of an earthquake. The model is quite

descriptive with scenarios based on the location and impact of the earthquake. However,

this is not a facility location model, but a multi commodity flow model, and the authors

are concerned with routing the supplies given the positions of the facilities. Mete and

Zabinsky [2010] provide another stochastic model for determining quantities of backup

supplies hospitals should store on-site and in warehouses to counter emergencies, but their

model does not consider damage to facilities and is not suited for large scale disasters.

As far as we are aware, there are no models in the literature on emergency facility

location that also consider distance dependent facility functioning. Jia et al. [2007] and

Paul and Batta [2008] provide models that we believe come closest to achieving this goal.

However, they do not associate the functioning of a facility with the location of the dis-

aster. In addition, most of these models assume that a disaster will only affect one city

or population center at a time. This is not necessarily true for a large natural disaster, the

effects of which can be very widespread. More recently, the Verma and Gaukler [2011]

presented models and preliminary results that overcame these issues. We aim to fill that

gap with the models and a more comprehensive analysis described in this research.
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4.3 Mathematical Formulation

In this section we present three models that incorporate the assumption of the scenario

based damage to disaster response facilities and population centers. The first is a deter-

ministic model that is used to study the effects of our new assumptions on the location of

the disaster response facilities. The next model is a 2-stage stochastic programming model

that considers the damage caused by a disaster to disaster response facilities and popula-

tion centers to not only be scenario dependent, but also stochastic. The second model is

more realistic, and presents computational issues while solving for very large instances.

From this point of view, both models have their own utility providing trade-offs between

more realistic representation of reality and computational feasibility. An extension to the

stochastic programming model which incorporates risk into the equation is also presented.

4.3.1 Deterministic Model

The model presented in this section is considerably different from related models in

literature in several ways. First, we do not assume that a disaster can only occur on popu-

lation centers. In our formulation, epicenters can be located anywhere. Secondly, the dam-

age to facilities has been explicitly made dependent on the location of disasters. Lastly,

in case of a disaster, demand is not constrained to be generated from just one population

center, but all of them depending on their distance from the disaster’s epicenter. With these

changes we are able to more realistically consider disasters that are devastating enough to

encompass a large area.

Let I be the set of population centers (demand points) in the region under consideration,

F be the set of possible facility locations, and E be the possible epicenters given by a

forecasting mechanism [Rundle et al., 2003]. In the model provided below, for simplicity

and without loss of generality, the demands Di at demand point i ∈ I and capacities c f

of a facility f ∈ F are represented in the same units. These units could represent, for

example, the number of people whose needs have to be fulfilled if there is one emergency
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supply packet stored per person to be served. The probability of a disaster occurring at and

epicenter e ∈ E is denoted by we. The quantity d̄i f denotes the travel distance from facility

f to demand i, whereas dex denotes the euclidean distance between e and x ∈ I ∪F , and

is used to estimate the damage at x due to a disaster at e. The parameter pex denotes the

damage at x∈ I∪F as a fraction of the total demand/capacity. It should be noted that given

dex, we assume that we can obtain pex. k denotes the upper limit on number of facilities to

be built.

The binary variable x f denotes the decision to open a facility at location f ∈ F . The

variable yei f denotes the amount of service provided by facility f to demand point i when a

disaster occurs at e. The formulation is given below is referred to it as the distance-damage

model.

Min ∑
e∈E

∑
i∈I

∑
f∈F

wedi f yei f (4.3.1)

Subject to ∑
f∈F

x f ≤ K (4.3.2)

∑
i∈I

yei f ≤ (1− pe f )c f x f ∀e ∈ E,∀ f ∈ F (4.3.3)

∑
f∈F

yei f ≥ peiDi ∀e ∈ E,∀i ∈ I (4.3.4)

x f ∈ {0,1} ∀ f ∈ F (4.3.5)

yei f ≥ 0 ∀e ∈ E,∀i ∈ I,∀ f ∈ F (4.3.6)

The objective function (4.3.1) is the expected transportation cost over all disaster sce-

narios assuming the costs are linear in the distance that has to be traveled and the amount

of supplies to be shipped. This linearity assumption is common in literature. Constraint

(4.3.2) limits the number of facilities built. Constraints (4.3.3) limit the total supply a fa-

cility can provide to all the demand points that need supplies. Constraints (4.3.4) make
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sure all the demands under a scenario are satisfied. Constraint sets (4.3.5) and (4.3.6) are

binary and non-negativity constraints respectively.

To quantify the extent of damage on facilities and population centers alike, we define

the notion of expected conditional damage, pex ∈ [0,1], at a point x ∈ I ∪F (population

center or facility location) in the event of a disaster at point e (e.g., the epicenter of an

earthquake). pex = 0 means that no damage is expected at point x when a disaster occurs at

e and pex = 1 means that everything is damaged at x. The exact function could be changed

depending on the circumstances under which the model is being used. For example, in our

computational experiments in Section 4.5, we use a distance-damage function proposed

by B.F. Howell and Schultz [1975].

As in the models present in literature, we consider a demand to be generated only when

a disaster occurs at one of the possible locations. Hence, a scenario essentially specifies

the point where a disaster has occurred and the effects of the disaster on the facilities

and population centers nearby. Thus, a scenario e is completely defined by the location

of the disaster; the demand at each of the cities under the scenario, peiDi, i ∈ I; and the

impact of the disaster on the disaster response facilities, pe f c f , f ∈ F . Note that damage

to the facilities and population centers is dependent on each scenario, and more than one

population center can be affected in a disaster scenario.

Intuitively, the modifications discussed in the beginning of this section are expected

to result in significant changes in the locations of facilities. Recognizing the impact of

the disaster on the facilities themselves, we would like facilities to be at a safe distance

away from the disaster sites that affect large populations. Moreover, the model would

place more facilities around areas with large accumulation of population centers that can

generate large demands collectively.

Our formulation does not directly consider potential damage to the transportation in-

frastructure, e.g. damage to roadways between emergency response facilities and popu-

lation centers. We feel that the safety of the facilities and the supplies stored there is of

higher importance for a location problem than the distribution aspect. Indeed, if the emer-
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gency response facilities are substantially damaged (and thus supplies are destroyed), the

distribution problem becomes moot. In addition, typically there are multiple transporta-

tion modes available for supplies in emergency situations. For example, if roadways are

destroyed, following an earthquake, supplies can be transported via air. During hurricane

Katrina and the ensuing flooding, the majority of supplies were transported by boat. Thus,

if alternate (high-cost) transportation modes are available, we believe that the functioning

of facilities and the safety of supplies, rather than the availability of the primary transporta-

tion mode, ought to be the main determinant of suitable locations for emergency response

facilities.

4.3.2 The Stochastic Distance Dependent Model

To incorporate the stochastic nature of damage caused by a disaster, we now present a

two-stage stochastic programming model with binary first stage where the random variable

p̃ex, which denotes the damage at x ∈ I ∪F as a fraction of the total demand/capacity,

replaces pex. It is assumed that the distribution of p̃ex is known or can be obtained.

In the model presented below, all the variable and parameter definitions remain the

same as for the deterministic model (4.3.1)-(4.3.6). The first stage decision is to choose

the locations of a given number (k) of facilities. Once a disaster occurs, the demands

and reduced capability of the facilities are known, and the second stage decisions are the

amounts to be routed from the opened facilities to the demand points for each disaster

scenario.

min Ep̃[ f (x, p̃)] (4.3.7)

s.t ∑
f∈F

x f ≤ k, x ∈ {0,1}|F | (4.3.8)
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Where for a particular realization p of damage p̃, we have

f (x, p) = ∑
e∈E

∑
f∈F

∑
i∈I

wed̄i f yei f (4.3.9)

s.t. ∑
i∈I

yei f ≤ (1− pe f )c f x f ∀e ∈ E,∀ f ∈ F (4.3.10)

∑
f∈F

yei f ≥ peiDi ∀e ∈ E,∀i ∈ I (4.3.11)

yei f ≥ 0 ∀e ∈ E,∀i ∈ I,∀ f ∈ F (4.3.12)

Note that an expectation over all the possible disaster scenarios is already implicit in

the objective function (4.3.9) of the subproblem. The only random variables we take an

expectation over in the objective function (4.3.7) of the master problem are the damages

to facilities and cities in each of the disaster scenarios.

4.3.3 The CVaR Distance Dependent Model

The models described till now aim to minimize the expected damage over the possible

disaster scenarios. However, for large scale disasters that are rare events, it may be prudent

to locate facilities for worst case scenarios. Building models that do this by incorporat-

ing some measure of risk that penalizes the worst case scenarios more may prove to be

valuable.

