
Contactless Access Control based on Distance
Bounding

Handan Kılınç and Serge Vaudenay

EPFL, Lausanne, Switzerland

Abstract. Contactless access control systems are critical for security
but often vulnerable to relay attacks. In this paper, we define an in-
tegrated security and privacy model for access control using distance
bounding (DB) which is the most robust solution to prevent relay at-
tacks. We show how a secure DB protocol can be converted to a se-
cure contactless access control protocol. Regarding privacy (i.e., keeping
anonymity in strong sense to an active adversary), we show that the
conversion does not always preserve privacy but it is possible to study it
on a case by case basis. Finally, we provide two example protocols and
prove their security and privacy according to our new models.

Keywords: access control, distance bounding, RFID, NFC, relay attack, mafia
fraud, distance hijacking, privacy

1 Introduction

Access control (AC) is a mechanism assuring that a system or a place can be
accessed only by authorized users. AC is in the center of our daily lives. We use it
to unlock smartphones, unlock and start cars, enter buildings or databases. Au-
thentication in the AC systems based on two factors: The first one is a password,
PIN code or biometric information such as fingerprints and retinal scans. The
second one is a (contactless) card where authentication is done without contact
via this card. With the development of the technology, the usage of contactless
AC is becoming common because it is more convenient than carrying various
keys, using PIN codes or using biometric information. However, the full security
model for contactless AC has not been studied adequately. In this paper, we
focus on contactless AC. So, whenever we use AC, we refer to contactless one.

A report from Smart Card Alliance [1] lists the main components of an
access control system (tags, readers, controllers, database) and their security
requirements which are however informal. Wongsen et al. [33] proposed an access
control protocol between doors and mobile units (e.g. smartphone), but the
protocol lacks any security proof. Some access control systems such as OPACITY
[2] and PLAIN [14] mutually authenticate and establish a shared key between
the terminal and card. The security analysis of PLAIN in [14] is far from being
formal. OPACITY [2] was partly analyzed by Dagdelen et al. [7] where their
security model is based on the key agreement security model of Bellare and
Rogaway [4]. Hence, most of the previous works do not have a comprehensive
security analysis. Moreover, none of them consider relay attacks in their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


security analysis. Figure 1 and Figure 2 show real world relay attack scenarios.
Unfortunately, these type of attacks are easily implementable [16, 17, 12, 28, 13,
24], so they violate access control.

b b

b b

b b

Doctor Adversaries Database

Fig. 1. The adversaries retrieve information from
a hospital database by relaying the messages be-
tween the database reader and the doctor’s card.
Here, the doctor is far-away from the database.
Arrows show that receiving or sending messages.

b b b b b b b b

Adversary

Colleagues of the adversary

Company

Home of adversary

Fig. 2. The adversary who is an employee
of the company accesses to the door of the
company which shows that he arrived his job
although he is at home. Here, the adversary
can use one of his colleagues who is just next
to the door. Arrows show that receiving or
sending messages.

The other problem in contactless AC is to address privacy. Informally, if an
AC protocol is private then it is hard for an outside observer to identify or
recognize a party who wants to access a system. Some previous works [14, 8, 7]
touched on privacy. PLAID [14] claims to be private (with an informal definition)
but Degabriele et al. [8] show that it is weaker than what it claims. Dagdelen et
al. [7] give two privacy related definitions: identity hiding and untraceability. The
problem in their privacy model is that it only considers the interaction between
the card and the reader. In reality, this may not be enough because the other
interactions or outputs of the other components (i.e., controller, database) of an
AC system can violate the privacy.

As a result, a formal security model which covers relay attacks has not been
designed for AC. In addition to this, a formal privacy model which considers
whole AC system is missing. In the literature, a powerful solution for relay
attacks is distance bounding (DB) [6]. It relies on the limited celerity of commu-
nication signals. DB is typically an authentication protocol with the condition
that a user who authenticates is close enough to a reader. Privacy has also been
extensively studied in DB [29, 18, 15, 26, 34, 23, 3, 20].

By considering these critical issues, we design the first security and privacy
model of an access control system which encompasses the propagation time of
communication. Intuitively, in our definitions, we mix DB and access control
based on a database of privileges. However, mixing both is not so straightfor-
ward when it comes to prove the security in a generic composition. Current AC
protocols [2, 14] do not consider malicious users in their security models while
DB considers malicious users (e.g., as in Figure 2). Therefore, the natural com-
position of them does not necessarily achieve the security level we need for AC
protocols 1. In addition, we can show that an AC protocol which is constructed
based on a private DB protocol does not achieve privacy in AC. All these reasons
obviously show the need for complete security and privacy models in AC.

1 A malicious user can behave maliciously in an AC protocol and retrieve some infor-
mation which may help him to attack the DB protocol which is composed with this
AC protocol.

