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ABSTRACT: We present a method for the computational
image analysis of high frequency guided sound waves based
upon the measurement of optical interference fringes,
produced at the air interface of a thin film of liquid. These
acoustic actuations induce an affine deformation of the
liquid, creating a lensing effect that can be readily observed
using a simple imaging system. We exploit this effect to
measure and analyze the spatiotemporal behavior of the
thin liquid film as the acoustic wave interacts with it. We
also show that, by investigating the dynamics of the
relaxation processes of these deformations when actuation
ceases, we are able to determine the liquid’s viscosity using just a lens-free imaging system and a simple disposable
biochip. Contrary to all other acoustic-based techniques in rheology, our measurements do not require monitoring of the
wave parameters to obtain quantitative values for fluid viscosities, for sample volumes as low as 200 pL. We envisage that
the proposed methods could enable high throughput, chip-based, reagent-free rheological studies within very small
samples.
KEYWORDS: computational image analysis, holography, guided acoustic waves, microscopy, rheology

The visualization and characterization of acoustic waves
as they propagate in media have previously been used
to elucidate material properties and gain a deeper

understanding of physical phenomena, including the Raman-
Nath effect and Brillouin scattering.1,2 For example, it has
previously been shown that wave propagation through solid
media can reveal valuable information about the mechanical
properties of materials3 such as local stresses, densities, and
elastic moduli.4 In the case of the study of the propagation of
acoustic waves in liquids, as they pass either through the bulk
or across boundary interfaces and discontinuities, it is possible
to measure local viscosities, thermal conductivities, and
thermoelastic relaxation processes.5 In this context, it is
already well established that monitoring liquids’ viscosities
(for Newtonian fluids) or viscoelasticities (for non-Newtonian
fluids) is of importance in industry, for example, in the
formulation of paint and processed food as well as in
biomedical applications such as measuring blood viscosity.6

Conventional bulk rheology measurements are usually
performed by means of large benchtop viscometers and
rheometers (often requiring several milliliters of sample).
Recently, microrheology7,8 techniques requiring only a few
tens of microliters of sample have emerged, although many of
these protocols require complex sample processing, including
the addition of labels or tracer particles.9 Other methods have
also been reported that use nanoliter sample volumes, although
these all require auxiliary equipment such as benchtop optical
lasers,10 microscopes11 (e.g., atomic force microscopy),12

nanoliter droplet dispensers,12 or complex microfluidic channel
designs,11 making them cumbersome and unsuitable as
portable instruments.
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Guided acoustic waves have previously been used in
rheological applications13,14 by measuring their attenuation.
Such mechanical excitations, including those using surface
acoustic waves (SAWs) and Lamb-type waves, have also been
used to drive liquid actuation in microfluidic systems.15−18 In
this work, we make use of the capability of acoustic waves to
deform a subnanoliter-scale liquid volume and monitor the
dynamics of its relaxation when the actuation is turned off (i.e.,
in contrast with all previous rheological measurement
techniques there are no acoustic waves propagating in the
liquid during the measurement).
Different methods have previously been implemented for

gathering a better understanding of wave propagation. For
instance, Schlieren imaging and interferometric systems such as
laser Doppler vibrometers (LDVs) have been used for studying
acoustic wave propagation and visualization of acousto-optic
interactions,19 where light is modulated by ultrasonic waves to
generate Fraunhofer diffraction patterns.3 However, optical
aberrations (e.g., in Schlieren visualization) can often result in
reduced contrast and poor fidelity,19 whereas in the case of
LDV strong acousto-optic interaction in condensed medium
can result in large measurement errors, especially when applied
to liquids.20 Alternative methods using holography have also
been used to visualize ∼1 MHz waves but these require the
addition of reagents, acting as reporter particles to generate the
holograms.21 Recently, a fast but low-resolution method for
visualizing acoustic beams was proposed,22 where an excited
region within a thin liquid layer produced an optical pattern
because of the local deformation of the liquid film.
Here, we present a simple optical method for imaging small

