3 research outputs found

    Content placement in 5G‐enabled edge/core data center networks resilient to link cut attacks

    Get PDF
    High throughput, resilience, and low latency requirements drive the development of 5G-enabled content delivery networks (CDNs) which combine core data centers (cDCs) with edge data centers (eDCs) that cache the most popular content closer to the end users for traffic load and latency reduction. Deployed over the existing optical network infrastructure, CDNs are vulnerable to link cut attacks aimed at disrupting the overlay services. Planning a CDN to balance the stringent service requirements and increase resilience to attacks in a cost-efficient way entails solving the content placement problem (CPP) across the cDCs and eDCs. This article proposes a framework for finding Pareto-optimal solutions with minimal user-to-content distance and maximal robustness to targeted link cuts, under a defined budget. We formulate two optimization problems as integer linear programming (ILP) models. The first, denoted as K-best CPP with minimal distance (K-CPP-minD), identifies the eDC/cDC placement solutions with minimal user-to-content distance. The second performs critical link set detection to evaluate the resilience of the K-CPP-minD solutions to targeted fiber cuts. Extensive simulations verify that the eDC/cDC selection obtained by our models improves network resilience to link cut attacks without adversely affecting the user-to-content distances or the core network traffic mitigation benefits.publishe

    The minimum cost D-geodiverse anycast routing with optimal selection of anycast nodes

    Get PDF
    Consider a geographical network with associated link costs. In anycast routing, network nodes are partitioned into two sets - the source nodes and the anycast (destination) nodes - and the traffic of each source node is routed towards the anycast node providing the minimum routing cost path. By considering a given geographical distance parameter D, we define an anycast routing solution as D-geodiverse when for each source node there are two routing paths, each one towards a different anycast node, such that the geographical distance between the two paths is at least D. Such a solution has the property that any disaster with a coverage diameter below D affecting one routing path (but without involving neither the source node nor its entire set of outgoing links) cannot affect the other path, enhancing in this way the network robustness to natural disasters. The selection of the anycast nodes has an impact both on the feasibility and cost of a D- geodiverse anycast routing solution. Therefore, for a desired number of anycast nodes R, we define the minimum cost D- geodiverse anycast problem (MCD-GAP) aiming to identify a set of R anycast nodes that obtain a minimum cost routing solution. The problem is defined based on integer linear programming and is extended to consider the existence of vulnerability regions in the network, i.e., by imposing the geographical distance D only between network elements belonging to the same region. We present computational results showing the tradeoff between D and R in the optimal solutions obtained with and without vulnerability regions.This paper is based upon work from COST Action CA15127 ("Resilient communication services protecting end user applications from disaster-based failures ‒ RECODIS") supported by COST Association. The work was financially supported by FCT, Portugal, under the projects CENTRO- 01-0145-FEDER-029312 and UID/EEA/50008/2013 and through the postdoc grant SFRH/BPD/ 111503/2015.publishe

    Content Accessibility in Optical Cloud Networks Under Targeted Link Cuts

    No full text
    One of the key enablers of the digital society is a highly reliable information infrastructure that can ensure resiliency to a wide range of failures and attacks. In cloud networks, replicas of various content are located at geographically distributed data centers, thus inherently enhancing cloud network reliability through diversification and redundancy of user accessibility to the content. However, cloud networks rely on optical network infrastructure which can be a target of deliberate link cuts that may cause service disruption on a massive scale. This paper investigates the dependency between the extent of damage caused by link cuts and a particular replica placement solution, as a fundamental prerequisite of resilient cloud network design that lacks systematic theoretical quantification and understanding. To quantify the vulnerability of optical cloud networks based on anycast communication to targeted link cuts, we propose a new metric called Average Content Accessibility (ACA). Using this metric, we analyze the impact of the number and the placement of content replicas on cloud network resiliency and identify the best and the worst case scenarios for networks of different sizes and connectivity. We evaluate the efficiency of simultaneous and sequential targeted link cuts, the latter reassessing link criticality between subsequent cuts to maximize disruption. Comparison with Average Two-Terminal Reliability (A2TR), an existing robustness measure for unicast networks, shows great discrepancy in the vulnerability results, indicating the need for new measures tailored to anycast-based networks.QC 20170529</p
    corecore