2,153 research outputs found

    Containment for Rule-Based Ontology-Mediated Queries

    Get PDF
    Many efforts have been dedicated to identifying restrictions on ontologies expressed as tuple-generating dependencies (tgds), a.k.a. existential rules, that lead to the decidability for the problem of answering ontology-mediated queries (OMQs). This has given rise to three families of formalisms: guarded, non-recursive, and sticky sets of tgds. In this work, we study the containment problem for OMQs expressed in such formalisms, which is a key ingredient for solving static analysis tasks associated with them. Our main contribution is the development of specially tailored techniques for OMQ containment under the classes of tgds stated above. This enables us to obtain sharp complexity bounds for the problems at hand, which in turn allow us to delimitate its practical applicability. We also apply our techniques to pinpoint the complexity of problems associated with two emerging applications of OMQ containment: distribution over components and UCQ rewritability of OMQs

    Rewritability in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics

    Get PDF
    We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the ALC family and on conjunctive queries. We show that rewritability into FO and into monadic Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable when the original query satisfies a certain condition related to equality. We establish 2NExpTime-completeness for all studied problems except rewritability into MDLog for which there remains a gap between 2NExpTime and 3ExpTime. We also analyze the shape of rewritings, which in the MMSNP case correspond to obstructions, and give a new construction of canonical Datalog programs that is more elementary than existing ones and also applies to formulas with free variables

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    Temporalising Unique Characterisability and Learnability of Ontology-Mediated Queries

    Full text link
    Recently, the study of the unique characterisability and learnability of database queries by means of examples has been extended to ontology-mediated queries. Here, we study in how far the obtained results can be lifted to temporalised ontology-mediated queries. We provide a systematic introduction to the relevant approaches in the non-temporal case and then show general transfer results pinpointing under which conditions existing results can be lifted to temporalised queries

    Guarded Ontology-Mediated Queries

    Get PDF

    The Use of Ontologies in Contextually Aware Environments

    No full text
    In this paper we outline work in progress related to the construction of contextually aware pervasive computing environments, through the use of semantic and knowledge technologies. Key to this activity is modelling both where and what a user is doing at any given time. We present a prototype application to illustrate this work and describe part of its implementation

    Querying the Unary Negation Fragment with Regular Path Expressions

    Get PDF
    The unary negation fragment of first-order logic (UNFO) has recently been proposed as a generalization of modal logic that shares many of its good computational and model-theoretic properties. It is attractive from the perspective of database theory because it can express conjunctive queries (CQs) and ontologies formulated in many description logics (DLs). Both are relevant for ontology-mediated querying and, in fact, CQ evaluation under UNFO ontologies (and thus also under DL ontologies) can be `expressed\u27 in UNFO as a satisfiability problem. In this paper, we consider the natural extension of UNFO with regular expressions on binary relations. The resulting logic UNFOreg can express (unions of) conjunctive two-way regular path queries (C2RPQs) and ontologies formulated in DLs that include transitive roles and regular expressions on roles. Our main results are that evaluating C2RPQs under UNFOreg ontologies is decidable, 2ExpTime-complete in combined complexity, and coNP-complete in data complexity, and that satisfiability in UNFOreg is 2ExpTime-complete, thus not harder than in UNFO

    Answer Counting Under Guarded TGDs

    Get PDF
    We study the complexity of answer counting for ontology-mediated queries and for querying under constraints, considering conjunctive queries and unions thereof (UCQs) as the query language and guarded TGDs as the ontology and constraint language, respectively. Our main result is a classification according to whether answer counting is fixed-parameter tractable (FPT), W[1]-equivalent, #W[1]-equivalent, #W[2]-hard, or #A[2]-equivalent, lifting a recent classification for UCQs without ontologies and constraints due to Dell et al. [Holger Dell et al., 2019]. The classification pertains to various structural measures, namely treewidth, contract treewidth, starsize, and linked matching number. Our results rest on the assumption that the arity of relation symbols is bounded by a constant and, in the case of ontology-mediated querying, that all symbols from the ontology and query can occur in the data (so-called full data schema). We also study the meta-problems for the mentioned structural measures, that is, to decide whether a given ontology-mediated query or constraint-query specification is equivalent to one for which the structural measure is bounded
    corecore