amplitude guided waves of wavelength λ in plates coated by a
thin fluid layer of thickness 2a (with 2a ≪ λ) and demonstrate
its application for measuring the viscosity of liquid samples
with subnanoliter volumes, without monitoring wave param-
eters. Using computational imaging23,24 of these guided waves
at ultrasonic frequencies (∼10 MHz), we demonstrate their
visualization over a wide field-of-view (∼30 mm2) within a
lens-free system. The method was validated by a direct
visualization of Lamb-type waves and is supported by analytical
and numerical models.
In our configuration, the liquid−air interface was first

deformed using acoustic actuation and the relaxation dynamics
of the deformation was monitored, once the acoustic excitation
was switched off. As stated, contrary to all previous techniques,
no acoustic wave is propagating when the measurement is
carried out. We corroborate this by measuring the rheological
properties of aqueous mixtures of glycerol and polyethylene
glycol, Mr = 400 (PEG400). We demonstrated the ability of
the technique to investigate nanoliter-scale volumes of liquids
(where other approaches require orders of magnitude larger
sample volumes). Our approach does not require the addition
of reagents or labels and is contactless (these being “ideal”
requirements in biological studies). We envisage that in the
future the device can not only be integrated with microfluidics
and lab-on-chip platforms for high-throughput characterization
of bioliquids but could also be used for other applications such
as inspection of materials properties (e.g., industrial wafer
stress-testing or rapidly investigating wafer defects by exploring
deformations in a thin film of liquid).

RESULTS AND DISCUSSION
Imaging System. The imaging system comprised a three-

dimensional (3D) printed housing to hold an array of green

light-emitting diodes (LED) that can be selectively illuminated
and controlled using a microcontroller. The imaging system
also included an optical band-pass filter (532 nm), a 3D
printed sample holder to align a disposable waveguide with the
piezoelectric interdigitated transducer (IDT) and a comple-
mentary metal oxide semiconductor (CMOS) sensor with a
pixel pitch of 1.67 μm, Figure 1.

The 20 fiber-coupled LED array was used to illuminate the
sample from below,25 as shown in Figure 1. It was designed to
generate a set of subpixel shifted images, which were then used
to digitally synthesize images with subpixel resolution.26−28

The disposable biochip was coupled to the IDT using a thin
layer of polyethylene glycol (PEG 400) which we found to be a
stable coupling agent. The transmitted light was recorded by
the CMOS sensor, which was placed at ∼1 mm distance from
the sample, so that the sample field-of-view was equal to the
active area of the CMOS imager. A Rayleigh wave, generated
on the lithium niobate (LiNbO3) transducer, coupled into the
platelike glass biochip, with finite dimensions, creating a
standing Lamb-type wave, Figure 2.
This standing wave induced an affine deformation of the

thin liquid layer on the substrate of thickness 2h (with 2a ≪
2h), which was detected using the CMOS image sensor to
measure the bright and dark fringes generated by the distortion
of the optical wavefronts while passing though the liquid−air
interface, Figure 3.
We investigated how the liquid layer deformation, at its

maximum at the standing wave antinodes and at its minimum
at the standing wave nodes, could be used to create
nanolensing effects. The induced deformation of the liquid’s

Figure 1. Three-dimensional printed, acoustic computational
imaging system. (a) The lens-free computational imaging system
integrated with an ultrasonic transducer. (b) The schematic of the
device. The device contains 20 LEDs (1) with a selectable switch
using an onboard microcontroller. The light from each LED was
coupled into an optical fiber (2) that passes through a narrow band
filter (3). The sample, illuminated from the bottom, was placed on
the lens-free microscope using a detachable tray containing the
SAW IDT (4). The CMOS imager (5) was placed directly on top of
the sample (∼1 mm high) to record the transmitted light from the
sample.
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surface generates an optical profile that can be modeled to a
first approximation as a sinusoidal function, allowing an
estimation of the deformation height using a ray-tracing model
(calculated as about 150 nm, Figure 4). As a result, the light
passing through the liquid−air interface can be both focused
(bright fringes) and defocused (dark fringes), Figure 4b,c.
The corrugation height of the deformations in the SAW

