769 research outputs found

    Contactless Access Control Based on Distance Bounding

    Get PDF
    Contactless access control systems are critical for security but often vulnerable to relay attacks. In this paper, we define an integrated security and privacy model for access control using distance bounding (DB) which is the most robust solution to prevent relay attacks. We show how a secure DB protocol can be converted to a secure contactless access control protocol. Regarding privacy (i.e., keeping anonymity in strong sense to an active adversary), we show that the conversion does not always preserve privacy but it is possible to study it on a case by case basis. Finally, we provide two example protocols and prove their security and privacy according to our new models

    A framework for analyzing RFID distance bounding protocols

    Get PDF
    Many distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unied framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary, and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is nally demonstrated on a study case: Munilla-Peinado distance bounding protocol

    Risks of Offline Verify PIN on Contactless Cards

    Get PDF
    Contactless card payments are being introduced around the world al- lowing customers to use a card to pay for small purchases by simply placing the card onto the Point of Sale terminal. Contactless transactions do not require veri- fication of the cardholder’s PIN. However our research has found the redundant verify PIN functionality is present on the most commonly issued contactless credit and debit cards currently in circulation in the UK. This paper presents a plausible attack scenario which exploits contactless verify PIN to give unlimited attempts to guess the cardholder’s PIN without their knowledge. It also gives experimental data to demonstrate the practical viability of the attack as well as references to support our argument that contactless verify PIN is redundant functionality which compromises the security of payment cards and the cardholder

    An ISO/IEC 7816-4 Application Layer Approach to Mitigate Relay Attacks on near Field Communication

    Get PDF
    Near Field Communication (NFC) has become prevalent in access control and contactless payment systems, however, there is evidence in the literature to suggest that the technology possesses numerous vulnerabilities. Contactless bank cards are becoming commonplace in society; while there are many benefits from the use of contactless payments, there are also security issues present that could be exploited by a malicious third party. The inherently short operating distance of NFC (typically about 4 cm) is often relied upon as a means of ensuring intentional interaction on the user’s part and limiting attack vectors. However, NFC is particularly sensitive to relay attacks, which entirely negate the security usefulness of the short-range aspect of technology. The aim of this article is to demonstrate how standard hardware can be used to exploit the technology to carry out a relay attack. Considering the risk that relay attacks pose, a countermeasure is proposed to mitigate this threat. Our countermeasure yields a 100% detection rate in experiments undertaken – in which over 10,000 contactless transactions were carried out on a range of different contactless cards and devices. In these experiments, there was a false positive rate of 0.38% – 0.86%. As little as 1 in every 250 transactions were falsely classified as being the subject of a relay attack and so the user experience was not significantly impacted. With our countermeasure implemented, transaction time was lengthened by only 0.22 seconds

    The Applicability of Ambient Sensors as Proximity Evidence for NFC Transactions

    Get PDF
    Near Field Communication (NFC) has enabled mobile phones to emulate contactless smart cards. Similar to contactless smart cards, they are also susceptible to relay attacks. To counter these, a number of methods have been proposed that rely primarily on ambient sensors as a proximity detection mechanism (also known as an anti-relay mechanism). In this paper, we empirically evaluate a comprehensive set of ambient sensors for their effectiveness as a proximity detection mechanism for NFC contactless-based applications like banking, transport and high-security access controls. We selected 17 sensors available via the Google Android platform. Each sensor, where feasible, was used to record the measurements of 1,000 contactless transactions at four different physical locations. A total of 252 users, a random sample from the university student population, were involved during the field trials. After careful analysis, we conclude that no single evaluated mobile ambient sensor is suitable for proximity detection in NFC-based contactless applications in realistic deployment scenarios. Lastly, we identify a number of potential avenues that may improve their effectiveness
    • 

    corecore