2



Our Contribution:
– We first define an integrated security model for AC including identifi-

cation, access control, and distance bounding by using the same components
as defined in [1].

– We define a new privacy model for AC which includes the time of the
communication. To the best of our knowledge, the time of the communication
has not been considered for defining a privacy model before. Our new model
covers all the previously defined privacy related definitions for access control
such as identity hiding and untraceability.

– We give a framework that clarifies how to use a secure DB to con-
struct a secure AC in our new security model. Basically, we show how to
transform a man-in-the-middle (MiM), distance fraud (DF) and distance hi-
jacking (DH) secure DB protocol into a secure AC scheme with proximity
check. We also formally prove the security of this transformation.

– We show that the same framework can be used to achieve privacy in AC with
restrictions on the database of AC system: The framework achieves privacy
if the database is trivial meaning it is empty, or it includes all possible
relations. We give a counterexample protocol that clearly shows why the
framework does not work for non-trivial databases. This shows that privacy
in distance bounding is not always preserved when transformed
into an access control system which unfolds the need for a new model
for AC.

– We construct a specific AC scheme by using a secure and private DB protocol
Eff-pkDB [21] and prove its security and privacy with database.

2 Definitions from Previous work

In this section, we give some definitions and results about public-key DB which
we integrate into our new security and privacy model for AC. This section is
helpful to understand the DB related notions that we use in the next section.

Definition 1 (Public key DB Protocol [31]). A public key distance bound-
ing protocol is a two-party probabilistic polynomial-time (PPT) protocol and it
consists of a tuple (KP ,KV , V, P,B). Here, (KP ,KV ) are the key generation al-
gorithms of P and V , respectively. The output of KP is a secret/public key pair
(skP , pkP ) and similarly the output of KV is a secret/public key pair (skV , pkV ).
P is the proving algorithm, V is the verifying algorithm where the inputs of P
and V are from KP and KV . B is the distance bound. P (skP , pkP , pkV ) and
V (skV , pkV ) interact with each other. At the end of the protocol, V (skV , pkV )
outputs a final message OutV and have pkP as a private output. If OutV = 1,
then V accepts. If OutV = 0, then V rejects.

A public-key DB protocol is correct if and only if under honest execution,
whenever the distance between V and P is less than B, then V always outputs
OutV = 1 and pkP .

In symmetric DB, we have one key generation algorithm K and the input of
P and V is a secret key generated by K.

3



Now, we explain the security games which are designed for the threats of
DB: mafia fraud and distance hijacking from [31]. These games address security
in concurrent settings. So, they consist of multi-party settings which informally
means that the parties run multiple times their algorithms during the games.
An instance of a party is each new execution of its algorithm.

In mafia fraud, a man-in-the-middle (MiM) adversary between a verifier and
a far-away honest prover tries to make the verifier accept. Formally, it is defined
as follows:

Definition 2 (Mafia fraud (MiM security) [31]). The game begins by
running the key setup algorithms KV and KP which output (skV , pkV ) and
(skP , pkP ), respectively. The adversary receives pkV and pkP . The game consists
of several verifier instances including a distinguished one V, honest prover’s in-
stances and adversary’s instances. The adversary wins if V outputs OutV = 1
and pkP when no close prover instance to V exists. A DB protocol is MiM-secure
if, for any such game, the probability of an adversary to win is negligible.

In a nutshell, the adversary interacts or sees multiple new executions of P
and V at any location to make only one of the verifier instances (V) accept when
no instance of P is close.

In distance hijacking (DH), a far-away malicious prover uses some honest and
active provers who are close to the verifier to make the verifier grant privileges to
the far-away prover. The distance hijacking security implies also the distance
fraud (DF) security which provides security against a malicious and far-away
prover who wants to authenticate himself (without using any other close party).

Definition 3 (Distance hijacking [31]). The game consists of several ver-
ifier instances including a distinguished one V, instances of honest prover P′

and instances of malicious prover P. The game begins by running the key setup
algorithms KV ,KP and malicious setup K∗P (pkV , pkP ′) of P. P lets one of the
instance of P′ run the time critical phase of DB with V. The malicious prover P
wins if V outputs OutV = 1 and pkP when P’s instance is far away from V. A
DB protocol is DH-secure if, for any such game, the probability of an adversary
to win is negligible.

The above definition is specific to a class of protocols which have a clearly
identified time critical phase. Here, the time critical phase corresponds to a
challenge/response exchange phase where the verifier calculates the round trip
time of sending challenge and receiving response. Essentially, by letting an honest
P ′ run this phase in the game, P tries to succeed to show himself close to the
verifier. Again, we have many instances in this game.

The another security model in DB is for terrorist fraud (TF) [9]. Informally,
TF adversary tries to authenticate himself while he is far-away from the veri-
fier by getting help from his close accomplice. However, a trivial attack of TF-
adversary could consist of giving his secret key to his accomplice who would
execute DB with this key. So, usual definitions for TF [10, 11, 22, 5] exclude this
particular attack explicitly. We do not integrate TF-security in our AC security

4



model because we think that this exclusion is arbitrary. In practice, we do not
see why this attack would be excluded or how it would be prevented.