actuation of the liquid surface at the interface depends upon
the frequency and amplitude of the standing wave as well as on
the liquid’s physical properties.29−32 Our lens-free optical
imaging configuration has unit-magnification.33 To quantita-
tively analyze the intensity of the fringes’ patterns, we
developed a graphic user interface that allowed us to load a
sequence of images (or a video) to analyze selected regions of
interest, frame by frame. The wavelength of the periodic
deformation of the liquid was calculated using a fast Fourier

transform (FFT) algorithm. The temporal response of the
deformation was calculated by implementing a dynamic spline
fitting algorithm as shown in Figure 5.
The results from the lens-free imaging system were validated

by creating a steady-state standing acoustic sinusoidal wave
pattern by ultraviolet (UV) illumination of a photocurable
polymer. This technique enabled us to freeze the induced
deformation of the polymer thin layer, showing the spatial
periodicity of the elastic waves. This induced structure was
visualized by both the lens-free imaging system and a scanning
electron microscope (SEM), Figure 3b. From these images, we
estimated the steady-state wavelength at an excitation of 9.71
MHz to be 375 μm in the lens-free image validated by the
SEM image, respectively. In the case of liquid films, the
effectiveness of the lens-free imaging system was further
corroborated using laser Doppler vibrometry. For example,

Figure 2. A schematic of an IDT on a lithium niobate (LiNbO3)
wafer. The pitch of the IDT was the same as the wavelength (λSAW)
of the Rayleigh wave. The Rayleigh wave couples into disposable
(glass) biochip as a Lamb-type wave. The IDT and the disposable
biochip are coupled using a thin layer of PEG400.

Figure 3. Lamb-type wave imaging. (a) An image of the Lamb-type
wave in a thin film of glycerol (60% w/w in water) on a glass
superstrate actuated by a 9.71 MHz SAW transducer. The SAW
beam couples into the superstrate as a Lamb wave and reflects
back from the glass−air boundary to create a standing wave in the
liquid. The red-dotted box shows the cartoon of the underlying
principle. At the nodes of the standing wave, the surface
displacement was minimum, whereas at the antinodes the surface
displacement was maximum creating a lens-like profile in the
liquid. The incident light was defocused and focused respectively
and was collected at the CMOS sensor in the form of dark and
bright fringes allowing imaging of the wave. (b) Comparison
between an SEM image and a lens-free image of a UV curable
polymer used to create permanent wave patterns. Full frames of
the images are available in Supporting Information Video S1.

Figure 4. Liquid deformations and optical elements. (a) Ray-
tracing model geometry for the lens-free imaging system. The light
rays from a partially coherent light source pass through a liquid
layer of thickness 2a under a sinusoidal corrugation of the liquid
surface. The light refracts as it passes through different media, that
is, the liquid (mineral oil), glass, and air before being detected by
the CMOS sensor. The corrugation height of the liquid increases
with the excitation amplitude. (b) Modeled liquid deformation for
mineral oil sample. The dark area represents the pressure nodes in
the glass plate where the liquid deformation was minimum,
whereas the bright regions represents the antinodes. (c)
Corresponding image for experimental measurement. The
modeling shows that the corrugation height is 0.154 μm.
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when measuring phase velocity there is no significant
difference between the vibrometer (2534.9 ± 1.8 m/s), the
lens-free system (2503.7 ± 21.6 m/s) and the analytical value
(2525.9 m/s).
Theoretical Analysis. We considered the analysis of small

amplitude ultrasonic guided waves (with a wavenumber k =
2πf/c, where f is the frequency, c is the guided wave phase
velocity) propagating in a nonviscous liquid−solid bilayer. The
viscosity of the liquid was disregarded because its effect on the

phase velocity of Lamb waves was negligible compared to that
on their attenuation.34 The liquid layer (thickness, 2a) was
characterized using the ultrasonic wave phase velocity in the
liquid, cF, and the volumetric mass density, ρF. The elastic solid
layer (thickness, 2h) and volumetric mass density ρ enables
propagation of longitudinal and transversal ultrasonic waves
with velocities cL and cT, respectively. The guided waves in the
liquid−solid bilayer were analyzed using the following
dispersion equation35

