35 research outputs found

    Hybrid Region-based Image Compression Scheme for Mamograms and Ultrasound Images

    Get PDF
    The need for transmission and archive of mammograms and ultrasound Images has dramatically increased in tele-healthcare applications. Such images require large amount of' storage space which affect transmission speed. Therefore an effective compression scheme is essential. Compression of these images. in general. laces a great challenge to compromise between the higher compression ratio and the relevant diagnostic information. Out of the many studied compression schemes. lossless . IPl. (i- LS and lossy SPII IT are found to he the most efficient ones. JPEG-LS and SI'll IT are chosen based on a comprehensive experimental study carried on a large number of mammograms and ultrasound images of different sizes and texture. The lossless schemes are evaluated based on the compression ratio and compression speed. The distortion in the image quality which is introduced by lossy methods evaluated based on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio (PSNR). It is found that lossless compression can achieve a modest compression ratio 2: 1 - 4: 1. bossy compression schemes can achieve higher compression ratios than lossless ones but at the price of the image quality which may impede diagnostic conclusions. In this work, a new compression approach called Ilvbrid Region-based Image Compression Scheme (IIYRICS) has been proposed for the mammograms and ultrasound images to achieve higher compression ratios without compromising the diagnostic quality. In I LYRICS, a modification for JPI; G-LS is introduced to encode the arbitrary shaped disease affected regions. Then Shape adaptive SPIT IT is applied on the remaining non region of interest. The results clearly show that this hybrid strategy can yield high compression ratios with perfect reconstruction of diagnostic relevant regions, achieving high speed transmission and less storage requirement. For the sample images considered in our experiment, the compression ratio increases approximately ten times. However, this increase depends upon the size of the region of interest chosen. It is also föund that the pre-processing (contrast stretching) of region of interest improves compression ratios on mammograms but not on ultrasound images

    Preserving data integrity of encoded medical images: the LAR compression framework

    Get PDF
    International audienceThrough the development of medical imaging systems and their integration into a complete information system, the need for advanced joint coding and network services becomes predominant. PACS (Picture Archiving and Communication System) aims to acquire, store and compress, retrieve, present and distribute medical images. These systems have to be accessible via the Internet or wireless channels. Thus protection processes against transmission errors have to be added to get a powerful joint source-channel coding tool. Moreover, these sensitive data require confidentiality and privacy for both archiving and transmission purposes, leading to use cryptography and data embedding solutions. This chapter introduces data integrity protection and developed dedicated tools of content protection and secure bitstream transmission for medical encoded image purposes. In particular, the LAR image coding method is defined together with advanced securization services

    Hybrid Region-based Image Compression Scheme for Mamograms and Ultrasound Images

    Get PDF
    The need for transmission and archive of mammograms and ultrasound Images has dramatically increased in tele-healthcare applications. Such images require large amount of' storage space which affect transmission speed. Therefore an effective compression scheme is essential. Compression of these images. in general. laces a great challenge to compromise between the higher compression ratio and the relevant diagnostic information. Out of the many studied compression schemes. lossless . IPl. (i- LS and lossy SPII IT are found to he the most efficient ones. JPEG-LS and SI'll IT are chosen based on a comprehensive experimental study carried on a large number of mammograms and ultrasound images of different sizes and texture. The lossless schemes are evaluated based on the compression ratio and compression speed. The distortion in the image quality which is introduced by lossy methods evaluated based on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio (PSNR). It is found that lossless compression can achieve a modest compression ratio 2: 1 - 4: 1. bossy compression schemes can achieve higher compression ratios than lossless ones but at the price of the image quality which may impede diagnostic conclusions. In this work, a new compression approach called Ilvbrid Region-based Image Compression Scheme (IIYRICS) has been proposed for the mammograms and ultrasound images to achieve higher compression ratios without compromising the diagnostic quality. In I LYRICS, a modification for JPI; G-LS is introduced to encode the arbitrary shaped disease affected regions. Then Shape adaptive SPIT IT is applied on the remaining non region of interest. The results clearly show that this hybrid strategy can yield high compression ratios with perfect reconstruction of diagnostic relevant regions, achieving high speed transmission and less storage requirement. For the sample images considered in our experiment, the compression ratio increases approximately ten times. However, this increase depends upon the size of the region of interest chosen. It is also föund that the pre-processing (contrast stretching) of region of interest improves compression ratios on mammograms but not on ultrasound images