A useful concept in this regard is the conditional value at risk (CVaR) [Rockafellar and

Uryasev, 2000]. Given a fraction α , CVaRα is the cost of the worst α scenarios. From

our point of view, this is useful perspective since we want to locate facilities such that the

relief supplies can be provided well in even the most catastrophic events. [Rockafellar

and Uryasev, 2000] show that CVaR is of a convex function is also a convex function

of the decision variables, and thus can be optimized in a manner similar to optimizing

expectation. The following model, which aims to minimize the CVaR using two-stage

stochastic programming is inspired from [Künzi-Bay and Mayer, 2006].
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min z+
1

1−α
Ep̃[ f (x, p̃)] (4.3.13)

s.t ∑
f∈F

x f ≤ k, x ∈ {0,1}|F | (4.3.14)

Where for a particular realization p of damage p̃, we have

f (x, p) = ∑
e∈E

weve (4.3.15)

s.t. ve ≥ ∑
f∈F

∑
i∈I

d̄i f yei f − z ∀e ∈ E (4.3.16)

∑
i∈I

yei f ≤ (1− pe f )c f x f ∀e ∈ E,∀ f ∈ F (4.3.17)

∑
f∈F

yei f ≥ peiDi ∀e ∈ E,∀i ∈ I (4.3.18)

ve ≥ 0 ∀e ∈ E (4.3.19)

yei f ≥ 0 ∀e ∈ E,∀i ∈ I,∀ f ∈ F (4.3.20)

Intuitively, this model locates facilities in safer locations than the deterministic model

to safeguard against the worst case scenarios where the damage to facilities and demand

points is very high.

4.4 Solution Method

The deterministic formulation (4.3.1)-(4.3.5) is solved by using the CPLEX 12 mixed

integer programming solver. However, to solve the stochastic formulation (4.3.7)-(4.3.12),

a modified L-shaped method that optimizes the Sampling Average Approximation (SAA)

of the stochastic program is used. In SAA, a stochastic program with a large number

of scenarios is approximated by sampling the random variables and generating a small

representative set of scenarios. Multiple approximations are generated and solved using
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Algorithm 8 to obtain a pool of approximate solutions. These solutions are then tested over

a larger set of sample scenarios to identify the solution that performs the best on a much

closer approximation of the stochastic program. In our computations, three realizations

of 500 samples each are first generated for initial approximation, and each of the three

is solved using Algorithm 8. The solutions obtained are then tested on an approximation

with of 10,000 sample scenarios. A similar methodology based on SAA is used to solve

the CVaR minimization problem.

Algorithm 8 is a modification of the usual L-shaped method (which is based on Ben-

ders algorithm [Benders, 1962]). In the regular Benders method the master problem is

optimized to obtain a lower bound on the overall optimal, and the solution supplied to the

subproblems. With each iteration, the master program grows in size due to the Benders

cut supplied by the sub problem, and solving the master problem to optimality becomes

computationally prohibitive. Cote and Laughton [1984] overcome this problem by using

any feasible solution to the master problem. However, their algorithm suffers from slow

convergence since even the bad solutions are evaluated as long as they are feasible. Poojari

and Beasley [2009] use a variation where they solve the master problem in each iteration,

but also use a genetic algorithm to create a pool of good solutions and add optimality cuts

to the master problem. In this manner, the number of times the master problem has to be

solved is reduced by a constant factor. Some researchers have introduced a variant where

the master problem is always solved using a heuristic, completely eliminating the need

for an exact method, but this approach cannot guarantee optimality of the overall algo-

rithm. Holmberg [1994] provides a good survey of methods that solve the Benders master

program approximately.
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Algorithm 8 Modified L-shaped: Two-stage Stochastic Programs with binary first
stage

1: x0← initial feasible solution
2: LB←−∞

3: UB← ∞

4: while UB−LB > ε do
5: Solve subproblems using xt .
6: Update UB.
7: Add cut η +β T

t x≥ αt to master problem.
8: Heuristically solve master problem to obtain xt+1.
9: if xt = xt+1 then

10: Optimally solve master problem and update xt+1.
11: Update LB.
12: end if
13: end while

min η (4.4.1)

s.t ∑
f∈F

x f ≤ k (4.4.2)

η +β
T
t x≥ αt t = 1 . . .N (4.4.3)

x ∈ {0,1}|F | (4.4.4)

In our approach, the master program (4.4.1)-(4.4.4) is solved using a heuristic without

updating the lower bound until the heuristic provides the same solution in two succes-

sive iterations. The rationale for doing this is two-fold: 1) if the solution to the heuristic

repeats, the same cut will be generated again and the heuristic will keep generating the

same solution endlessly; 2) a good heuristic will provide distinct solutions in successive

iterations unless the Benders algorithm is close to optimality, thus reducing the number of

times an exact algorithm has to be used considerably. Since the heuristic is not guaranteed
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Algorithm 9 Master Problem Heuristic

1: rt ← αt , t = 1 . . .N
2: for i = 1 . . .k do
3: Choose f such that x f = 0 and maxt=1...N(rt−βt f ) is minimized.
4: Set x f ← 1
5: Set rt ← rt−βt f , t = 1 . . .N
6: end for
7: while g, h, i & j exist such that xg = xh = 0 and xi = x j = 1 and

maxt=1...N(rt−βtg−βth−βti−βt j)< maxt=1...N rt do
8: xg← 1, xh← 1, xi← 0, x j← 0
9: end while

to find the optimal solution to the master problem, the lower bound value is updated only

when the master program is solved to optimality using an exact method.

Since the master problem’s search space is finite, it can be claimed that the Algo-

rithm 8 will converge to the optimal if it doesn’t loop between solutions to the master

problem indefinitely. Next, we claim that if the heuristic used to solve the master program

is consistent in finding the same solution for the master problem irrespective of the order-

ing of the constraints, then loops caused by the heuristic returning the same sub-optimal

solutions will be avoided by the condition in line 9 of the algorithm. This is because if

any solution repeats, the cut generated by the dual coefficients will be the same as the one

generated in the previous iteration when the repeating solution was explored. Thus, the

new master problem will not have any new constraints added, and the heuristic will return

the same solution in two consecutive iterations – a condition that line 9 of Algorithm 8 is

designed to break by solving the master problem to optimality and obtaining a completely

new solution.

A greedy solution technique, supplemented by local search described in Algorithm 9

is used as the heuristic solution technique for solving the master problem (obtained after

N iterations of Benders algorithm) of the stochastic programming model. For the CVaR

minimization, the master program is considerably different, and CPLEX is used with a

time limit of 3 seconds to obtain a heuristic solution quickly.
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We find that using Algorithm 8 in conjunction with Algorithm 9 reduces the time spent

in solving the master program by an order of magnitude. Computational experiments

show a speed up of at least two times using the modified algorithm over regular Benders

approach, with solving the 500 scenario subproblems becoming the bottleneck for further

speedup.

Although the algorithmic modifications in this section were designed for the models

presented here, the essential underlying principles are fairly general. These modifications

can be applied to any general problem where Benders decomposition is applicable and

solving the reduced master program in each iteration is the bottleneck. In fact, the modifi-

cations only require a good heuristic to be designed for the reduced master problem.

4.5 Case Study: Pre-Positioning for Earthquake Damage

To obtain computational insight into our model formulation, we consider earthquakes

as a threat for which we are pre-positioning facilities. Earthquakes are chosen as an ex-

ample of a large-scale emergency situation because they recur fairly frequently in certain

regions, they have the potential to devastate large areas, and, from the perspective of our

modeling approach, their distance-damage functions have been measured and are empir-

ically well understood [B.F. Howell and Schultz, 1975]. Furthermore, fairly advanced

literature is available in probabilistic earthquake forecasting, which can provide us with

possible earthquake epicenters as required by our model [Rundle et al., 2003].

We use a case study on California to illustrate the effectiveness of our model. We use

the 20 largest cities (by population) in California as the demand points that might require

emergency supplies in case of an earthquake, with demands proportional to their respective

populations. The same 20 cities, as well as 38 additional grid points with integer longitude

and latitude values spread across California are chosen as potential facility locations.

We place a secondary facility in Utah to serve any remaining demand that is not served

by the facilities in California due to unavailability of supplies. In reality, either a single

central facility or a network of secondary facilities will have to provide supplies in case
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Fig. 4.2.: Parameter setting showing the demand points (20 largest cities in California)
and the disaster scenarios (23 earthquakes of magnitude larger than 6 that occurred in
California since 1973).

the primary facilities fail to do so. Using this artificial secondary facility allows us to in-

corporate some notion of a service level objective in our model: we can now compare the

percentage of affected population served by primary facilities in different models, rather

than observing feasibility of a solution in one model versus infeasibility in another model.