Figure 5. Graphical user interface (GUI). (a) The GUI to measure the wavelength and analyze the transient response. The GUI shows the
frame-by-frame preview of the video and allows the user to select the appropriate frame range for further analysis. (b) Process flow of the
image processing algorithm. For measuring the phase velocity, a 1D FFT is applied to the region of interest and the output is shown in the
GUI. For transient analysis, the region of interest (user drawn lines) is filtered to remove background noise and the normalized pixel
intensity is computed. The maximum and minimum intensity values were calculated by fitting a spline curve and the temporal response was
plotted in the GUI. Upon selecting a frame, reporting lines were added to analyze multiple regions. The display outputs are (bottom left) the
calculated wavelength, (bottom center) the temporal behavior of the image brightness (i.e., relaxation of the antinode) as the SAW is
switched off, and (bottom right) the recovery of the dark regions (i.e., the nodes). The temporal response was calculated by implementing a
dynamic spline-fitting algorithm.

Figure 6. (a) Lamb wave dispersion curves in a glass (biochip) plate of 145 μm thickness, where the blue and red colors indicate
antisymmetric and symmetric Lamb wave modes, respectively. The green circle marks the experimentally excited A0 Lamb wave mode at
9.71 MHz. (b) Dispersion of antisymmetric guided wave mode versus liquid thickness 2a at 9.71 MHz, where blue color shows the analytical
result (eq 1). The CMOS sensor resolution rCMOS shows that the liquid thickness variations 2Δa < 5 μm can be neglected in the
measurement system.
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where ω = 4fh/cT and ξ = 4fh/c.
In absence of a liquid layer (i.e., when its thickness is 0), eq

1 enabled us to calculate the dispersion curves of the Lamb
waves in the free solid plate, Figure 6 (model parameters are
listed in Table S1). A cutoff frequency of the higher order
Lamb wave mode A1 was at 11.7 MHz. Numerical results
showed that only the fundamental Lamb wave modes A0 and
S0 can exist in the free solid plate below such frequency. The
antisymmetric excitation source ensures that the antisymmetric
mode A0 is dominant in the thin glass plate. When the plate
was coated by a thin liquid film, the Lamb waves did not
couple into the coating liquid (as the phase velocity changes
were negligible) but the waves were attenuated by the viscosity
of the liquid.34 We measured the thickness of the liquid layer at
about 7 μm with optical microscopy. Our analysis showed that
in the cases of thin layers (i.e., 2a < 15 μm), the wavelength of
the guided wave of A0 decreases from λ = 269.1 μm to λ =
264.3 μm. Given the finite resolution of the CMOS sensor, we
would not be able to detect phase velocity changes of the
guided wave for variations of the liquid film thickness below 5
μm (Figure 6b). Finally, the theoretical framework introduced
above indicated that small volumes of liquid (subnanoliters),
such as those used in this work, do not influence the wave
propagation, confirming the analytical results.
We also show that guided waves with a longer wavelength

than the liquid thickness (i.e., λ ≫ 2a) do not couple into the
liquid from the glass plate. Because the wave amplitude is
much smaller than the liquid thickness (2a), any possible
nonlinear effects such as acoustic streaming, cavitation, jetting,
and nebulization of the liquid are either negligible or not
possible.
Transient Response and Rheological Application.

Investigations of dynamics of standing waves at the liquid−
air interface can be dated to the pioneering studies of Faraday
in 1831,36 where the formation of standing waves on the free
surface of a liquid, subjected to vertical sinusoidal oscillation,

was reported. Since then, several attempts have been
made37−40 to provide a general solution by exploring
increasingly complex systems, including inviscid liquids
(where the damping effects are neglected),41 simple New-
tonian liquids42 (with a time-invariant viscosity), and generic
viscoelastic liquids32 (with a frequency-dependent viscosity).
In the case of Newtonian liquids, the general analytical
approach is often based on solving a Mathieu equation, which
describes the forcing of a simple harmonic oscillator by
periodic variation of its proper frequency.43 The displacement
x(t) of a harmonic oscillator can be described by31

μ ω+ + =x
t

x
t

t x
d
d

2
d
d

( ) 0
2

2 0
2

(8)

ω ω ε= [ + ]t t( ) 1 cos( )0
2

0
2

(9)

where μ is the damping rate, ε is the amplitude of the force at
frequency ω, and t is the time. An analysis of the Mathieu
equation shows that the ε − ω parameter plane is divided into
regions where the displacement x(t) goes to zero at long times
(assuming finite damping), and regions (known as resonance
tongues) where it grows exponentially without bound.31

