6,624 research outputs found

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page

    Processing techniques for partial tree-pattern queries on XML data

    Get PDF
    In recent years, eXtensible Markup Language (XML) has become a de facto standard for exporting and exchanging data on the Web. XML structures data as trees. Querying capabilities are provided through patterns matched against the XML trees. Research on the processing of XML queries has focused mainly on tree-pattern queries. Tree-pattern queries are not appropriate for querying XML data sources whose structure is not fully known to the user, or for querying multiple data sources which structure information differently. Recently, a class of queries, called Partial Tree-Pattern Queries (PTPQs) was identified. A central feature of PTPQs is that the structure can be specified fully, partially, or not at all in a query. For this reason. PTPQs can be used for flexibly querying XML data sources. This thesis deals with processing techniques for PTPQs. In particular, it addresses the satisfiability, containment and minimization problems for PTPQs. In order to cope with structural expression derivation issues and to compare PTPQs, a set of inference rules is suggested and a canonical form for PTPQs that comprises all derived structural expressions is defined. This canonical form is used for determining necessary and sufficient conditions for PTPQ satisfiability. The containment problem is studied both in the absence and in the presence of structural summaries of data called dimension graphs. It is shown that this problem cannot be characterized by homomorphisms between PTPQs, even when PTPQs are put in canonical form. In both cases of the problem, necessary and sufficient conditions for PTPQ containment are provided in terms of homomorphisms between PTPQs and (a possibly exponential number of) tree-pattern queries. This result is used to identify a subclass of PTPQs that strictly contains tree-pattern queries for which the containment problem can be fully characterized through the existence of homomorphisms. To cope with the high complexity of PTPQ containment, heuristic approaches for this problem are designed that trade accuracy for speed. The heuristic approaches equivalently add structural expressions to PTPQs in order to increase the possibility for a homomorphism between two contained PTPQs to exist. An implementation and extensive experimental evaluation of these heuristics shows that they are useful in practice, and that they can be efficiently implemented in a query optimizer. The goal of PTPQ minimization is to produce an equivalent PTPQ which is syntactically smaller in size. This problem is studied in the absence of structural summaries. It is shown that PTPQs cannot be minimized by removing redundant parts as is the case with certain classes of tree-pattern queries. It is also shown that, in general, a PTPQ does not have a unique minimal equivalent PTPQ. Finally, sound, but not complete, heuristic approaches for PTPQ minimization are presented. These approaches gradually trade execution time for accuracy

    Adding regular expressions to graph reachability and pattern queries

    Get PDF
    Abstractā€”It is increasingly common to find graphs in which edges bear different types, indicating a variety of relationships. For such graphs we propose a class of reachability queries and a class of graph patterns, in which an edge is specified with a regular expression of a certain form, expressing the connectivity in a data graph via edges of various types. In addition, we define graph pattern matching based on a revised notion of graph simulation. On graphs in emerging applications such as social networks, we show that these queries are capable of finding more sensible information than their traditional counterparts. Better still, their increased expressive power does not come with extra complexity. Indeed, (1) we investigate their containment and minimization problems, and show that these fundamental problems are in quadratic time for reachability queries and are in cubic time for pattern queries. (2) We develop an algorithm for answering reachability queries, in quadratic time as for their traditional counterpart. (3) We provide two cubic-time algorithms for evaluating graph pattern queries based on extended graph simulation, as opposed to the NP-completeness of graph pattern matching via subgraph isomorphism. (4) The effectiveness, efficiency and scalability of these algorithms are experimentally verified using real-life data and synthetic data. I

    On Low Treewidth Approximations of Conjunctive Queries

    Get PDF
    We recently initiated the study of approximations of conjunctive queries within classes that admit tractable query evaluation (with respect to combined complexity). Those include classes of acyclic, bounded treewidth, or bounded hypertreewidth queries. Such approximations are always guaranteed to exist. However, while for acyclic and bounded hypertreewidth queries we have shown a number of examples of interesting approximations, for queries of bounded treewidth the study had been restricted to queries over graphs, where such approximations usually trivialize. In this note we show that for relations of arity greater than two, the notion of low treewidth approximations is a rich one, as many queries possess them. In fact we look at approximations of queries of maximum possible treewidth by queries of minimum possible treewidth (i.e., one), and show that even in this case the structure of approximations remain rather rich as long as input relations are not binary

    Entity Ranking on Graphs: Studies on Expert Finding

    Get PDF
    Todays web search engines try to offer services for finding various information in addition to simple web pages, like showing locations or answering simple fact queries. Understanding the association of named entities and documents is one of the key steps towards such semantic search tasks. This paper addresses the ranking of entities and models it in a graph-based relevance propagation framework. In particular we study the problem of expert finding as an example of an entity ranking task. Entity containment graphs are introduced that represent the relationship between text fragments on the one hand and their contained entities on the other hand. The paper shows how these graphs can be used to propagate relevance information from the pre-ranked text fragments to their entities. We use this propagation framework to model existing approaches to expert finding based on the entity's indegree and extend them by recursive relevance propagation based on a probabilistic random walk over the entity containment graphs. Experiments on the TREC expert search task compare the retrieval performance of the different graph and propagation models
    • ā€¦
    corecore