For implementation purposes, the variable corresponding to this secondary facility is fixed

to one to indicate that it is open, and the costs associated are multiplied by a factor of 100

to penalize unavailability of supplies in the k primary facilities located in California. The

rationale behind assigning a large penalty factor to supplies availed from the secondary

facility is that ideally we would prefer all the supplies to come from the k facilities within

California. Supplies coming from the secondary facilities are not only delayed, but also

undermine the purpose of locating facilities in California. In addition to the extra trans-
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Table 4.1: Comparison of the expected cost of providing supplies to disaster affected areas
in million people-miles using the optimal locations found by the stochastic model (ZSTO),
the deterministic model (ZDET ) and the k-median model without conditional availability
(ZKM). The percentage of demand that is met by the secondary facility in Utah is also
presented. An estimate of the optimality gap of the sampling average approximation and
its standard deviation is also provided. The time in the rightmost column is for the whole
sampling average approximation procedure. (PSTO, PDET and PKM).

# Cap k-Median Deterministic Stochastic
Facility (mil) ZKM PKM ZDET PDET ZSTO PSTO Gap σGap Time(s)

2 34.29 50.54 27.17 39.71 27.17 39.71 0.06 0.056 109.89
2.5 27.34 40.34 19.34 28.04 19.34 28.04 0.05 0.062 111.53

1 3 21.54 31.78 13.14 18.75 13.14 18.75 0.02 0.043 112.72
3.5 16.93 24.94 8.54 11.85 8.54 11.85 0.03 0.044 127.87

2 10.62 15.57 5.42 7.24 5.29 7.00 0.02 0.042 123.79
2.5 5.75 8.34 2.23 2.51 1.98 2.01 0.03 0.017 162.97

2 3 3.23 4.61 2.18 2.86 0.97 0.51 0.01 0.010 634.62
3.5 1.93 2.69 1.48 2.00 0.65 0.14 0.02 0.003 958.05

2 2.75 3.97 1.35 1.64 0.94 0.54 0.02 0.009 669.35
2.5 1.14 1.58 1.07 1.45 0.40 0.25 0.01 0.010 4147.92

3 3 0.55 0.70 0.52 0.66 0.22 0.04 0.02 0.002 11643.92
3.5 0.29 0.33 0.28 0.31 0.16 0.04 0.01 0.002 19140.37

portation cost, the factor penalizes the additional response time that will be required to

obtain supplies from the secondary facility.

The earthquake scenarios are constructed by using historic data of the 23 earthquakes

of magnitude larger than 6 on the Richter scale that occurred in and around California

since 1973 [see USGS, Last accessed: May 2011]1. An expectation over these 23 sce-

narios (assumed equiprobable) is taken in the second stage of the stochastic programming

formulation. The earthquake epicenters and 20 demand points are shown in Figure 4.2.

We assume that the probability of occurrence of an earthquake at any of the potential

epicenters is the same. Since the candidate epicenters are taken directly from historical

epicenter locations of high-impact earthquakes, this assumption effectively models the fu-

1The data used is available at http://people.tamu.edu/˜anuragverma/SEFLdata
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Fig. 4.3.: Expected cost of providing supplies to disaster affected areas in million people-
miles using the optimal locations found by the stochastic model (ZSTO), the deterministic
model (ZDET ) and the k-median model without conditional availability (ZKM) plotted on
the logarithmic scale.

Fig. 4.4.: Ratios of the cost of providing supplies to disaster affected areas as obtained by
the 2-stage stochastic model, the deterministic model, and the k-median model.

ture earthquake location distribution. The number of facilities is varied from 1 to 3. The

capacity of each facility is varied between 2, 2.5, 3 & 3.5 million units. The capacity of

a facility can be thought of in the same unit dimension as the demand points. For exam-
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Fig. 4.5.: Ratios of the demand that had to be satisfied by the secondary facility when
the primary facilities were located using the 2-stage stochastic model, the deterministic
model, and the k-median model.

ple, the capacity could be measured by the amount of ready-to-deploy disaster response

packages containing food, water, first aid supplies etc., that are stored at the facility.

The damage due to an earthquake is modeled using the intensity-distance function

provided in [B.F. Howell and Schultz, 1975]. For the purpose of our computational study,

we assume the damage to be proportional to the intensity, and be given as a function of

the distance from the epicenter as pex(dex) = 0.69e(0.364−0.130ln(dex)−0.0019dex) where dex

is measured in kilometers [B.F. Howell and Schultz, 1975]. To incorporate stochasticity

of earthquake damages, p̃ex is modeled as a random variable that can take on the values

pex, 0 and 2pex with equal probability. Note that pex is the corresponding damage in the

deterministic model, and E[p̃ex] = pex.

Table 4.1 provides the expected cost of serving the affected population in case of a

disaster using the locations found by the stochastic and deterministic models (ZSTO and

ZDET ) developed in this chapter, and also a pure k-median model on which many models

in literature are based (ZKM). We observe that as the total built capacity increases (either

because the number of facilities or the capacity increases), the expected costs go down.
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This is apparent in Figure 4.3 that plots ZSTO, ZDET and ZKM against various configurations

of capacity and the number of facilities built. The same trend can be observed in the

percentage of the population that has to be served by the external facility in Utah on an

average across all disaster scenarios (PSTO, PDET and PKM). Each of PSTO, PDET and

PKM decrease as the built capacity of the facilities is increased. Both the trends are fairly

intuitive, since increasing overall built capacity should reduce the costs and the need to

avail the services of the secondary facility.

Some more insightful observations can be made when the costs and percentage de-

mand met by secondary facility are compared between locations found by the stochastic,

deterministic and k-median models. To this end, in Figures 4.4 and 4.5 we provide some

measures that are more demonstrative of the effects of using the different models. For

example, Figure 4.4 provides plots of ZDET/ZSTO, which measures the effect of using

the stochastic model against the use of the deterministic model, ZKM/ZSTO, which draws a

similar comparison with the k-median model instead, and ZKM/ZDET , which compares the

k-median model to the deterministic model. Although in general the stochastic solution

does better overall in these metrics, we observe that there exists a range of built capacity

where the stochastic solution offers particularly significant improvement over the deter-

ministic and k-median solutions. In this range of capacity, the stochastic solution is three

to four times better than the k-median solution and 2 times better than the deterministic

solution when the objective values are compared.

The same trend is also apparent in Figure 4.5, which plots PDET/PSTO, PDET/PSTO,

and PDET/PSTO for different numbers and capacities of the facilities. When the build

capacity is on the lower end or the higher end, both ZDET/ZSTO and PDET/PSTO are close

to 1, indicating that both deterministic and stochastic models are providing similar results.

This is because when the total built capacity is very low when compared to the demands,

there is not much difference between locations found by the deterministic and stochastic

models because both models try to place facilities as far away from the disasters to preserve

supplies, and obtain more or less the same solutions. On the other hand, when the total
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built capacity is very high, both the models locate facilities at similar locations since the

stochasticity of the damage is absorbed by the high built capacity. Thus, in both cases, the

stochasticity is not the primary factor determining the locations. The stochasticity comes

into play when the built capacity is such that its utilization by the potential demand is

medium to high. In such a case, the stochastic solution is almost two times better than the

deterministic solution.

Figure 4.4 and 4.5 also provide ZKM/ZDET and PKM/PDET which show that while in

general the deterministic solution is better than the k-median solution, there is a particular

range of total built capacity in which the deterministic model is almost two times better

than the k-median solution in terms of the objective function. This can again be attributed

to the fact that when the built capacity is too low, none of the models is able to provide

good locations, while when the capacity is too high, the locations found by either model are

similar, because damage to facilities (which results in a reduction of capacity), becomes

less relevant.

Finally, the quantities ZKM/ZSTO and PKM/PSTO, which provide the overall benefit

over using the stochastic model over the k-median, model are in essence the combination

of benefits caused by using the stochastic model over deterministic model, and the deter-

ministic model over the k-median model. As a result, the similar trends in ZKM/ZDET and

ZDET/ZSTO are accentuated in the metric ZKM/ZSTO, resulting in the stochastic solution

being three to four times better in terms of the objective function value in the range where

the built capacity is neither too high nor too low. The reason for this can be attributed to

a combination of the reasons outlined in the previous two paragraphs - in this range, both

stochasticity of the damage and the damage to facilities come into play.