    Qualitative Evaluation of Data Compression in Real-time Ultrasound Imaging

    Get PDF
    The purpose of this project was to evaluate qualitatively real-time ultrasound imaging using objective and subjective techniques to determine the minimum bandwidth required for clinical diagnosis of various anatomical and pathological states. In the experimental setup live ultrasound video samples representing the most common clinical examinations were compressed at 128, 256, 384, 768, 1152 and 1536 kbps using a compressor-decompressor (CODEC) adhering to International Telecommunication Union (ITU-T) recommendation H.261. A protocol for qualitative evaluation was developed and subjective and objective testing were performed based on this protocol. Subjective methods comprised of inter-rater reliability tests using kappa statistics and three way Analysis of Variance (ANOVA) using General Linear Models (GLM). Objective testing were performed using histogram analysis and estimation of peak signal to noise ratios. The kappa scores for all bandwidths greater than 256 kbps indicated good inter-rater reliablity and minimum variation in confidence levels. Using the results from GLM and ANOVA we could not establish a trend in degradation of observer confidence with increasing compression ratios. The histogram analysis showed a linear increase in standard deviation values, indicating a linear scatter in pixel intensity, with increasing compression ratios. Although higher compression levels were evaluated, only video clips with bandwidths greater than 256 kbps displayed satisfactory temporal and spatial resolution, good enough to make clinical diagnosis of various anatomical and pathological states. The evaluations also indicate that compressed real-time ultrasound imagery using H.261 can be transmitted over a T1 or ADSL networks

    Intelligent computing applications to assist perceptual training in medical imaging

    Get PDF
    The research presented in this thesis represents a body of work which addresses issues in medical imaging, primarily as it applies to breast cancer screening and laparoscopic surgery. The concern here is how computer based methods can aid medical practitioners in these tasks. Thus, research is presented which develops both new techniques of analysing radiologists performance data and also new approaches of examining surgeons visual behaviour when they are undertaking laparoscopic training. Initially a new chest X-Ray self-assessment application is described which has been developed to assess and improve radiologists performance in detecting lung cancer. Then, in breast cancer screening, a method of identifying potential poor performance outliers at an early stage in a national self-assessment scheme is demonstrated. Additionally, a method is presented to optimize whether a radiologist, in using this scheme, has correctly localised and identified an abnormality or made an error. One issue in appropriately measuring radiological performance in breast screening is that both the size of clinical monitors used and the difficulty in linking the medical image to the observer s line of sight hinders suitable eye tracking. Consequently, a new method is presented which links these two items. Laparoscopic surgeons have similar issues to radiologists in interpreting a medical display but with the added complications of hand-eye co-ordination. Work is presented which examines whether visual search feedback of surgeons operations can be useful training aids

    Selected Algorithms of Quantitative Image Analysis for Measurements of Properties Characterizing Interfacial Interactions at High Temperatures.

    Get PDF
    In the case of every quantitative image analysis system a very important issue is to improve the quality of images to be analyzed, in other words, their pre-processing. As a result of pre-processing, the significant part of the redundant information and disturbances (which could originate from imperfect vision system components) should be removed from the image. Another particularly important problem to be solved is the right choice of image segmentation procedures. Segmentation essence is to divide an image into disjoint subsets that meet certain criteria for homogeneity (e.g. color, brightness or texture). The result of segmentation should allow the most precise determination of geometrical features of objects present in a scene with a minimum of computing effort. The measurement of geometric properties of objects present in the scene is the subject of image analysis

    Enhanced algorithms for lesion detection and recognition in ultrasound breast images

    Get PDF
    Mammography is the gold standard for breast cancer detection. However, it has very high false positive rates and is based on ionizing radiation. This has led to interest in using multi-modal approaches. One modality is diagnostic ultrasound, which is based on non-ionizing radiation and picks up many of the cancers that are generally missed by mammography. However, the presence of speckle noise in ultrasound images has a negative effect on image interpretation. Noise reduction, inconsistencies in capture and segmentation of lesions still remain challenging open research problems in ultrasound images. The target of the proposed research is to enhance the state-of-art computer vision algorithms used in ultrasound imaging and to investigate the role of computer processed images in human diagnostic performance. [Continues.