A thin liquid film was deposited onto the biochip and wide
area imaging of Lamb-type waves was performed. The liquid,
placed on such a solid substrate, could be assumed to be
subjected to an affine sinusoidal deformation, whose amplitude
(∼0.154 μm) was much smaller than the liquid thickness (∼7
μm), with the liquid−air interface mirroring the deformation
induced by the guided wave at the solid−liquid interface, as
shown in Figure 4. Because the liquid thickness was much
smaller than the guided wave’s wavelength and as the acoustic
wave did not couple into the liquid, it follows that under
continuous ultrasonic excitation the deformation of the liquid’s
surface reached a steady-state amplitude.
Upon switching the ultrasonic actuation off, the acoustic

wave energy at the solid−liquid boundary dissipated almost
instantaneously (that is, ∼μs), while the deformation of the
liquid at the liquid−air interface relaxed at a much slower rate
(i.e., over a few seconds). As stated, the initial deformation (at
the point where the acoustic actuation is turned off) mirrored
the Lamb-type wave deformations of the surface, as a single-
mode pattern. The relaxation processes were analyzed as a
relaxation phenomena of a single-mode small instability
perturbing an overdamped harmonic oscillator.43−45 For such
a system, we note that the additional approximation, neglecting
the acceleration due to gravity, enables eq 8 to be solved to
give a wave amplitude (Aκ(t)) that is expected to decrease
exponentially

ζ∝ −κA t t( ) exp( ) (10)

with decay rate:

ζ ν∝
σκ
ρ

2
3

F (11)

where ν is the kinetic viscosity of the liquid, σ is the liquid−air
surface tension, and κ is the wavelength of the initial
instability.46

The transient relaxation responses of different water−
glycerol mixtures (differing by less than 10% in surface
tension, but orders of magnitude in viscosity), as well as
PEG400-water mixtures, were investigated when the excitation
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of the elastic wave was removed, Figure 7. The results show
that the attenuation rate was faster and the overall relaxation

time was shorter for more viscous liquids (inset). The
measurements agreed with conventional bulk rheology values,
Figure S2. When subjected to SAWs, highly viscous liquids
(e.g., 100% glycerol) undergo rapid heating. Figure S3 shows
the changes in viscosity induced by the heat generated after 5 s
SAW actuation, consistent with results reported by Zha et al.47

and Shilton et al.48 Figure S4 also provides an example of
infrared images used to evaluate the temperature of the films.
The results demonstrate that SAW-induced heating only affects
significantly the highest viscosity used. When the viscosity of
100% glycerol was adjusted to that of the measured
temperature of 50 °C (triangle in the inset), the measured
relaxation time agreed well with the theoretical prediction.
Hence, there is an opportunity to use this lens-free imaging
system as a low-cost chip-based tool for measuring liquids
viscosities. The advantage of requiring only subnanoliters
sample volume cannot be underestimated for high value
products, such as those used in biological experimentation.
Finally, we highlight that the deviation from this inverse

proportionality of the relaxation time for 100% glycerol (η =
612 cP) is due to the elastic wave heating effects (Figure 7)
that have been observed for highly viscous liquids (i.e., pure
glycerol).47,48 For low viscous liquids (i.e., for η ≤ 109 cP) the
proposed device does not require temperature monitoring.
Nonetheless, we anticipate that future versions of the device
will include temperature control capability.

CONCLUSIONS
We present a method to visualize and quantitatively measure
the wavelengths of guided acoustic waves using a wide field-of-
view lens-free imaging system. We extend this capability to
characterize beam formation and attenuation and subsequently
to study the rheological properties of thin (Newtonian) liquid
layers. Glycerol−water and PEG−water mixtures having

different viscosities showed excellent agreement between
theoretical predictions and experimental results, enabling us
to establish a relationship between the transient response of
the liquid−air interface and the kinematic viscosity of such
liquids.
The use of ultrasmall liquid sample volumes on disposable

biochips makes this technique particularly attractive for
applications where rare or high value biological liquids are
employed; for example, medical diagnostics or in a quality
control process of pharmaceuticals. This approach could also
be readily extended to non-Newtonian liquids, demonstrating
the applicability of this technique in rheology.