It should be noted that a disaster management agency will need to build disaster re-

sponse facilities with capacities that are both economical and effective. This becomes es-

pecially true in the current scenario with federal and state governments restricted in their

spending, and occurrences of natural and man-made disasters on a rise. The results from

Table 4.1, as well as the trends observed in Figure 4.4 & 4.5, suggest that our stochastic



63

solution turns out to be much better than the deterministic solution in the range of capac-

ities that is of primary interest to decision makers. Thus, the stochastic model provides

much value over the deterministic models developed in literature in terms of finding good

locations under realistic budget constrained conditions.

4.5.1 Effect of the CVaR Model

For the CVaR model, the same data was used with the value of α set to 0.9, indicat-

ing that we want to minimize the expected cost of the worst 10% of the scenarios. The

results are presented in Figure 4.6 in the form of a comparison against the the stochastic

model. The quantities compared in the chart are the overall expected cost of transporta-

tion (denoted by ZCVaR and ZSTO, for the two models respectively), which the stochastic

model minimizes, and the expected cost of transportation in the worst 10% of the scenar-

ios (Z0.9
CVaR and Z0.9

STO, respectively), which the CVaR model minimizes. The charts shown

in the diagram plot the ratios ZCVaR/ZSTO and Z0.9
STO/Z0.9

CVaR to gauge how much of an ef-

fect optimizing one measure has on the other. It is evident that for low built capacities,

there is no difference in the two models. However, as the built capacity increases, the

solutions suggested by the two models start to differ considerably. With larger capacities,

the stochastic model places the facilities closer to the disaster affected areas. However,

the CVaR model places facilities keeping in mind the worst 10% scenarios, and places

the facilities in different locations accordingly. As a result, the overall expected cost of

supplying goes up, but the service in the really catastrophic disasters is much improved.

This can be further seen from the Figure 4.7, which plots the expected cost of sup-

plying using the stochastic solution and the CVaR solution for different capacity settings

in 10 different brackets - the best 10% scenarios, 10%− 20%, 20%− 30%, ... , and the

worst 10% scenarios. This diagram makes the difference between the stochastic and CVaR

models fairly clear. In Figure 4.7(b) and Figure 4.7(c) the stochastic solution does better

in the best 90% of the scenarios, and thus overall, while the CVaR solution does far better

in the worst 10% scenarios. This is because in essence, the CVaR model goes finds much
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Fig. 4.6.: Ratios of the expected cost of providing supplies to disaster affected areas across
all scenarios (ZCVaR/ZSTO) and for the worst 10% scenarios (Z0.9

STO/Z0.9
CVaR) as obtained by

the 2-stage stochastic model and the CVaR model.

safer locations aimed at the really catastrophic scenarios, even if it means performing a

worse on the scenarios that are not very bad.

4.5.2 Analysis of the Locations Suggested by Different Models

We now analyze the locations of the facilities obtained by the three models considered

by us when the capacities are in the critical range discussed in the previous paragraph.

Figure 4.8 shows the locations of three facilities with capacities set to two million as

found by the deterministic model and the k-median model. It can be observed that the

deterministic model developed in this research places two facilities in similar locations, but

the third facility is moved from a very earthquake prone location to a much safer location.

The cost of supplying facilities from this safer location is higher, but the availability of

supplies is higher than the closer but risk-prone facility. With the third facility at the

location suggested by the k-median model, a small part of the supplies comes from a close

location, but a large penalty is incurred for the remaining demand that is fulfilled from the
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Fig. 4.7.: The the expected cost of providing supplies to disaster affected areas shown for
the best 10% scenarios, 10%−20%, 20%−30%, ... , and the worst 10% scenarios, when
three facilities with capacities (a) 2,000,000, (a) 2,500,000, and (a) 3,000,000 are placed.

secondary facility. As a result, the deterministic model finds it beneficial to pay a higher

transportation cost to obtain a large part of the required supplies from the safer location.

Figure 4.9 shows the locations of facilities when the capacities are set to 3.5 million

as found by the deterministic model and the stochastic model. A noticeable change in

Figure 4.9(a) from Figure 4.8(b) is that as the capacities are increased, the deterministic

model places facilities in areas of high demand even if they are risk prone. This is because

the higher capacities result in little or no penalty even when the facilities are damaged.

However, in Figure 4.9(b) the stochastic model still places the one facility far away from
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(a) k-Median model (b) Deterministic model

Fig. 4.8.: Comparison of locations of three facilities of capacities 2 million as found by
the Deterministic and k-Median models.

(a) Deterministic model (b) Stochastic model

Fig. 4.9.: Comparison of locations of three facilities of capacities 3.5 million as found by
the Stochastic and Deterministic models.

the risky Los Angeles area. This can be attributed to the fact that the stochastic program is

trying to avoid large penalties resulting from scenarios where the damage from an earth-
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quake is high by placing facilities in relatively safer locations than the deterministic model

would.

4.5.3 Effects of Varying the Penalty

Table 4.2 depicts the expected service cost as the penalty of availing supplies from the

external facility from Utah is changed between 1 (no penalty), 10 (low penalty) and 100

(high penalty). Penalties act as a handle in our models using which we can ascertain the

time-sensitive nature of service in the aftermath of a large scale emergency. The choice of

the penalty needs to be determined by the decision maker, and will take into consideration

various factors that reflect the ’cost’ of not providing timely service and having to bring in

supplies from an external warehouse. We believe that larger penalties are a more realistic

choice in most cases since the service here is critical to a large population.

We can draw the following conclusions from the results: First, as the penalty is in-

creased, for the same number and capacity combination, more demand is satisfied by the

model that uses a high penalty. This is intuitive and expected, since a higher penalty forces

the model to choose a solution that will require less services from the external facilities.

Second, when there is a low penalty, or no penalty at all, the stochastic solution does not

improve on the deterministic solution by much when compared to the high penalty case.

This can be attributed to the fact that when the penalty is low, the cost of availing sup-

plies from the external facility in some extremely bad scenarios is not large enough to

change a good location that serves very well during ”average” damage scenarios. Thus,

the stochastic model also chooses locations similar to the deterministic equivalent model.

4.6 Conclusion

In the existing literature, failure of large scale emergency response facilities and occur-

rence of a disaster have been modeled to be independent of each other. This paper takes a
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Table 4.2: Ratio of the expected cost of serving the disaster affected population by facil-
ities located using the deterministic model and by the stochastic model as the penalty of
serving using the external facility is increased.

Penalty Capacity Num. Facilities
1 2 3

2000000 1.00 1.02 1.02
1 2500000 1.00 1.00 1.00

3000000 1.00 1.00 1.01
3500000 1.00 1.02 1.00

2000000 1.00 1.05 1.09
10 2500000 1.00 1.18 1.05

3000000 1.00 1.06 1.00
3500000 1.02 1.05 0.99

2000000 1.00 1.03 1.43
100 2500000 1.00 1.13 2.66

3000000 1.00 2.26 2.31
3500000 1.00 2.29 1.75

different approach by acknowledging the fact that facility failures will often be caused by

the very disasters they are supposed to provide relief from.

The deterministic and stochastic models proposed in this paper enhance the emergency

facility location literature in the following ways: they 1) provide a handle on making the

availability of a facility directly dependent on a disaster, 2) allow us to consider the location

of the epicenter of a disaster to be separate from the location of the demand points, and

3) allow us to model the demands as clusters of population acknowledging the possibility

of more than one demand point being affected by a disaster. Furthermore, the stochastic

model developed allows us to study a more realistic scenario where predicting the damage

caused by a disaster is not straightforward, and thus highlights the shortcomings of the

deterministic models. The paper also presents a variant of Benders Algorithm that has
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been found to be very effective in solving the models presented and could be extended to

other facility location models.

Using a case study on pre-positioning for earthquakes in California, we demonstrate

that existing models tend to produce location results that can turn out to be highly undesir-

able once the potential effects of the disaster on the response facilities themselves are taken

into account. Furthermore, our numerical results indicate that incorporating the stochastic

nature of disasters is extremely important for a cost effective relief effort.
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5. A DISTRIBUTED APPROXIMATION ALGORITHM FOR THE BOTTLENECK

CONNECTED DOMINATING SET PROBLEM

5.1 Introduction*

A popular and efficient method of routing and communication in wireless sensor net-

works (WSN) is creating a virtual backbone. Connected dominating sets (CDS) have been

often used to describe a virtual backbone in an ad-hoc wireless network, since any node

in the network is at most one hop away from the nodes in the CDS, and the nodes in a

CDS are all connected and can communicate easily within themselves. Another desirable

feature in the backbone is that it should be as small as possible – this helps to reduce the

communication overhead in maintaining the backbone and passing information through it.