    Med-e-Tel 2013

    Get PDF

    Development and evaluation of the virtual pathology slide: a new tool for understanding inter-observer variability in diagnostic microscopy

    Get PDF
    The VPS (Virtual Pathology Slide) is a microscope emulator enabling the examination of pathology slides via the Internet or CD-Rom. A novel feature of the VPS is the ability to record the migratory traces (image viewed and magnification) of pathologists examinations on a remote relational database located in Dublin City University. In order to evaluate the VPS, Ten breast needle core biopsies were randomly selected and presented to 17 pathologists or trainee pathologists with at least 2 years experience in pathology practice. Participants were required to examine each case online and provide a diagnostic classification using online feedback forms, based on the Core Biopsy Reporting Guidelines for Non-operative Diagnostic Procedures and Reporting in Breast Cancer screening as used by the British National Co-ordinating Committee for Breast Screening Pathology. The recorded data permitted examination of interobserver variability and user satisfaction. The study demonstrated that Pathologists can make a correct diagnosis using the VPS. Consensus glass diagnosis agreed with consensus VPS diagnosis in 9 out of 10 cases. Consensus diagnosis for Slide 8 differed from glass slide diagnosis by one classification grade. Several Participants using the VPS achieved strong individual performance, with 10 of the 17 participants displaying “good” to “exce//e«i” (>0.6) agreement with VPS consensus, based on a weighted Kappa rating. Modification of diagnostic classification based on a review of text diagnosis resulted in VPS consensus diagnosis for Slide 8 concurring with glass slide diagnosis and demonstrated a lack o f familiarity and understanding amongst participants in the application of the applied diagnostic guidelines, particularly in the diagnosis of Intraductal Pappilloma. Modification of diagnostic classification based on text diagnosis increased average overall slide consensus from 66.5% to 69.4% but decreased individual Kappa performance by 0.76 to 0.72. Participants diagnostic performance was found to be unrelated to their confidence in making a diagnostic decision using the VPS. Perception of image quality was demonstrated to be clearly dependent on participants screen resolution and colour depth, but was shown not to influence diagnostic performance. Perception of download speed was found to be unrelated to individual diagnostic performance. However, it was demonstrated that there is an increase in the number of fields of view examined by participants as their perception of download speed improves. The number of fields of view examined per slide was found to be representative of the histological difficulty in interpreting a case. In general, as slide consensus decreases, the number of fields view examined for that slide increases. The number of fields of view examined at a particular magnification was found to be unique for each slide and dependent on the histological complexity of each slide. To elucidate reasons for diagnostic inconsistency, a software application called ‘Bitmapper’ was developed. This generates a graphical representation of a diagnostic trace using data stored on the VPS database. This takes the form of 128x128 pixel bitmap image, where each pixel is representative of an individual field of view on a VPS slide at the highest magnification available. The colour value of each pixel is determined by whether the field of view it represents has been viewed, and if so, at what magnification. This diagnostic trace was used to locate hotspot regions of potential diagnostic importance within a slide. For each of the slides a pathologist, specialist in breast disorders, examined images from these hotspots and successfully deduced a reason for diagnostic inconsistencies. This demonstrated that Bitmapper is an extremely useful tool for determining reasons for observer variation. The development of the VPS and ancillary software tools was successful in that pathologists were willing to use the system. Pathologists could make a correct diagnostic decision using the system. The degree of observer variation could be quantified and using Bitmapper, reasons for observer variation could be determined. This technology has applications in determining the cause of observer variability and will prove a useful tool in external quality assurance studies (EQA) in pathology
    corecore