In the next definition, we give the privacy model by Hermans et al. [18] which
has been used in many DB protocols [21, 31, 30, 19]. In this model, the adversary
tries to distinguish provers. It can corrupt provers and learn their secret keys.
The model is also called strong private. The details are given below:

Definition 4 (Privacy in DB [18]). The privacy game is the following: Pick
b ∈ {0, 1} and let the adversary A play with the following oracles:

– CreateP(ID) → Pi : It creates a new prover identity of ID and returns its
identifier Pi.

– Launch() → π : It launches a new protocol with the verifier Vj and returns
the session identifier π.

– Corrupt(Pi) : It returns the current state of Pi. Current state means the all
the values in Pi’s current memory. It does not include volatile memory (i.e.,
the short term state in an interactive session).

– DrawP(Pi, Pj) → vtag : It draws either Pi (if b = 0) or draws Pj (if b = 1)
and returns the virtual tag reference vtag. If one of the provers was already
an input of DrawP → vtag′ query and vtag′ has not been released, then it
outputs ∅.

– Free(vtag) : It releases vtag which means vtag can no longer be accessed.
– SendP(vtag,m) → m′ : It sends the message m to the drawn prover and

returns the response m′ of the prover. If vtag was not drawn or was released,
nothing happens.

– SendV(π,m) → m′ : It sends the message m to the verifier in the session π
and returns the response m′ of the verifier. If π was not launched, nothing
happens.

– Result(π) → b′ : It returns a bit that shows if the session π is accepted by
the verifier (i.e the message OutV ).

In the end of the game, the adversary outputs a bit b′′. If b′′ = b, then A
wins. Otherwise, it loses.

A DB protocol is strong private if for all PPT adversaries, the advantage of
winning the privacy game is negligible.

3 Security and Privacy Model of AC

We first introduce the components of an access control system (ACS). In our
definitions, for simplicity, we do not consider the user who may give PIN code or
a biometric data to authenticate himself (this would be a parallel protocol). The
components of an access control system are tag, reader, database and controller.
Controller and database are in the secure area of ACS where it is not possible
to tamper or access.

Tags (Access Cards): They hold personalized data which is used for identifica-
tion and authentication. In ACS, each tag T generates a secret/public key pair

5



(skT , pkT ). They also store the public key of the controllers that are responsible
for the doors2 that T can access.

Reader: A reader is an interface between a tag and a door. We can consider
them as transmitters. They communicate with the tags. Each reader R has a
location locR which is important as the tag can be granted if the tag proves that
it is close enough to the reader.

Database: It contains information about tags and their rights. It stores a list of
(pkT , locR, req) triplets meaning that the tag with pkT is allowed to make the
service request req on a reader at location locR. For instance, a service request
can be the opening of a door. The database is in the secure area.

The database is not necessarily a list of triplets. It can also be a predicate
deciding if a triplet belongs to it or not. A database is trivial if it is empty or
if it contains all possible triplets.

For simplicity, we consider that the content of the database is static in what
follows.

Controller: It controls access authentication. All controllers can be connected
with multiple readers. Depending on the data they receive from its one of readers
and the database, they give the final decision for the authorization.

More generally, the access control is relative to a service (such as opening a
door) in a given location. The tag T of public key pkT requests a service req to
a reader at location locR and its corresponding controller checks if the privilege
(pkT , locR, req) exists in the database. T stores req and it can change req later
on. All controllers stay in the secure area.

Definition 5 (Access Control (AC)). AC consists of a distance bound
B, a database DataB, a controller C, a reader R, and a tag T , the key
generation algorithms: GenC generating (skC , pkC) for a controller C and
GenT generating (skT , pkT ) for a tag T . C,R, and T run the algorithms
C(skC , pkC , DataB,B),R(locR) and T (skT , pkT , pkC , req), respectively. In the
end of the protocol, C outputs either OutC = 1 and private output POutC =
(pkT , locR, req) if the authentication succeeds or OutC = 0 if it fails. R also
publicly outputs OutR = OutC .

Definition 6 (Correctness of AC). An AC is correct, if for all locR, req and
for all sets of keys generated by GenC and GenT , if

– T requests service req to R at location locR,
– T is within a distance at most B from locR and
– (pkT , locR, req) is in DataB,

then
Pr[OutC = 1 ∧ POutC = (pkT , locR, req)] = 1

2 Door is a representation of the system or service that a user desires to access.

6



3.1 Security

In this section, we give the formal security model for an access control system.