Therefore, much of the literature dealing with construction of a virtual backbone in WSN

is focussed on the minimum connected dominating set (MCDS) problem [Blum et al.,

2005, Wu and Li, 1999, Das and Bharghavan, 1997, Guha and Khuller, 1996, Thai et al.,

2007, Min et al., 2006, Shin et al., 2010, Wu et al., 2010]. The MCDS problem is known

to be NP-hard [Garey and Johnson, 1979b]. Blum et al. Blum et al. [2005] provide an

excellent survey of centralized and distributed algorithms and results regarding the use of

MCDS in wireless sensor networks.

This research deals with an alternative approach to forming the virtual backbone pro-

posed in [Butenko et al., 2011]. Instead of fixing the transmission range of the nodes and

minimizing the number of nodes in a CDS, we now fix the number of nodes and try to

minimize the transmission range that guarantees a CDS of the given size. This problem

is of interest due to the extreme importance of energy considerations in sensor networks.

The power required for supporting a communication link between nodes u and v at a dis-

tance of duv is proportional to dβ
uv, where β varies between 2 and 5 [Li and Stojmenovic,

Reprinted with kind permission from Springer Science+Business Media: Optimization Letters, A dis-

tributed approximation algorithm for the bottleneck connected dominating set problem, Online FirstT M , 6

April 2011, P. 1-13, A. Verma and S. Butenko, DOI: 10.1007/s11590-011-0314-2.
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2005]. Thus, the choice of the transmission range of the nodes directly impacts the net-

work’s lifespan. Power saving schemes in WSN have been studied previously [Wu and

Wu., 2003], though they consider a different approach of alternating the nodes in the CDS.

Again, [Blum et al., 2005] provides an excellent survey of papers in this area.

Next, we formally define the problem studied in this chapter. Consider an edge weighted

graph G = (V,E,w) with non-negative edge weights given by wuv for each edge (u,v)∈ E.

Weighted graphs are a natural way of representing a wireless sensor network, where the

edge weights represent pairwise distances between the nodes. Given the weighted graph

G = (V,E,w), the unweighted graph G(w̄) = (V,Ew̄) with Ew̄ = {(u,v) : (u,v) ∈ E,wuv ≤

w̄} is called the bottleneck graph of G with the bottleneck w̄. That is, in a bottleneck graph

of G two vertices are connected if and only if the weight of the edge connecting them in

G is no greater than w̄. The k-bottleneck connected dominating set (k-BCDS) problem is

to find the minimum w̄ such that it is possible to find a CDS of size k in the bottleneck

graph G(w̄). In other words, the k-BCDS problem seeks a minimum edge weight in the

graph such that the corresponding bottleneck graph has a connected dominating set of the

predefined size k. By solving this problem we would be increasing the lifetime of the

network by setting the transmission range to the weight of the bottleneck edge. Figure 5.1

provides an illustration of using MCDS vs k-BCDS as a virtual backbone. Observe how

the maximum range a node has to transmit in this virtual backbone is reduced from 14 to

12 by using k-BCDS instead of the MCDS. This may lead to an increase in lifetime of the

network by (14/12)β , which is considerable given that β varies between 2 and 5 [Li and

Stojmenovic, 2005].

Approximating the k-BCDS problem within a factor 2− ε is shown to be NP-hard in

[Butenko et al., 2011], which also provides a centralized 3-approximation algorithm for the

k-BCDS problem. However, in order to apply the k-BCDS model to ad-hoc wireless sensor

networks, it is desirable to develop a distributed algorithm such that all the nodes need only

local neighborhood information. This research provides a 6-approximate algorithm that
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(a) MCDS in a wireless sensor network with dis-
tances given. The white nodes mark the nodes in
the CDS. Note that the maximum range a node has
to transmit in this virtual backbone is 14.

(b) The k-BCDS for the given graph, with k set to 6.
The white nodes mark the nodes in the CDS. Note
that the maximum range a node has to transmit in
this virtual backbone is 12.

Fig. 5.1.: Difference between MCDS and k-BCDS of the same size.

can be implemented in a distributed setting. The approximation result holds for networks

where the edge weights satisfy the triangle inequality.

The remaining sections of this chapter are organized as follows. The proposed dis-

tributed algorithm and its approximation analysis are presented in Sect. 5.2 and 5.3, respec-

tively. A mixed-integer programming formulation of the problem of interest is given in

Sect. 5.4. Section 5.5 describes the results of sample numerical experiments, and Sect. 5.6

concludes the chapter.

5.2 Distributed Algorithm

In this section we provide a 6-approximate distributed algorithm, implementation of

which involves a series of operations by each node. The algorithm uses the concept of

a k-center on a weighted graph G = (V,E,w). Given a graph G = (V,E,w), the k-center

problem is to find a set S of k vertices such that max
v∈V

min
u∈S
{wvu} is minimized. In addition,

the algorithm requires each node to have a knowledge of distances from its neighbors. We

note that distance estimation in ad-hoc networks has been addressed in literature [Girod

and Estrin, 2001, Savvides et al., 2001, Biaz and Ji, 2005].
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Before describing the main algorithm, we outline the schemes FindMin (and FindMax)

for finding the minimum (or the maximum) of an attribute stored in the nodes of the net-

work. The procedure FindMin (FindMax) starts off with each node holding an attribute

a(v), and terminates with each node obtaining the information about the minimum (max-

imum) attribute value across the network, and the knowledge of the node that had that

minimum (maximum) attribute value to begin with. The basic idea of the algorithm is

as follows: each node in the graph maintains the least attribute value that it has seen yet,

and the identification (id) of the node that has it. Periodically, every node propagates this

information to its neighbors. If a node receives a value from its neighbor that is smaller

(larger) than the one stored by it, then the value and corresponding id is updated. In case of

ties in attribute value, nodes with smaller id are favored. After at most |V | such rounds of

information exchange by neighbors, the minimum (maximum) attribute value would have

percolated through all the nodes in the network. These procedures are modified versions

of flooding, which is a well studied protocol for data exchange in ad-hoc wireless sensor

networks [Akkaya and Younis, 2005]. The time and message complexity of these proce-

dures is O(|V |2) assuming that a node can broadcast a message to all its neighbor at once,

and that only one node can be transmitting at any time.

Our main algorithm consists of two major steps, summarized in Algorithms 10 & 11

respectively: finding a bk/3c-center and connecting the bk/3c-centers. The main idea of

the algorithm is as follows: we first approximate the bk/3c-center of the network using a

distributed version of Gonzalez’s algorithm [Gonzalez, 1985]. This results in formation

of a spanning forest with bk/3c star-shaped trees. The centers of these stars are chosen to

be in the dominating set. Next we use a distributed minimum spanning tree algorithm to

connect the bk/3c centers. As we describe later in this section, at most 2(bk/3c−1) nodes

are added into the dominating set to achieve this. At the end of the second step, we obtain

a connected dominating set with at most (k−2) nodes. We prove in the next section that

the weight of the largest edge in the spanning tree formed by the CDS obtained is at most

6 times the optimal k-BCDS value.
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Algorithm 10 6-approximation Algorithm for k-BCDS (Step 1).

1. Find the bk/3c-Center of the network.

1.1 Choose the node with minimum id to be the first center.
Use FindMin to find the node z with minimum id.
Node z chooses itself to be the first center, sets dz = 0.
All other nodes v ∈V \{z} set dv = ∞.
All the nodes v ∈V set lv = idz.

1.2 Update the distance of all the nodes from their respective nearest center.
This can be achieved by repeating |V | rounds of the following:
Each node v broadcasts [dv, lv] to its neighbors.
At receiving [du, lu] from a neighbor u, v updates dv = min(dv,du +wuv).
If dv is updated, lv is updated to lu.

1.3 The node farthest away from its nearest center chooses itself to be the next center.
Use FindMax to find the node y with maximum dy.
Node y chooses itself to be in the bk/3c center, sets dy = 0.

1.4 Repeat steps 1.2 and 1.3 (bk/3c−1) times.
Each node knows when to stop as it can maintain a count of times these steps were
executed.

1.5 Form bk/3c spanning components of the network.
At the end of the steps 1.1-1.4, each node v has its label lv set to the node id of its
nearest center.
Each node not in the bk/3c-center sets its range to dv. The nodes also broadcast dv to
their neighbors.
Each node in the bk/3c-center receives dv from the nodes in its periphery, and sets its
range to the maximum dv received.
In this manner, we obtain bk/3c components each with a unique label in its nodes.

