23 research outputs found

    Performance Analysis for Uniform and Binomial Distribution on Contention Window using DSRC and Wi-Fi Direct Standard

    Get PDF
    In this paper, we present a mathematical analysis on the performance and behavior of uniformly distributed and non-uniformly distributed backoff timer based on binomial algorithm by using two standards which is the conventional DSRC and the latest Wi-Fi Direct. DSRC is a well-known technology being considered as the most promising wireless standard in VANET. On the other hand, as the latest wireless networking standard, the potential of Wi-Fi Direct technology should be concerned. We evaluates these standards using uniform and binomial distribution for contention window under mathematical modelling in order to analyze the average throughput and collision probability performance. The results show that binomial distribution in Wi-Fi Direct standard is 7.05% and 97.13% better than uniform distribution, in terms of average throughput and collision probability, respectively. Thus we can defer that Wi-Fi Direct is feasible to be used as an alternative standard since it has been considered as potential competitor of DSRC in VANET

    Agile Calibration Process of Full-Stack Simulation Frameworks for V2X Communications

    Get PDF
    Computer simulations and real-world car trials are essential to investigate the performance of Vehicle-to-Everything (V2X) networks. However, simulations are imperfect models of the physical reality and can be trusted only when they indicate agreement with the real-world. On the other hand, trials lack reproducibility and are subject to uncertainties and errors. In this paper, we will illustrate a case study where the interrelationship between trials, simulation, and the reality-of-interest is presented. Results are then compared in a holistic fashion. Our study will describe the procedure followed to macroscopically calibrate a full-stack network simulator to conduct high-fidelity full-stack computer simulations.Comment: To appear in IEEE VNC 2017, Torino, I

    Newton-raphson method to solve systems of non-linear equations in VANET performance optimization

    Get PDF
    Nowadays, Vehicular Ad-Hoc Network (VANET) has got more attention from the researchers. The researchers have studied numerous topics of VANET, such as the routing protocols of VANET and the MAC protocols of VANET. The aim of their works is to improve the network performance of VANET, either in terms of energy consumption or packet delivery ratio (PDR) and delay. For this research paper, the main goal is to find the coefficient of a, b and c of three non-linear equations by using a Newton-Raphson method. Those three non-linear equations are derived from a different value of Medium Access Control (MAC) protocol's parameters. After that, those three coefficient is then will be used in optimization of the VANET in terms of energy, PDR, and delay

    Beaconing in a highway scenario: Vulnerable vehicles problem

    Get PDF
    Periodic exchange of short status messages using IEEE 802.11p also referred to as beaconing is a core inter-vehicle communication mode enabling novel cooperative safety applications. A beaconing in the platoon of vehicles moving on a highway is studied as one of the popular practical scenarios. This paper demonstrates that when the inter-arrival times of beacons are small and under certain medium access control protocol parameters, some vehicles in the platoon may suffer from serious performance degradation. The condition when such situation takes place is studied and recommendations are given on a proper choice of IEEE 802.11p parameters

    Realistic urban traffic simulation as vehicular Ad-hoc network (VANET) via Veins framework

    Get PDF
    These days wireless communication has impacted our daily lives. The developments achieved in this field have made our lives amazingly simpler, easier, convenient and comfortable. One of these developments has occurred in Car to Car Communication (C2CC). Communication between cars often referred to vehicular ad hoc networks (VANET) has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. For a closer look on C2CC studies the necessity of simulation is obvious. Network simulators can simulate the Ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, in this paper we study the Veins framework which is used to run a Traffic (SUMO) and a Network (OMNET++) simulator in parallel and we simulate the realistic traffics of the city of Cologne, Germany, as an ad-hoc network

    An Efficient Channel Access Scheme for Vehicular Ad Hoc Networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are getting more popularity due to the potential Intelligent Transport Systems (ITS) technology. It provides many efficient network services such as safety warnings (collision warning), entertainment (video and voice), maps based guidance, and emergency information. VANETs most commonly use Road Side Units (RSUs) and Vehicle-to-Vehicle (V2V) referred to as Vehicle-to-Infrastructure (V2I) mode for data accessing. IEEE 802.11p standard which was originally designed for Wireless Local Area Networks (WLANs) is modified to address such type of communication. However, IEEE 802.11p uses Distributed Coordination Function (DCF) for communication between wireless nodes. Therefore, it does not perform well for high mobility networks such as VANETs. Moreover, in RSU mode timely provision of data/services under high density of vehicles is challenging. In this paper, we propose a RSU-based efficient channel access scheme for VANETs under high traffic and mobility. In the proposed scheme, the contention window is dynamically varied according to the times (deadlines) the vehicles are going to leave the RSU range. The vehicles with shorter time deadlines are served first and vice versa. Simulation is performed by using the Network Simulator (NS-3) v. 3.6. The simulation results show that the proposed scheme performs better in terms of throughput, backoff rate, RSU response time, and fairness

    Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Beaconing approaches is an important research challenge in high mobility vehicular networks with enabling safety applications. In this article, we perform a survey and a comparative study of state-of-the-art adaptive beaconing approaches in VANET, that explores the main advantages and drawbacks behind their design. The survey part of the paper presents a review of existing adaptive beaconing approaches such as adaptive beacon transmission power, beacon rate adaptation, contention window size adjustment and Hybrid adaptation beaconing techniques. The comparative study of the paper compares the representatives of adaptive beaconing approaches in terms of their objective of study, summary of their study, the utilized simulator and the type of vehicular scenario. Finally, we discussed the open issues and research directions related to VANET adaptive beaconing approaches.Ghafoor, KZ.; Lloret, J.; Abu Bakar, K.; Sadiq, AS.; Ben Mussa, SA. (2013). Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey. Wireless Personal Communications. 73(3):885-912. doi:10.1007/s11277-013-1222-9S885912733ITS-Standards (1996) Intelligent transportation systems, U.S. Department of Transportation, http://www.standards.its.dot.gov/about.aspCheng, L., Henty, B., Stancil, D., Bai, F., & Mudalige, P. (2005). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 Ghz dedicated short range communication (DSRC) frequency band. IEEE Transactions on Selected Areas in Communications, 25(8), 1501–1516.van Eenennaam, E., Wolterink, K., Karagiannis, G., & Heijenk, G. (2009). Exploring the solution space of beaconing in vanets. In Proceedings of the 2009 IEEE international vehicular networking conference, Tokyo (pp. 1–8).Torrent-Moreno, M. (2007). Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 2007 IEEE conference wireless on demand network systems and services, Austria (pp. 59–64).Lloret, J., Canovas, A., Catalá, A., & Garcia, M. (2012). Group-based protocol and mobility model for vanets to offer internet access. Journal of Network and Computer Applications 2224–2245 doi: 10.1016j.jnca.2012.02.009 .Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.Fukui, R., Koike, H., & Okada, H. (2002). Dynamic integrated transmission control(ditrac) over inter-vehicle communications. In Proceedings of the 2002 IEEE vehicular technology conference, Birmingham (pp. 483–487).Schmidt, R., Leinmuller, T., Schoch, E., Kargl, F., & Schafer, G. (2010). Exploration of adaptive beaconing for efficient intervehicle safety communication. IEEE Network, 24(1), 14–19.Ghafoor, K., Bakar, K., van Eenennaam, E., Khokhar, R., Gonzalez, A. A fuzzy logic approach to beaconing for vehicular ad hoc networks, Accepted for publication in Telecommunication Systems Journal.Ghafoor, K., & Bakar, K. (2010). A novel delay and reliability aware inter vehicle routing protocol. Network Protocols and Algorithms, 2(2), 66–88.Mittag, J., Thomas, F., Härri, J., & Hartenstein, H. (2009). A comparison of single-and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehicular internetworking, Beijing (pp. 69–78).Sommer, C., Tonguz, O., & Dressler, F. (2010). Adaptive beaconing for delay-sensitive and congestion-aware traffic information systems. In Proceedings of the 2010 IEEE international vehicular networking conference (VNC), New Jersey (pp. 1–8).Guan, X., Sengupta, R., Krishnan, H., & Bai, F. (2007). A feedback-based power control algorithm design for vanet. In Proceedings of the 2007 IEEE international conference on mobile networking for vehicular environments, USA (pp. 67–72).AL-Hashimi, H., Bakar, K., & Ghafoor, K. (2011). Inter-domain proxy mobile ipv6 based vehicular network. Network Protocols and Algorithms, 2(4), 1–15.Rawat, D., Popescu, D., Yan, G., & Olariu, S. (2011). Enhancing vanet performance by joint adaptation of transmission power and contention window size. Transactions on Parallel and Distributed Systems, 22(9), 1528–1535.European-ITS (2009) Eits-technical report 102 638 v1.1.1, European Telecommunications Standards Institute (ETSI), http://www.etsi.org/WebSite/homepage.aspxNHTSA, I. Joint program office”, report to congress on the national highway traffic safety administration its program, program progress during 1992–1996 and strategic plan for 1997–2002, US Department of Transportation, Washington, DC.Godbole, D., Sengupta, R., Misener, J., Kourjanskaia, N., & Michael, J. (1998). Benefit evaluation of crash avoidance systems. Transportation Research, 1621(1), 1–9.Reinders, R., van Eenennaam, M., Karagiannis, G., & Heijenk, G. (2004). Contention window analysis for beaconing in vanets. In Proceedings of the 2011 IEEE international conference on wireless communications and mobile computing (IWCMC), Istanbul (pp. 1481–1487).Yang, L., Guo, J., & Wu, Y. (2008). Channel adaptive one hop broadcasting for vanets. In Proceedings of the 2008 IEEE international conference on intelligent transportation systems, Beijing (pp. 369–374).Tseng, Y., Ni, S., Chen, Y., & Sheu, J. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8(2), 153–167.van Eenennaam, E. M., Karagiannis, G., & Heijenk, G. (2010). Towards scalable beaconing in vanets. In Proceedings of the 2010 ERCIM workshop on eMobility, Lulea (pp. 103–108).Ros, F., Ruiz, P., & Stojmenovic, I. (2012). Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE Transactions on Mobile Computing, 11(1), 33–46.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2006). Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 2007 IEEE international conference on sensor and ad hoc communications and networks, Reston, VA (pp. 479–488).Artimy, M. (2007). Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 8(3), 400–412.Caizzone, G., Giacomazzi, P., Musumeci, L., & Verticale, G. (2005). A power control algorithm with high channel availability for vehicular ad hoc networks. In Proceedings of the 2005 IEEE international conference on communications, Seoul (pp. 3171–3176).Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2009). Vehicle-to-vehicle communication: Fair transmit power control for safety critical information. IEEE Transaction for Vehicular Technology, 58(7), 3684–3703.Torrent-Moreno, M., Schmidt-Eisenlohr, F., Fubler, H., & Hartenstein, H. (2006). Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In Proceedings of the 2007 IEEE conference on wireless communications and networking, USA (pp. 385–391).NS, Network simulator (June 2011). http://nsnam.isi.edu/nsnam/index.php/MainPageNakagami, M. (1960). The m-distribution: A general formula of intensity distribution of rapid fadinge. In W. C. Hoffman (Ed.), Statistical method of radio propagation. New York: Pergamon Press.Narayanaswamy, S., Kawadia, V., Sreenivas, R., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the compow protocol. In Proceedings of the 2002 European wireless conference next generation wireless networks: technologies, protocols, Italy (pp. 1–6).Cheng, P., Lee, K., Gerla, M., & Harri, J. (2010). Geodtn+ nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.Gomez, J., & Campbell, A. (2004). A case for variable-range transmission power control in wireless multihop networks. In Proceedings twenty-third annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 1425–1436).Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedings nineteenth annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 404–413).Artimy, M., Robertson, W., & Phillips, W. (2005). Assignment of dynamic transmission range based on estimation of vehicle density. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany (pp. 40–48).Samara, G., Ramadas, S., & Al-Salihy, W. (2010). Safety message power transmission control for vehicular ad hoc networks. Computer Science, 6(10), 1027–1032.Rezaei, S., Sengupta, R., Krishnan, H., Guan, X., & Student, P. (2008). Adaptive communication scheme for cooperative active safety system.Rezaei, S., Sengupta, R., Krishnan, H., & Guan, X. (2007). Reducing the communication required by dsrc-based vehicle safety systems. In Proceedings of the 2007 IEEE international conference on intelligent transportation systems, Bellevue, WA (pp. 361–366).Sommer, C., Tonguz, O., & Dressler, F. (2011). Traffic information systems: Efficient message dissemination via adaptive beaconing. IEEE Communications Magazine, 49(5), 173–179.Thaina, C., Nakorn, K., & Rojviboonchai, K. (2011). A study of adaptive beacon transmission on vehicular ad-hoc networks. In Proceeding of the 2011 IEEE 13th international conference on communication technology (ICCT), Vancouver (pp. 597–602).Boukerche, A., Rezende, C., & Pazzi, R. (2009). Improving neighbor localization in vehicular ad hoc networks to avoid overhead from periodic messages. In Proceedings of the 2009 IEEE global telecommunications conference, USA (pp. 1–6).Bai, F., Sadagopan, N., & Helmy, A. (2008). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In Proceedings of the 2003 22th annual joint conference of the IEEE computer and communications, USA (pp. 825–835).Nguyen, H., Bhawiyuga, A., & Jeong, H. (2012). A comprehensive analysis of beacon dissemination in vehicular networks. In Proceedings of the 75th IEEE vehicular technology conference, Korea (pp. 1–5).Djahel, S., & Ghamri-Doudane, Y. (2012). A robust congestion control scheme for fast and reliable dissemination of safety messages in vanets. In Proceeding of the 2012 IEEE conference wireless communications and networking, Paris, France (pp. 2264–2269).O. Technologies (Augast 2012) Opnet modeler, http://www.opnet.com/Huang, C., Fallah, Y., Sengupta, R., & Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems. IEEE Network, 24(1), 6–13.OPNET (June 2012) Opnet modeler, http://www.opnet.com/Kerner, B. (2004). The physics of traffic: Empirical freeway pattern features, engineering applications, and theory. Berlin: Springer.Vinel, A., Vishnevsky, V., & Koucheryavy, Y. (2008). A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In Proceedings of the 2008 IEEE international GLOBECOM workshops, Philadelphia, PA (pp. 1–5).Mariyasagayam, N., Menouar, H., & Lenardi, M. (2009). An adaptive forwarding mechanism for data dissemination in vehicular networks. In Proceedings of the 2009 IEEE Vehicular Networking Conference, Boston (pp. 1–5).Hung, C., Chan, H., & Wu, E. (2008). Mobility pattern aware routing for heterogeneous vehicular networks. In Proceedings of the 2008 international conference on wireless communications and networking, Las Vegas (pp. 2200–2205).Yang, K., Ou, S., Chen, H., & He, J. (2007). A multihop peer-communication protocol with fairness guarantee for ieee 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology, 56(6), 3358–3370.Lequerica, I., Ruiz, P., & Cabrera, V. (2010). Improvement of vehicular communications by using 3G capabilities to disseminate control information. IEEE Network Magazine, 24(1), 32–38.Oh, D., Kim, P., Song, J., Jeon, S., & Lee, H. (2005). Design considerations of satellite-based vehicular broadband networks. IEEE Wireless Communications Magazine, 12(5), 91–97.Ko, Y., Sim, M., & Nekovee, M. (2006). Wi-fi based broadband wireless access for users on the road. BT Technology Journal, 24(2), 123–129.Choffnes, D., & Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on vehicular ad hoc networks, Cologne (pp. 69–78).TIGER (October 2010) Topologically integrated geographic encoding and referencing system, http://www.census.gov/geo/www/tiger/Mittag, J., Thomas, F., Harri, J., & Hartenstein, H. (2009). A comparison of single and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehiculaar internetworking, Beijing (pp. 69–78).Rappaport, T. (1996). Wireless communications: Principles and practice (2nd ed.). New Jersey: Prentice Hall PTR

    Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey

    Full text link
    [EN] Vehicular ad hoc network (VANET) is an emerging and promising technology, which allows vehicles while moving on the road to communicate and share resources. These resources are aimed at improving traffic safety and providing comfort to drivers and passengers. The resources use applications that have to meet high reliability and delay constraints. However, to implement these applications, VANET relies on medium access control (MAC) protocol. Many approaches have been proposed in the literature using time division multiple access (TDMA) scheme to enhance the efficiency of MAC protocol. Nevertheless, this technique has encountered some challenges including access and merging collisions due to inefficient time slot allocation strategy and hidden terminal problem. Despite several attempts to study this class of protocol, issues such as channel access and time slot scheduling strategy have not been given much attention. In this paper, we have relatively examined the most prominent TDMA MAC protocols which were proposed in the literature from 2010 to 2018. These protocols were classified based on scheduling strategy and the technique adopted. Also, we have comparatively analyzed them based on different parameters and performance metrics used. Finally, some open issues are presented for future deployment.Tambawal, AB.; Noor, RM.; Salleh, R.; Chembe, C.; Anisi, MH.; Michael, O.; Lloret, J. (2019). Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems. 70(4):595-616. https://doi.org/10.1007/s11235-018-00542-8S59561670
    corecore