Adversarial and Communication Model: Each party (readers, controllers,
tags, adversaries) has polynomially many instances. An instance of a party cor-
responds to a protocol execution with this party at a given location and time.
Each instance of our model is as follows:
– All parties in AC are limited by the speed limit (speed of light) for com-

munication, which simply says that a message sent at time t by a party X
cannot arrive to a party Y at time t′ which is less than t + d(X,Y ) (d is a
metric which shows the time of flight distance between X and Y ).

– Readers are all honest. They are connected to their corresponding controllers
with a secure and an authenticated channel.

– Controllers are all honest. They are the only components of the ACS which
can access the database.

– Tags are all honest. However, they can receive special signals [32]. There
can be only one activatable instance of each tag at a time. The special signal
Activate(T, req) activates the only activatable instance of T with a specified
input req3. After receiving this signal, further activation signals are ignored
by this instance. An instance can be terminated by one of the following sig-
nals: Terminate(T ) and Move(T, loc′). Terminate(T ) terminates the instance
execution, but it remains “active”. The special signal Move(T, loc′) orders to
terminate and move the tag to loc′. It means that the instance becomes inac-
tive and that only one unused instance of T at location loc′ can be activated.
The terminated instance sends a special signal Go which, when received by
this unused instance at location loc′, will make it activatable (Go signals
cannot be sent by malicious participants; they are here only to enforce that
a tag cannot move faster than a signal propagation). After, it may receive
another Activate(T, req′) as a new instance of the same tag at location loc′.
This models the tags being at a single location and moving (as in-
fluenced by the adversary) to run other instances. Besides, it models
that instances of the same tag cannot be run concurrently.

– Adversaries create the database. So, they can generate fake relations
(p̃kT , ., .) where ˜pkT and its corresponding secret key s̃kT are generated by
an adversary. Instances which could hold some s̃kT are called fake tags.
In addition, adversaries can change the destination of messages (except for
special signals) between a tag and a reader. We assume that they have very
special hardware which can intercept a message and change its destination
without any delay. Similarly, they can update a message and send it to the
same destination with this hardware without any delay. So, if a party X
sends a message at time t1, and the adversary reads or updates the message
at time t2 and sends it to a party Y at time t3, then the arrival of the message
to Y is still bounded by t1 + d(X,Y ) because t3 − t2 ≥ 0.

3 This can also correspond to a user who is the owner of T to input whatever requests
he wants into his tag.

7



Except for the communication between readers and controllers, the adversary
instances see all communication.

Definition 7 (AC-Security). The game begins by setting up the components
of the ACS. The security game is as follows given the security parameter n:

– Run GenC(1n) → (skC , pkC) for the controller and run GenT → (skTi
, pkTi

)
for each tag Ti and give the public key pkC and pkTi

’s to the adversary.

– The adversary creates instances of Ti at chosen locations. Each instance can
start after activation and run T (skTi

, pkTi
, pkC , req) only once.

– The adversary creates instances of readers at chosen locations locRk
. They

run R(locRk
) once activated by an incoming message. They communicate

with an instance of C over a secure channel 4. There is a distinguished
instance of a reader R. We denote by locR its location.

– The adversary sets DataB.

– The adversary creates instances of himself (fake tags). These instances run
independently and communicate.

All messages follow our communication model. The game ends when the distin-
guished instance R (and its corresponding instance C) outputs some value OutR.
An AC protocol is secure, if for any such game, the adversary wins with a neg-
ligible probability. A wins the game if OutR = 1 and POutC = (pkT , locR, req)
for some pkT and req satisfying at least one of the following conditions:

1. (pkT , locR, req) /∈ DataB,

2. pkT ∈ {pkTi
}ti=1 and no active instance of the honest tag holding pkT is close

to locR during the execution of the AC protocol with C and R,

3. pkT /∈ {pkTi
}ti=1 and no fake tag is close to locR during the execution with

C and R.

where t is the number of public keys generated by GenT in setup.

Remarks:

– In the third condition, we need that no fake tag is close to locR to prevent
the trivial attacks where a far away fake tag can give its secret key to a close
by fake tag. Without this condition, the adversary would always win. This
would however exclude all TF-attacks as well.

– If pkT /∈ {pkTi
}ti=1, the security definition includes DH (and also DF).

– If pkT ∈ {pkTi
}ti=1, then the security definition corresponds to MF. It in-

cludes impersonation attacks, relay attacks and other forms of man-in-the-
middle attacks as well since MF covers all of them.

4 For simplicity, we assume that the instance C of the controller is at the same location
as Rk but the time of communication between Rk and C should have no influence on
the result. The difference between C and Rk only makes sense for practical reasons.

8



In practice, the controllers are connected to multiple readers. So, it is not
possible for them to check if a tag is close. Therefore, readers are the components
that can give this decision.