Step 1, presented in Algorithm 10 describes a distributed version of the 2-approximate

algorithm to find a bk/3c-center. Throughout the algorithm, dv denotes the distance of a

vertex v to the nearest center, and the label lv denotes the id of the nearest center. We first

use the FindMin algorithm to choose the node with minimum id to be the first center. Next

we update the distance dv of each node from its nearest center. We then use FindMax to

find the node with maximum dv (the node farthest from its nearest center), and choose it

to be the next center. This process is repeated until bk/3c centers have been chosen. After
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Algorithm 11 6-approximation Algorithm for k-BCDS (Step 2).

2. Connect the bk/3c-Centers using distributed minimum spanning tree algorithm.

2.1 Each node finds the least cost edge connecting it to a node from a different com-
ponent.
Each node v probes its neighborhood N(v) for nodes with a different label. Tv := {u :
u ∈ N(v), lu 6= lv}.
Each node v sets tv := argminu∈Tv(wuv). Ties broken by minimum node id.

2.2 For each component C, find the least cost edge between a vertex in C and another
component.
Use FindMin within each component to find the minimum weight edge
(smin(C), tmin(C)) emanating from C. Ties are broken as described in procedure Find-
Min.
If none of the nodes in C are able to find an edge across to a different component,
STOP (we have only one component left).
Else, for exactly one node v in each component C, (v, tv) is the same as
(smin(C), tmin(C)).

2.3 Add the nodes associated with this least cost edge into the dominating set.
For every component C, the nodes smin(C) add themselves to the dominating set and
send a message to tmin(C) to do the same.
The nodes smin(C) and tmin(C) set their range to a value higher than the edge weight
of (smin(C), tmin(C)).
Components joined in this manner agree upon a common label for all their nodes.
Each node v updates its lv to this value. This can be done using a scheme like flooding
to propagate the label of one of the components to the ones that got joined to it.

2.4 Repeat steps 2.1-2.3.

the algorithm finishes, each node knows whether it is in the bk/3c-center or not, and if

not, the nearest center (lv) and its distance (dv) to it. For correctness of the next step in the

algorithm, we require the nodes in the bk/3c-center to form a dominating set of the graph.

Throughout this chapter we assume that k is sufficiently high and the initial transmission

range of the nodes is set high enough in the beginning to guarantee this property. At the

end of step 1, bk/3c center nodes have chosen themselves to be in the dominating set. The

bottleneck edge until this step is one of the edges connecting a node to its nearest center.
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Step 2, presented in Algorithm 11 is similar to a distributed minimum spanning tree al-

gorithm [Attiya and Welch, 2004], and starts with bk/3c star-shaped components spanning

all the nodes in the network. To begin with, each component has a connected dominat-

ing set (the one node at the center of the star). We join the bk/3c components by adding

(bk/3c− 1) edges across these components. Both the end points of these edges are then

included in the dominating set. Since all these nodes are connected to their dominating

node in the original component, we get a connected dominating set of the whole graph. In

the process, we add at most 2(bk/3c−1) nodes to the dominating set.

At the end of the algorithm’s execution, each node has the knowledge of the neigh-

boring nodes it has to directly communicate with. As a result, each node can set its own

transmission range accordingly (using the variable range that was obtained in the course of

the algorithm). The maximum of these transmission ranges, which may not be explicitly

known to all the nodes, is the bottleneck found by our algorithm.

The stopping criteria of the loops of the algorithm (steps 1.4 & 2.2) should be care-

fully examined here. Each node is involved in executing the sub-steps of the algorithms

synchronously, and knows when it is time to move to the next step. This is because each

sub-step involves a constant number of communication rounds to take place before we can

move to the next one. As a result, for step 1, each node has the knowledge of when steps

1.2 & 1.3 have been executed (bk/3c−1) times. For step 2, the algorithm stops if no node

in a component is able to find a node from a neighboring component. Since our network is

connected, this implies that all the nodes form one single component, and we do not need

to add any more nodes.

The choice of edges to be added is done by finding the least cost edge emanating from

each component. Ties in choosing the least cost edge emanating from a component are

broken using the following scheme: if two edges (p1,q1) and (p2,q2) have the same cost,

then the edge with lower min(pi,qi), i = 1,2 is chosen. If there is still a tie, then the edge

with lower max(pi,qi), i = 1,2 is chosen. Breaking ties in this manner avoids formation
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of cycles while connecting the components. The steps involved in choosing the nodes to

be added to the dominating set in a distributed fashion are outlined in the algorithm.

The two steps in the algorithm add bk/3c and at most 2(bk/3c−1) nodes to the domi-

nating set, respectively. This gives us a total of 3bk/3c−2 nodes, which is less than k. The

only edges added in the process are the ones for the bk/3c-center, and the ones forming

a connection across these components. Hence, the bottleneck edge is either one of the

bk/3c-center edges, or an edge connecting two components. This will be used in proving

the approximation bounds of the algorithm.

To evaluate the time and message complexity, we adopt a standard synchronous model

of computation [Linial, 1992]. We find a theoretical bound on the number of communi-

cation rounds our algorithm needs to perform. It should be noted that for a synchronous

model, each node can exchange a message with each of its neighbors in a communication

step [Jia et al., 2002]. Accordingly, we find that our algorithm has a time complexity of

O(k|V |). This is because steps 1.2 and 1.3 of Algorithm 10 are executed bk/3c times, and

each one requires |V | rounds of complete information exchange between all neighbors.

Similarly, step 2.2 of Algorithm 11 is executed at most O(logk) times, and has the same

time complexity of O(|V |). It should be noted that if all the nodes knew the topology of

G, the time complexity would have been O(kdG), where dG is the diameter of the graph.

Since this is not the case in an ad-hoc network, we assume the worst case (dG = O(|V |)).

For computing the message complexity, we assume that each node can send information

to its neighbors in O(1) messages [Das and Bharghavan, 1997]. With that in mind, we find

the message complexity of our algorithm to be O(k|V |2).

5.3 Approximation Analysis

Let dkBCDS be the weight of the bottleneck edge our algorithm finds, and d∗kBCDS be

the optimal weight. We prove that the algorithm presented above has an approximation

ratio of 6 (i.e., dkBCDS ≤ 6d∗kBCDS). All the results in this section are valid when triangle

inequality holds in the graph.
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Lemma 5.3.1. Let the bk/3c-center value found by Algorithm 10 be dbk/3c, and the optimal

be d∗bk/3c. Then, dbk/3c ≤ 2d∗bk/3c.

Proof. Step 1 is a distributed implementation of Gonzalez’s 2-approximate algorithm. The

proof follows from the definition of a 2-approximation algorithm.

Lemma 5.3.2. Under the assumption of triangle inequality, the optimal bk/3c-center

value is at most 3 times the optimal k-BCDS value: d∗bk/3c ≤ 3d∗kBCDS.

Proof. Let D be the set of nodes in the optimal k-BCDS, with bottleneck value d∗kBCDS.

We construct a breadth-first-search (BFS) tree for the spanning tree induced by D rooted

at any leaf node. Let there be li, i = 1,2, . . . ,L nodes in level i of the tree, where L is the

total number of levels. Since (l1+ l4+ l7+ ...)+(l2+ l5+ l8+ ...)+(l3+ l6+ l9+ ...) = k,

at least one of the following three inequalities is true:

1. l1 + l4 + l7 + ...≤ bk/3c

2. l2 + l5 + l8 + ...≤ bk/3c

3. l3 + l6 + l9 + ...≤ bk/3c

If none of the three inequalities are satisfied, then by summing them up we can show that

the given equality cannot be satisfied. Next, we choose the nodes in the levels in one of

the satisfied inequalities to construct a bk/3c-center with the bottleneck value d̄bk/3c. Since

every third layer in the BFS is chosen, any node in D is at most 2 hops away from a node in

the bk/3c-center thus formed. Thus, any node in V is at most 3 hops away from a node in

the bk/3c-center. Hence, by triangle inequality, d̄bk/3c ≤ 3d∗kBCDS⇒ d∗bk/3c ≤ 3d∗kBCDS.

Lemma 5.3.3. If dkBCDS is the weight of an edge added in Algorithm 10, then dkBCDS ≤

6d∗kBCDS.

Proof. In step 1, only edges connecting a bk/3c-center to a node on its periphery are

added. Hence, from lemmas 5.3.1 and 5.3.2, it follows that dkBCDS = dbk/3c ≤ 2d∗bk/3c ≤

6d∗kBCDS.
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Lemma 5.3.4. If dkBCDS is the weight of an edge added in Algorithm 11, then dkBCDS =

d∗kBCDS.

