381 research outputs found

    Optical mapping and optogenetics in cardiac electrophysiology research and therapy:a state-of-the-art review

    Get PDF
    State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping techniques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies

    Direct Time of Flight Single Photon Imaging

    Get PDF

    A non-dispersive approach for a Raman gas sensor

    Get PDF
    Although Raman spectroscopy is widely used on solids and liquids, its application on gaseous samples is far less commonplace due to technical issues related to dealing with very weak signals over a strong background. A demonstration of a possible approach for a simple, noninvasive Raman-based gas detector is presented and evaluated. This setup is meant to perform nitrogen and oxygen gas concentration measurements through Raman scattering working with optical filters instead of the traditional spectrograph and a lighting-grade 532 nm diode-pumped solid state laser as the pumping source. An industrial-grade CMOS camera is used as the detector, taking full advantage of the low noise and spatial resolution of this device. The system has been tested for both oxygen and nitrogen in a gas flow cell. Nitrogen measurement in a glass vial is reported in order to demonstrate and show some of the advantages that could be obtained with the use of an imaging detector instead of a single pixel one. The reported measurements show that even without using a dispersion spectrometer, this approach enables an indicative, noninvasive gas detection through glass vials with significant rejection of the elastic scattering contribution

    Computational image analysis of guided acoustic waves enables rheological assessment of sub-nanoliter volumes

    Get PDF
    We present a method for the computational image analysis of high frequency guided sound waves based upon the measurement of optical interference fringes, produced at the air interface of a thin film of liquid. These acoustic actuations induce affine deformations in the liquid, creating a lensing effect that can be readily observed using a simple imaging system. We exploit this effect to measure and analyze the spatio-temporal behavior as the acoustic wave interacts with the liquid. We also show that, by measuring the dynamics of the relaxation processes of these deformations when actuation ceases, we are able to determine the liquid's viscosity using just a lens-free optical sensor and a simple disposable biochip. Contrary to all other acoustic-based techniques in rheology, our measurements do not require monitoring of the wave parameters to obtain quantitative values for fluid viscosities, for sample volumes as low as 200 pL. We envisage that the proposed methods could enable high throughput, chip-based, reagent-free rheological studies within very small samples

    Computational Image Analysis of Guided Acoustic Waves Enables Rheological Assessment of Sub-nanoliter Volumes

    Get PDF
    We present a method for the computational image analysis of high frequency guided sound waves based upon the measurement of optical interference fringes, produced at the air interface of a thin film of liquid. These acoustic actuations induce an affine deformation of the liquid, creating a lensing effect that can be readily observed using a simple imaging system. We exploit this effect to measure and analyze the spatiotemporal behavior of the thin liquid film as the acoustic wave interacts with it. We also show that, by investigating the dynamics of the relaxation processes of these deformations when actuation ceases, we are able to determine the liquid’s viscosity using just a lens-free imaging system and a simple disposable biochip. Contrary to all other acoustic-based techniques in rheology, our measurements do not require monitoring of the wave parameters to obtain quantitative values for fluid viscosities, for sample volumes as low as 200 pL. We envisage that the proposed methods could enable high throughput, chip-based, reagent-free rheological studies within very small samples

    Development of a Dual-Mode CMOS Microelectrode Array for the Simultaneous Study of Electrochemical and Electrophysiological Activities of the Brain

    Get PDF
    Medical diagnostic devices are in high demand due to increasing cases of neurodegenerative diseases in the aging population and pandemic outbreaks in our increasingly connected global community. Devices capable of detecting the presence of a disease in its early stages can have dramatic impacts on how it can be treated or eliminated. High cost and limited accessibility to diagnostic tools are the main barriers preventing potential patients from receiving a timely disease diagnosis. This dissertation presents several devices that are aimed at providing higher quality medical diagnostics at a low cost. Brain function is commonly studied with systems detecting the action potentials that are formed when neurons fire. CMOS technology enables extremely high-density electrode arrays to be produced with integrated amplifiers for high-throughput action potential measurement systems while greatly reducing the cost per measurement compared to traditional tools. Recently, CMOS technology has also been used to develop high-throughput electrochemical measurement systems. While action potentials are important, communication between neurons occurs by the flow of neurotransmitters at the synapses, so measurement of action potentials alone is incapable of fully studying neurotransmission. In many neurodegenerative diseases the breakdown in neurotransmission begins well before the disease manifests itself. The development of a dual-mode CMOS device that is capable of simultaneous high-throughput measurement of both action potentials and neurotransmitter flow via an on-chip electrode array is presented in this dissertation. This dual-mode technology is useful to those studying the dynamic decay of the neurotransmission process seen in many neurodegenerative diseases using a low-cost CMOS chip. This dissertation also discusses the development of more traditional diagnostic devices relying on PCR, a method commonly used only in centralized laboratories and not readily available at the point-of-care. These technologies will enable faster, cheaper, more accurate, and more accessible diagnostics to be performed closer to the patient

    Making sense of light: the use of optical spectroscopy techniques in plant sciences and agriculture

    Get PDF
    As a result of the development of non-invasive optical spectroscopy, the number of prospective technologies of plant monitoring is growing. Being implemented in devices with different functions and hardware, these technologies are increasingly using the most advanced data processing algorithms, including machine learning and more available computing power each time. Optical spectroscopy is widely used to evaluate plant tissues, diagnose crops, and study the response of plants to biotic and abiotic stress. Spectral methods can also assist in remote and non-invasive assessment of the physiology of photosynthetic biofilms and the impact of plant species on biodiversity and ecosystem stability. The emergence of high-throughput technologies for plant phenotyping and the accompanying need for methods for rapid and non-contact assessment of plant productivity has generated renewed interest in the application of optical spectroscopy in fundamental plant sciences and agriculture. In this perspective paper, starting with a brief overview of the scientific and technological backgrounds of optical spectroscopy and current mainstream techniques and applications, we foresee the future development of this family of optical spectroscopic methodologies.info:eu-repo/semantics/publishedVersio
    corecore