Before proceeding the next part, we show that the natural composition of
access control and distance bounding does not always achieve the security in
Definition 7. Assume that we have a MiM, DF and DH secure symmetric DB
protocol DB = (K, P, V,B). As an AC protocol, we have an AC protocol OPAC-
ITY [2] 5. In the natural composition, first the parties run OPACITY with a
minor change and then DB (the reader runs V , the tag runs P with the secret
key K). The change in OPACITY is as follows: the reader sends K at the end
of the OPACITY protocol. Clearly, the modified version of OPACITY is still
secure AC in the security model of Dagdelen et al. [7] since K is completely
independent parameter. Unfortunately, this composition is not secure in Defini-
tion 7 since an adversary can win AC-game with satisfying the second condition.
However, when we look the modified OPACITY and DB separately in their own
security models, they are secure. Therefore, the generic composition of AC and
DB is not straightforward.

3.2 Privacy

Privacy is also important in access control protocols. The definition of privacy
we provide uses the same adversarial and communication model that we use for
security. It also covers the identity hiding and untraceability with the corruption
of tags. Informally, identity hiding means given an execution of protocol the
adversary should not output the public key of the tag and untraceability means
the adversary should not decide if two executions belong to the same tag or not.

Definition 8 (AC-Privacy). The privacy game has the same setting as the
game in Definition 7. We first decide to play the right r or the left ` game.
Differently than the security model, each active tag instance can be paired with
an another tag instance by an adversary. The pairing happens with the signal
Draw(Ti, Tj , k) which pairs Ti and Tj by giving an index k, if the conditions below
are satisfied:

– Ti and Tj are at the same location,
– Ti and Tj have the same access privileges,
– neither Ti nor Tj is already paired and
– k is greater than the index of previous Draw signal to both Ti and Tj.

A tag instance can be paired to itself as well. The adversary lets vtag =
(Ti, Tj , k) be a virtual tag. All messages (and special signals) can only have a
virtual tag as a destinator. If we are in game `, then vtag simulates Ti and if
we are in game r, vtag simulates Tj. The signal Free(Ti, Tj , k) breaks the pair if

5 OPACITY is basically a key agreement protocol where the authentication of a tag
is done with this key.

9



it exists. The adversary can corrupt a tag Ti (and actually all tags) by receiving
skTi

during the setup.
In the end, the adversary decides if vtag simulates game r or game `. If the

decision of the adversary is correct, then the adversary wins.
If an AC protocol is private, the advantage of a polynomial time adversary

in this game is bounded by a negligible probability.

The most important distinction of our definition is that we consider “com-
munication time which leaks the proximity of a party” in our privacy definition
contrarily previous work related to privacy [29, 18]. To the best of our knowledge,
it has not been taken into account before for a privacy model. It is reasonable
to consider the location of a user as a privacy leakage for the protocols where
the communication time influences the output such as DB.

Since Mitrokotsa et al. [25] showed that location privacy is nearly impossible
to achieve, we cannot prevent this leakage. So, our privacy game has the condition
of being at the same location which is necessary to avoid the adversary to trivially
distinguish the left or right game by checking the communication time.

Besides, the condition of having the same access privileges is necessary to
prevent the adversary to determine the left or right game by seeing the accepting
or the rejecting message by a controller.

4 Distance Bounding in Access Control

In this section, instead of designing a new AC protocol, we give a conceivable
framework that converts a DB protocol into an AC protocol. We prove in Theo-
rem 1 that, after conversion, the AC protocol achieves AC-security (in Definition
7) assuming that the DB protocol is MiM and DH secure. However, we show
that we cannot always achieve AC-Privacy with this framework, even though the
DB protocol is (strong) private according to Definition 4. Therefore, we prove in
Theorem 2 that the AC protocol which is converted from a private DB achieves
privacy, if DataB is trivial. The details are in the following subsections.

4.1 Secure AC with Secure DB

C(skV , pkV , DataB,B) R(locR) T (skP , pkP , pkV , req)
req,locR←−−−−−− req←−−−−−−

run V (skV , pkV )
run DB=(KP ,KV ,P,V,B)

←−−−−−−−−−−−−−−−−−−−−−→ run P (skP , pkP , pkV )

output Out and pk
if (pk, locR, req) ∈ DataB

OutC = Out
if Out = 1

POut = (pk, locR, req)
else: OutC = 0

OutC−−−−−−→
OutC−−−−−−→

Fig. 3. The framework to convert a DB protocol to an AC protocol

If we have a public-key DB protocol (KP ,KV , P, V,B), we can construct an
AC protocol with (GenC ,GenT , C, T , DataB,B) with the framework below:

10



– We match the key generation algorithms: GenC = KV , GenT = KP . So,
(skC , pkC) = (skV , pkV ) and (skT , pkT ) = (skP , pkP ).