Proof. For an edge with weight dkBCDS to be added to k-BCDS in step 2, it must have

been the least weight edge going from a component C to any other node not in C. Thus,

to maintain connectivity of the graph, the inclusion of this edge (or another edge with the

same weight connecting C to the remaining nodes) is necessary in the optimal solution.

Hence, dkBCDS ≤ d∗kBCDS⇒ dkBCDS = d∗kBCDS.

Theorem 5.3.1. Algorithm 10–11 has an approximation ratio of 6, i.e., dkBCDS ≤ 6d∗kBCDS

when triangle inequality holds.

Proof. Since all edges in the k-BCDS formed are added either in steps 1 or 2, from lem-

mas 5.3.3 and 5.3.4 it follows that dkBCDS ≤ max(d∗kBCDS,6d∗kBCDS) = 6d∗kBCDS.

5.4 Mixed-Integer Programming Formulation

To evaluate the quality of the solution obtained by the proposed algorithm in practice,

it is desirable to know the optimal objective value for the considered instances of the prob-

lem. To solve the k-BCDS problem to optimality, we used a mixed-integer programming

(MIP) formulation that is based on the observation that a graph G = (V,E) has a CDS of

size at most k if and only if it has a spanning tree with at least |V | − k leaves. Given a

connected dominating set D in G, a spanning tree T of G will be called corresponding to

D if its set of leaves includes all vertices in V \D. We will build a directed-out spanning

tree rooted in vertex 1.

Let xi, i∈V, be a binary decision variable indicating whether i belongs to k-BCDS, and

let yi j, i, j ∈V, i 6= j, be a binary decision variable indicating whether the edge (i, j) is in a

spanning tree corresponding to the k-BCDS sought. We introduce a real variable z to rep-

resent the bottleneck cost of the k-BCDS. In the the MIP formulation (5.4.1)-(5.4.16) given

below, the objective, (5.4.1), is to minimize the bottleneck cost. Constraint (5.4.2) ensures

that the CDS is of size at most k. The constraints (5.4.3) set the bottleneck cost to be the
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maximum weight of any edge in the corresponding spanning tree. Constraints (5.4.4) are

present because only the vertices in k-BCDS can have outgoing edges, as the rest of them

must be leaves in the corresponding spanning tree. Constraint (5.4.5) are present to ensure

that the first node can have one edge going out even if it is a leaf not in the k-BCDS, and

at most n edges if it is in the k-BCDS. The first node should have at least one edge going

out even if it is a leaf (constraint (5.4.6)). The constraints (5.4.7) and (5.4.8) ensure that all

vertices except the first one should have exactly one edge coming into it (one parent) and

the first node does not have a parent. The spanning tree will have exactly (n− 1) edges

due to constraint (5.4.9). The constraints (5.4.10)-(5.4.13) used to avoid cycles are for-

mulated in the spirit of the classical Miller-Tucker-Zemlin (MTZ) formulation originally

introduced for the traveling salesman problem in Miller et al. [1960]. The remaining are

the non-zero and integrality constraints.

5.5 Computational Results

Randomly generated graphs were used to gauge the performance of the distributed

algorithm empirically. The nodes were placed in 2-dimensional coordinates (x,y), where

x ∈ [0,100],y ∈ [0,100] were chosen to be uniform random variables. Five instances of

graphs with 50 nodes (G1 50, G2 50, .. G5 50) and five instances with 100 nodes (G1 100,

G2 100, .. G5 100) were generated. A maximum transmission range was specified that

determined which nodes could communicate between themselves. For the examples in this

chapter, the range was made high enough for full connectivity. The distributed algorithm

was then run on the graphs generated to obtain a k-BCDS for different values of k. All

experiments described below were performed on a machine with Intel Core 2 Duo 2.10

GHz CPU, and 2 GB of RAM.

Formulation (5.4.1)-(5.4.16) was solved using CPLEX 12.1 in order to compare the

bottleneck value found by the distributed algorithm presented to the optimal. Although

CPLEX was able to give optimal solutions for graphs with 50 nodes, solving instances

with 100 vertices took prohibitive amount of time. For direct comparison, Table 5.1 pro-
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min z (5.4.1)

subject to ∑
i∈V

xi ≤ k (5.4.2)

z≥ wi jyi j i, j ∈V (5.4.3)

∑
j∈V

yi j ≤ nxi i ∈V \{1} (5.4.4)

∑
j∈V

y1 j ≤ 1+(n−1)x1 (5.4.5)

∑
j∈V

y1 j ≥ 1 (5.4.6)

∑
i∈V

yi j = 1 j ∈V \{1} (5.4.7)

yi1 = 0, i ∈V (5.4.8)

∑
i, j∈V,i 6= j

yi j = n−1 (5.4.9)

u1 = 1 (5.4.10)
ui ≤ n i ∈V \{1} (5.4.11)
ui ≥ 2 i ∈V \{1} (5.4.12)

ui−u j +1≤ (n−1)(1− yi j), i, j ∈V \{1} (5.4.13)
xi,yi j ∈ {0,1}, i, j ∈V, i 6= j (5.4.14)

ui ∈ℜ i ∈V (5.4.15)
z ∈ℜ (5.4.16)

vides the optimal and approximate solution values in one of the randomly generated graph.

The same data is visualized in Fig. 5.2. The approximation ratios for 4 more randomly

generated graphs can be seen from Fig. 5.3. One can observe that the approximation ratio

reduces and goes towards 1 as k increases in all the cases. Table 5.1 also provides the time

taken by CPLEX and our algorithm to get to the solution provided.

Figure 5.2 plots the approximate and optimal solution values together. Observe that for

large k the approximation algorithm provides optimal solutions. Also, the optimal d∗kBCDS

converges to the value of the optimal bottleneck spanning tree as k→ n. This is expected,
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since as k becomes sufficiently large, adding extra vertices simply results in more vertices

coming into the CDS without the bottleneck edge being affected at all.

Computational studies of the algorithm on 5 randomly generated graphs with 100

nodes were also done, though CPLEX was not able to provide the optimal solution in a rea-

sonable amount of time (1 hour). Table 5.2 provides the algorithm solution and CPLEX

upper and lower bounds found for one of the randomly generated graphs. It should be

noted that the CPLEX upper bound is the value of a feasible solution found, while the

quality of the lower bound as compared to the optimal value cannot be judged based on

the available information. Considering this, the ratio of the value of the solution found

by the approximation algorithm to the lower bound would provide a theoretically safe ap-

proximation ratio, while a more practical performance measure should use the ratio to the

upper bound. Ratios calculated using both of these bounds are presented in Fig. 5.4. It

Table 5.1: The bottleneck edges for the k-BCDS found on random graph G1 50 with
varying k. The solutions found and the time taken to find by the distributed algorithm and
CPLEX are presented. The approximation ratio is also provided. The approximation ratios
for other random graphs are presented in Fig. 5.3.

Graph k Algo Sol Algo Optimal CPLEX Approx Ratio
dkBCDS Time d∗kBCDS Time dkBCDS/d∗kBCDS

G1 50 4 73.99 0.14s 43.96 227.5s 1.68
G1 50 7 68.14 0.14s 32.29 277.1s 2.11
G1 50 10 35.45 0.16s 25.83 587.1s 1.37
G1 50 13 35.45 0.22s 23.53 3600.0s 1.51
G1 50 16 34.10 0.25s 21.05 3600.0s 1.60
G1 50 19 34.10 0.28s 21.05 652.6s 1.62
G1 50 22 23.63 0.31s 21.05 1717.7s 1.12
G1 50 25 23.63 0.39s 21.05 107.2s 1.12
G1 50 28 23.69 0.39s 21.05 524.9s 1.13
G1 50 31 21.05 0.44s 21.05 67.7s 1.00
G1 50 50 21.05 0.66s 21.05 346.2s 1.00
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Fig. 5.2.: Comparison of the bottleneck edge value found by the distributed algorithm
against the optimal found by CPLEX 12.1 for the k-BCDS with varying k on the random
graph G1 50

Fig. 5.3.: Approximation ratio of the solution found using distributed algorithm against
the optimal found by CPLEX 12.1 for the k-BCDS with varying k on 5 random graphs
G1 50,G2 50,..,G5 50 with 50 nodes
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Table 5.2: The bottleneck edges for the k-BCDS found on random graph G1 100 having
100 nodes with varying k. The solutions found and the time taken to find by the dis-
tributed algorithm and CPLEX are presented. The approximation ratio is also provided.
The approximation ratios for other random graphs are presented in Fig. 5.4a and 5.4b.