EXPERIMENTAL SECTION
SAW Device Fabrication. Interdigitated transducers (IDT) with

40 electrode pairs (10 nm Ti, 100 nm Au) were patterned on a 128°Y-
cut X-propagating LiNbO3 wafer of 1 mm thickness (Roditi, U.K.)
using standard photolithography techniques as described previously.49

Their width and pitch were designed using the simple wavelength
relationship: f = c/λ and λ = D, where f is the frequency, c is the wave
propagation velocity of LiNbO3 and D is the pitch.50 For 9.71 MHz, λ
was 410 μm. The sound propagation velocity in LiNbO3 was 3992 m/
s and the IDT aperture was 20 mm. The IDTs also showed further
harmonics at 18.63 and 20.41 MHz, as measured using the S11-
parameter from a network analyzer (E5701C ENA, Agilent
Technologies).

Lens-Free Computational Imaging. The lens-free microscope
was developed and implemented using 3D printed components, as
shown in Figure 1, and consisted of an illumination module, an optical
band-pass filter, a sample holder attached to the SAW device and a 10
mega pixel CMOS imager (UI-1492LE-M, Imaging Development
Systems). The illumination module consisted of 20 fiber coupled
LEDs that were individually controlled using a microcontroller.51

Measurements were carried out using only one LED (although the
presence of multiple LEDs facilitates a pixel super-resolution imaging
capability27,28). Imaging with a resolution below the pixel size in the
future could enable studying acoustic waves at higher frequencies
(shorter wavelengths).

A partially coherent light source (a fiber coupled LED, with a
center wavelength of ∼532 nm) was used to irradiate the sample. The
interference between the directly transmitted and the scattered light
from the sample was recorded at the CMOS imager as an inline
hologram.52 The vertical distance between the sample and the CMOS
detector plane was ∼1 mm, such that the sample field-of-view was
equal to the active area of the CMOS imager. These inline holograms
could be used directly for analysis of the sample or, when spatial
resolution is of importance, they can be rapidly reconstructed by
digitally back-propagating the hologram to the object plane or by
using iterative phase-recovery methods.24,53 Image reconstruction and
elimination of twin-image related artifacts in the final holographic
image were crucial in identifying smaller objects (∼<5 μm), however
it was not necessary for the detection of larger spatial features of
interest as presented here. Further details of this on-chip lens-free
holographic imaging system can be found in the reported work.28

Samples were prepared by spin-coating the liquid of interest on the
glass biochip (Fisher Finest Premium 12-548A, Fisher Scientific). The
disposable glass biochips were thoroughly cleaned in acetone (67-64-
1, Fisher) overnight and then washed with ethanol (10646134, Acros
Organics) and deionized water (7732-18-5, Sigma-Aldrich). After
drying, the biochips were plasma-treated (PDC-32G, Harrick Plasma)
to remove any organic residuals and the sample was spin coated at
12 000 rpm for 60 s (WS650HZB, Laurell). The biochips were then
placed on the sample holder and coupled to the SAW device using
PEG400 (25322-68-3, Sigma-Aldrich). The thin coupling film had a
calculated volume of about 300 nL. The technique could also be
implemented directly on the piezoelectric wafer used as a waveguide
when cost and contamination issues are not critical to the target
application. Wide area imaging of Lamb-type waves was performed,

Figure 7. Viscosity measurements. The transient response upon
cessation of acoustic actuation of the induced affine deformation of
the liquid-air interface of various glycerol−water (triangles) and
PEG400−water (circles) mixtures. Measurements were performed
as described in Figure 5. The inset shows the existence of an
inverse proportionality between the measured time of relaxation
and the fluids’ viscosity.
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illuminated from below, with the transmitted light recorded using a
CMOS imager chip.
Upon switching the ultrasonic actuation off, the acoustic wave

energy at the solid−liquid boundary dissipated almost instanta-
neously, whereas the deformation of the liquid at the liquid−air
interface relaxes at a much slower rate (over a few seconds).
Rheological characterization required a volume whose geometry was
defined by one acoustic wavelength (∼162 μm, x), averaged over 10
pixels on the CMOS sensor (∼16.7 μm, y), with a thickness (z) of ∼7
μm (i.e., <200 pL). To ensure samples did not evaporate,
measurements were performed in a controlled humidified environ-
ment. Throughout all experiments, sample temperature was externally
monitored using a thermal imager (C2, FLIR).
In all cases, the illumination module was controlled using a