– We create DataB according to the access privileges of tags using the keys.
– T (skP , pkP , pkV , req) uses P (skP , pkP , pkV ) as a subroutine. T outputs req

and then run P (skP , pkP , pkV ).
– Whenever R(locR) is activated with req, it sends req and locR to C.
– C(skV , pkV , DataB,B) runs V (skV , pkV ) as a subroutine jointly with
R(locR). When V reaches the part where challenge/response is necessary
to determine the distance to locR, R steps in to check if the responses arrive
on time and are correct.
Here, C may give all necessary input(s) to R so that R can check the re-
sponses. Alternatively, C may only give the challenges, andR only determines
if the responses arrive on time. Then, if they arrive on time, R can send the
responses to C so that C can check if the responses are correct. The only
restriction is that R has to decide if the responses arrive on time.

– When V (skV , pkV ) outputs Out and the private output pkP : If
(pkP , locR, req) ∈ DataB and Out = 1, it publicly outputs OutC = 1 and
privately outputs POutC = (pkP , locR, req). Otherwise, it outputs OutC = 0.
In both cases, R outputs OutR = OutC . The framework is in Figure 3.

An example protocol in Figure 4 is constructed using this framework. Before,
we prove that the framework achieves AC security if DB is MiM and DH secure.

Theorem 1. Assuming that a DB protocol with (KP ,KV , P, V,B) is MiM-
secure and DH-secure, then an AC protocol with using this DB protocol with
the framework as described in Figure 3 is secure according to Definition 7.

Proof. Assume that there exists an adversary A which wins the game in Defini-
tion 7 where the output of the game is OutR = 1 and POutC = (pkTi

, locR, req),
then we can construct an adversary which wins MiM-game or DH-game.

Apparently, A can win the AC-game with either second or third condition
because C outputs OutC = 0 if given (pkTi

, locR, req) /∈ DataB (the first winning
condition) which makes impossible to win with the first condition.

Winning with the second condition: If pkTi
∈ {pkTk

}tk=1 and no instance of the
tag with pkTi

is close to locR during the execution of the AC protocol with C
and R, then we can construct an adversary B which wins MiM-game (Definition
2) of DB protocol with (KP ,KV , P, V ).

B receives pkV and pkP from MiM-game. Then, it randomly picks i ∈ {1, ..., t}
where t is the number of (honest) tags needing to be simulated. The public
key pkTi

which will be used to simulate the ith tag Ti is pkP . Here, Ti will
have a role as a prover on MiM-game. For the rest of the tags, B generates
t − 1 secret/public key pairs (skTj

, pkTj
) with using GenT (1n) which are the

secret/public keys of Tj ’s. After, it sends pkV as the controller’s public key and
pkT1

, ..., pkTi−1
,pkP , pkTi+1

, ..., pkTt
as the tags’ public-keys in AC-game to A.

Remark that pkV and pkP are indistinguishable since they are generated with
the same key generation algorithms of controllers and tags, respectively.

11



At some moment, B receives DataB from A. If (pkP , ., .) /∈ DataB, then
B loses MiM-game since in this case, there will be no chance that A wins the
AC-game with this tag. Otherwise, it locates instances of Ti (which corresponds
to P ’s instances in MiM-game) on the locations that A decides. B simulates the
instances of AC-game as follows:
– Instances of Tj ’s where Tj 6= Ti: For the signals Move(Tj , loc) and

Terminate(Tj), B just simulates. When it receives the signal Activate(Tj , req),
it simulates by running the algorithm T (skTj

, pkTj
, pkV , req). Remark since

B knows each skTj
, it can run T .

– Instances of Ti: For the signals Move(Ti, loc) and Terminate(Ti), B moves
the corresponding instance of P in the MiM-game to loc and halts the corre-
sponding instance of P in the MiM-game, respectively. Whenever it receives
the signal Activate(Ti, req), it first outputs req and then runs (activates) the
corresponding instance of P in the MiM-game. Whatever the instance of P
in MiM-game outputs, B outputs the same.

– Instances of controller and reader: Whenever A activates R (via sending
req) so that C, B runs an instance of V .

In the end, if A picks a reader instance R which sees pkTj
= pkP as a

distinguished one, B wins with the success probability below. Otherwise, B loses
MiM-game since V has to output OutV = 1 and pkP in MiM-game.

Pr[B wins] ≥ Pr[A wins ∧ Condition 2]× 1

t

Winning with the third condition: If pkT /∈ {pkTi
}ti=1 and no instance of the

adversary is close to locR during the execution with R, then we can construct an
adversary B′ which wins DH-game. The reduction is very similar to the previous
one except we replace P with an honest prover P ′.

Pr[B′ wins] ≥ Pr[A wins ∧ Condition 3]× 1

t

In the end, we have

Pr[B wins] + Pr[B′ wins] ≥ Pr[A wins]× 1

t
.

Since we know that the success probability of B in MiM and B′ in DH game
is negligible, then the success probability of A is negligible as well. ut

Now, we give an example AC protocol (Eff-AC) in our framework by convert-
ing the public-key DB protocol Eff-pkDB [21] which is one of the most efficient
public-key distance bounding protocols.