Graph k dkBCDS Algo CPLEX CPLEX CPLEX Approx Approx
Time LB UB Time Ratio(LB) Ratio(UB)

G1 100 10 38.23 0.94s 14.82 31.99 >3600s 2.58 1.19
G1 100 16 32.22 1.34s 12.50 22.79 >3600s 2.58 1.41
G1 100 22 33.70 1.75s 13.03 19.98 >3600s 2.59 1.69
G1 100 28 22.24 2.20s 11.83 17.35 >3600s 1.88 1.28
G1 100 34 22.24 2.59s 12.50 15.48 >3600s 1.78 1.44
G1 100 40 22.24 3.02s 13.03 14.73 >3600s 1.71 1.51

(a) Approximation ratio using CPLEX upper
bound

(b) Approximation ratio using CPLEX lower
bound

Fig. 5.4.: k-BCDS on 5 random graphs G1 100,G2 100,..,G5 100 with 100 nodes for
varying k. The left chart shows the ratio of the algorithm solution to the upper bound
found be CPLEX. The right chart shows the ratio of the algorithm solution to the lower
bound found be CPLEX.

should be noted that none of the values exceed 6, even with the ratios using the CPLEX

lower bounds, which could potentially be improved.
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(a) k-BCDS with k = 13 on a network with
100 nodes

(b) k-CDS with k = 28 on a network with 100
nodes

Fig. 5.5.: k-BCDS on networks with 100 nodes for varying k. The double circle nodes
were chosen by the algorithm to be in the bk/3c-center in step 1. The nodes that connect
them together, marked by a bold dot are added in step 2. The solid lines represent the
connections in the virtual backbone. The dotted lines represent the communications from
an external node to the backbone.

Figure 5.5 shows the CDS found on a graph with 100 nodes for different values of k.

Notice that the nodes chosen as bk/3c-centers are connected to another bk/3c-center node

by a path with 2 other nodes that are also included in the CDS. The pictorial representation

of the graphs and the bottleneck CDS provides further insight into the algorithm and the

structure of the CDS.

5.6 Conclusion

This chapter proposes a 6-approximate distributed algorithm for the k-BCDS problem

on wireless sensor networks, which is motivated by the objective of increasing the lifetime

of the network by reducing the maximum transmission range used by any of the nodes.

Furthermore, computational results show that the approximation ratio is much less than 6

in practice. Some interesting observations worthy of further investigation came up from

the computational results. For example, what is the minimum value of k at which the
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optimal k-BCDS value reaches its limit and stops decreasing? What is the minimum k

for which the proposed algorithm finds the same bottleneck as the limiting bottleneck? A

quantitative study on these parameters will provide useful insight into the problem. These

questions might be important in deciding what values of k are appropriate to use in a sensor

networks. Investigation into improved formulations for the k-BCDS problem might also

be fruitful.
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6. CONCLUSION

Given the immense potential graphs and networks have in providing a succinct repre-

sentation of a system, it is no surprise that network science has become a popular area of

research. The availability of a wide variety of analytical tools and algorithms in graph the-

ory have further led to the application of these techniques across many different domains.

While some applications can use previously developed theory and generalized algorithms

rather easily – either a direct application or with slight modification – others require the

development of dedicated tools to achieve meaningful results.

The underlying theme in all the topics studied in this dissertation is network models.

The problems addressed in the first two topics, namely the maximum clique problem and

the graph clustering problem, are very well known in literature and have been studied

extensively. The approach presented in this dissertation takes a fresh look at the solution

strategies for these problems, particularly focussing on large scale power law networks that

arise in many applications. Power law or scale free networks provide a valuable avenue

for future work especially because of their ubiquitous nature – many commonly studied

networks such as social, internet, and market graphs show structural properties similar to

power law graphs. Advances in information technology have resulted in the availability of

graphs that are massive in size, and traditional techniques are no longer applicable at this

larger scale. The void created by the lack of algorithms dedicated for such networks that

provides avenues for future research. In particular, the knowledge of the special structure

of these graphs can be used to develop algorithms that are particularly effective even on

very large scale graphs.

Scale reduction, which was used in conjunction with k-community for solving the

maximum clique problem, can take different forms and be used to solve other problems

such as the maximum independent set and vertex coloring problems, amongst others. This

requires studying the properties of these problems on such graphs in greater detail, con-

centrating not just an optimization approach but also on a much deeper graph theoretic



88

analysis. Apart from scale reduction, studying structural properties of graphs with respect

to these hard problems can also help in developing valid inequalities that can then be used

in an integer programming framework.

On the other hand, clustering algorithms available today use a variety of techniques

such as modularity optimization, spectral analysis and information flow models (dynamic

processes). However, for many applications where the clusters need to exhibit certain

structural characteristics, such generic clustering algorithms do not always suffice. The

usefulness of the k-community in this regard was particularly apparent from the exam-

ples provided. However, k-communities suffer from some structural limitations similar

to k-cores, such as linear rate of growth of the diameter in the size of the graph. These

limitations are overcome to an extent by clique relaxations such as k-plexs, k-clubs, γ-

quasi-cliques, etc., but their computational complexity makes them difficult to use on large

scale graphs. For clustering applications, a future direction of research would be the devel-

opment of new clique relaxations that are polynomially computable, yet exhibit cohesive

properties that are much stronger than those of k-communities and k-cores.

The main focus of the third topic of location of emergency response facilities is in

modeling the problem to a greater detail. With the advancements in computational re-

sources, a much closer look at the problem and its modeling aspects in terms of detail is

warranted. One future direction of study is in developing models that have more intricate

requirements from the facilities, namely that of the service levels to be provided to the

population of a city in case of a disaster. For example, one service level requirement might

be that at least half the demand be met within 4 hours of the disaster, while the rest be met

within 6 hours. This would require the modeling to be done at a higher level of detail, but

would serve well for the decision makers who often have to keep such constraints in mind.

Although the solution techniques used for solving the 2-stage stochastic programming

model were adapted from the well known Benders algorithms for our specific model, they

could be of value in improving solution techniques for the classical p-center and p-median

problems which have been solved by Benders algorithm in literature, especially since they



89

are similar in structure to our problem. As illustrated by this hybrid approach, the use-

fulness of fast heuristics and approximation algorithms is not limited to problems where

a polynomial computation time is required, but also aiding in the development of faster

exact approaches for difficult problems.

Lastly, the fourth topic takes a fresh look at the problem of finding a virtual backbone

for communication in wireless sensor networks by providing a distributed approximation

algorithm that tries to minimize the distance any sensor has to transmit. The field of

distributed algorithms, where decisions are not made by a central authority – as in con-

ventional optimization – but by a collection of actors in the system, is fast growing and

presents a viable area of research. Although our problem requires a distributed algorithm

to minimize computational and communication overheads which are expensive for sensors

that have limited resources, many other problems require a distributed approach because

the actors in a system might have their own objectives in addition to the system-wide

objective.

In wireless sensor networks, further study into distributed algorithms, in particular an

analysis of the benefits of an improved performance against an increase in the communi-

cation/computational overhead that might occur is required. For examples, one approach

could be to provide a distributed version of the algorithm provided by [Butenko et al.,

2011], which would need edge weight information to be exchanged throughout the net-

work, but has a much better approximation bound. It would be insightful to see which

algorithm will actually performs better over the lifetime of the sensor network in practice.

Furthermore, the present algorithms use a value of k that is pre-determined. However,

unless the range of the sensor is very large and the corresponding network is completely

connected, it is not always possible to find a connected dominating set of size k. A hy-

brid strategy of using the minimum connected dominating set to determine an appropriate

value of k in conjunction with the bottleneck connected domination will be a more practi-

cal approach to the problem as k will be found dynamically rather than programmed prior

to deployment. Another approach could be to employ a binary search scheme to find the
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appropriate size of the connected dominating set. A comparative analysis of these different

approaches with the algorithm provided in this paper would be insightful in determining

the value of k to be used for practical purposes.

Network science, network modeling and algorithms – like many other fields – will con-

tinue to benefit greatly from the improved computational infrastructure and availability of

huge data sets due to the outreach of the internet and the development of tools for data

sharing and creation. For example, tools such as Geographic Information Systems (GIS)

make access to comprehensive demographic information extremely easy for researchers.

Parallel and distributed computing provide opportunities for improving algorithms to uti-

lize the full potential of these systems. Collectively, such advances provide an opportunity

to collect relevant data at a much finer level of detail and to analyze it in a much more

sophisticated manner, something that was not possible a decade ago.
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