LABVIEW program. The image analysis was performed using a laptop
(Lenovo Y480 with an Intel Core i7-3610QM microprocessor).
Physical Characterization. Physical characterization experiments

were performed as follows: The liquid sample thickness was measured
on biochips by adding 20 μM fluorescein dye, and a z-stack was
obtained on a confocal microscope (LSM 510 Meta, Zeiss).
Ultrasonic characterization was performed either on the LiNbO3
wafer as a Rayleigh wave, or on the glass biochip as a Lamb-type wave
using a LDV (UHF-120, Polytec GmbH). An electrical network
analyzer (E5701C ENA, Agilent Technologies) was used for the
ultrasonic frequency characterization of the LiNbO3 transducer.
Ultrasonic waves “set” in cured polymer as show in Figure 3 were
measured using a scanning electron microscope (Nova 600 SEM/FIB
System).

ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsnano.9b03219.

Figure S1, acoustic mode characterization; Figure S2,
viscosity measurements of PEG400-water mixtures;
Figure S3, change in viscosity with a 5 s SAW actuation
(with induced heating) for glycerol−water mixtures;
Figure S4, example of infrared photographs of 100%
glycerol film under SAW actuation; Table S1, physical
properties of materials used in numerical modeling
(PDF)
Video of lens-free imaging of Lamb-type waves (MP4)

AUTHOR INFORMATION
Corresponding Authors
*E-mail: ozcan@ucla.edu. Phone: +1 (310) 500 6568.
*E-mail: jon.cooper@glasgow.ac.uk. Phone: +44 (0) 141 330
4931.
ORCID
Muhammad Arslan Khalid: 0000-0002-1797-590X
Aniruddha Ray: 0000-0003-2561-2217
Manlio Tassieri: 0000-0002-6807-0385
Julien Reboud: 0000-0002-6879-8405
Aydogan Ozcan: 0000-0002-0717-683X
Jonathan M. Cooper: 0000-0002-2358-1050
Present Address
¶Aniruddha Ray: Department of Physics and Astronomy,
University of Toledo, Ohio, USA.
Author Contributions
The idea was conceived by M.A.K., A.R., M.T., J.C., and A.O.
The experiments and analysis were performed by M.A.K., A.R.,
and S.C. D.T. helped in the development of the device. M.A.K.
integrated the IDT to the sample chamber. M.A.K. S.C., A.R.,
and A.O. developed the image analysis algorithms and the

GUI. M.A.K., A.D., J.R., and J.C. analyzed SAW propagation
models. M.A.K. and M.T. performed the rheology analysis.
The manuscript was written through the contributions of all
the authors. J.C. and A.O. supervised the research.
Author Contributions
∇M.A.K. and A.R. contributed equally.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors acknowledge D. Paterson (University of Glasgow)
for his help with confocal microscopy, Dr. R. Wilson
(University of Glasgow) for his technical support, M. Daloglu
(UCLA) for his help with SEM imaging of the waves, A. Feizi
(UCLA) for his help with the LabView code, M. Khan
(UCLA) for his help with MATLAB codes, and the James
Watt Nanofabrication Centre (University of Glasgow) for
device manufacturing. J.C. acknowledges the support from
EPSRC Grant (EP/K027611/1), an ERC Advanced Inves-
tigator Award (340117 Biophononics). M.K. acknowledges
James Watt, David Brown Mobility, and Mac Robertson
scholarships in the U.K. M.T. acknowledges support via
EPSRC Grants (EP/R035067/1, EP/R035563/1, and EP/
R035156/1). A.O. acknowledges the support from Howard
Hughes Medical Institute and the U.S. National Science
Foundation.

REFERENCES
(1) Brillouin, L. Diffusion De La Lumier̀e et Des Rayons X Par Un
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