Eff-AC: We use Eff-pkDB with its variant. Its variant uses a key agreement
protocol Nonce-DH [21] (based on random oracle and Gap Diffie Hellman (GDH)
[27]) to agree on a secret S and a symmetric-key DB OTDB [31] to run with S.
We stress that this is only an example of the generic construction of Eff-pkDB. In
particular, we could replace NonceDH by another key agreement protocol which
is D-AKA secure [21] and possibly eliminate the random oracle assumption.

12



The public parameters for the key generation algorithms GenC (KV ) and
GenT (KP ) are a group G of prime order q and its generator g. GenC and GenT
pick skC and skT from Zq, and set pkC = gskC and pkT = gskT , respectively.
Eff-AC works as follows:

The tag has the input skT , pkT , pkC , req, the controller C has the input
skC , pkC , B,DataB and the reader R has the input locR. T sends req to R
and R sends it along with locR to C . Then, C,R and T run Eff-pkDB. Here,
T runs the proving algorithm of Eff-pkDB, and C and R run the verifying algo-
rithm of Eff-pkDB, jointly. The details of these algorithms are as follows: First,
T picks a random value N from {0, 1}n and sends N and pkT . After C receives
them, it computes S = H(g, pkT , pkC , pk

skC
T , N). Meanwhile, T also computes

S = H(g, pkT , pkC , pk
skT
C , N). After, C gives S and B to R so that R runs the

challenge phase. Until this part corresponds to the Nonce-DH protocol. Then,
OTDB [31] is run by R and T as follows:

R picks a value NR ∈ {0, 1}2n and sends it to T . Then, R and T compute
X = NR ⊕ S before n-round challenge phase begins. In each round i, R picks a
challenge Qi and starts the timer. In response, T sends Wi which is the 2i+Qth

i

bit of X. When R receives it, it stops the timer. After the challenge phase, if all
responses are correct and arrive on time (i.e. with in less than 2B), then R sets
Out = 1. Then, R sends Out to C. This is the end of of Eff-pkDB.

C sets OutC = Out. If Out = 1, C checks if C has the access privilege by
checking if (pkT , locR, req) ∈ DataB. If it is in DataB, it privately outputs
POutC = (pkT , locR, req). Otherwise, it sets OutC = 0. Finally, C sends OutC
to R and R outputs it as OutR.

Ci(skC , pkC , B,DataB) R(locR) T (skT , pkT , pkC , req)

req,locR⇐======
req←−−−−−− pick N ∈ {0, 1}n

S =
H(g, pkT , pkC , pk

skC
T , N)

pkT ,N
⇐======

pkT ,N
←−−−−−− S =

H(g, pkT , pkC , pk
skT
C , N)

S,B
======⇒ pick NR ∈ {0, 1}2n

NR−−−−−−→ X = NR ⊕ S

X = NR ⊕ S
for i = 1 to n

start timeri
Qi−−−−−−→ Wi = X2i+Qi

stop timeri
Wi←−−−−−−

if ∀i timeri ≤ 2B
and Wi = X2i+Qi

Out = 1

if Out = 1
Out⇐======

and
(pk, locR, req) ∈ DataB

POut = (pk, locR, req)
OutC = Out

else: OutC = 0
OutC======⇒

OutC−−−−−−→

Fig. 4. Eff-AC. Double arrow shows that the communication is secure and authenticated while
sending the message above it. The gray colored parts are Eff-pkDB.

13



Since Eff-pkDB is MiM and DH-secure [21], Eff-AC which uses Eff-pkDB
with the framework in Figure 3 is AC-secure thanks to Theorem 1.

Remark: The security proof of Eff-pkDB [21] is also valid for a variant where the
verifier generates an ephemeral (skC , pkC) pair and sends pkC to the prover. So,
tags do not even need to store pkC in this variant of Eff-pkDB. Therefore, a vari-
ant of Eff-AC with an ephemeral key is secure thanks to Theorem 1. This variant
is very desirable for practical reasons because we can allow many controllers and
the tag does not need to store all the corresponding keys.

4.2 Private AC with Private DB

The difficulty in proving privacy in an AC protocol which uses a private DB
protocol comes from the fact that DataB must discriminate tags. This fact
may leak information about identities. In DB, the output of V does not depend
on pkP . Hence, the private output of the verifier (pkP ) plays no role in the
privacy game of Definition 4. We show here a generic privacy preservation result
with our framework, but only for a trivial DataB. Trivial DataB makes POutC
play no role in AC. We cannot prove the same result for an arbitrary database.
Remember, a database is trivial if it is empty or if it contains all possible triplets.

Theorem 2. Assuming that DB protocol with (KP ,KV , P, V,B) is private ac-
cording to Definition 4, then an AC protocol with using this DB protocol with the
framework as described in Figure 3 is private when DataB is trivial based
on Definition 8.

Proof. Assuming that there exists an adversary A breaking the privacy in AC
with a trivial DataB, then we can construct an adversary B that breaks the
privacy of DB.
B simulates the communication model of AC for A, except the subroutines

P and V for honest participants. For each message and signal that B receives
for tags, it works as follows:
– Receiving a signal Draw(Ti, Tj , k): It checks the necessary conditions to be

paired. If they are satisfied, it calls the Draw oracle in the privacy game of
DB with the inputs Ti, Tj . In respond, the Draw oracle sends vtag. B stores
the information that vtag corresponds to (Ti, Tj , k).

– Receiving a signal Free(Ti, Tj , k): It retrieves the corresponding vtag to
(Ti, Tj , k). If it exists, it calls the oracle Free with the input vtag in the
privacy game of DB.

– Receiving a signal Activate or Move: It simulates them.
– Receiving a message m: It retrieves vtag and calls the oracle SendP in the

privacy game of DB with the input (vtag,m). Then, it receives a respond
m′ from the SendP oracle and sends m′ to A.
To simulate a reader receiving m, B behaves as follows:

– If it is the first time and m = req, B calls the Launch oracle to get a session
identifier π. Then, it calls SendV with π and receives an empty message m′.

– Otherwise, it calls the oracle SendV with the input (π,m) and receives m′.

14



If m′ is not the final message, it sends m′ to A. Otherwise, m′ = OutV . In this
case, B assigns b = 0 if DataB is empty and b = 1 if it is not empty (meaning
that it has all possible relations). In the end, it sends OutC = OutV ∧ b to A.
The simulation is perfect. So, A and B have the same advantage. ut

Why only for trivial DataB: We can show that Theorem 2 does not work
for all DataB with the following counterexample.

Assume that we have a private DB (KP ,KV , P, V,B). From DB, we can
construct another private protocol DB’ (KP ,KV , P

′, V ′, B) where P ′ and V ′

work as defined below:

P ′(skP , pkP , pkV ) :
receive flag
if flag = 1 and pkP is odd
KP → (sk′P , pk

′
P )

(skP , pkP )← (sk′P , pk
′
P )

run P (skP , pkP , pkC)

V ′(skV , pkV )
send 0
run V (skV , pkV )

Clearly, DB’ is still private because the only change is to remove the identity
of the prover by replacing the secret and public keys with some random keys.
(We recall that pkP as a private output of V plays no role in Definition 4.)

Now, let’s consider the conversion of DB’ to an AC protocol with the
framework. The adversary can break the privacy of the AC protocol as fol-
lows: He first picks two tags T1 and T2 which have public keys with dif-
ferent parities and moves them at the same location. It also creates a
DataB = {(pkT1

, locR, req), (pkT2
, locR, req)}. Then, it pairs (T1, T2) with the

signal Draw(T1, T2, 0) and activates the pair. It sends a message flag = 1 to
vtag = (T1, T2, 0) (by replacing the message flag = 0 which comes from a
reader R). Then, it lets C,R and vtag execute the protocol. In the end, R out-
puts OutR. Depending on the parity, the adversary can find out the left or right
game with probability 1 (e.g., if pkT1

is odd and OutR = 1, it means right game
(T2) is simulated).

In addition, even by weakening Definition 8 such that the adversary does not
create a database and it is not allowed to pair tags (instead, the game does), we
achieve no privacy. In this case, the advantage of the adversary with this attack
would be 1

2 : If the paired parities’ public keys have the same parity, then the
attack does not give any more advantage than the privacy game of DB’ gives. If
they have different parity, the adversary wins with probability 1.

Even though we cannot use our framework to achieve privacy with all private
DB protocols, we can still have private AC using our framework with some DB
protocols where one of them is Eff-pkDBp [21]. Now, we describe Eff-ACp which
is converted from Eff-pkDBp.

Eff-ACp (See Figure 5): It is very similar to Eff-AC. Differently
here, the secret/public key pair of C consists of two parts: (skC , pkC) =
((skC1 , skC2), (pkC1

, pkC2
)) where (skC1 , pkC1

) is used for the encryption and
(skC2

, pkC2) is used for Nonce-DH (key agreement protocol). The only change on

15



Ci(skC , pkC , B,DataB) R(locR) T (skT , pkT , pkC , req)

req,locR⇐========
req←−−−−−−−− pick N ∈ {0, 1}n

N, pkT = DecskC1
(e) e⇐========

e←−−−−−−−− e = EncpkC1
(N, pkT )

The same as in Eff-AC←−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 5. Eff-ACp

T is that it sends the encryption of (pkT , N) and on C is that it retrieves pkT , N
by decrypting the encryption with skC1

. The rest is the same with Eff-AC.

Theorem 3. Eff-ACp is a private access protocol in the random oracle model
according to Definition 8, assuming that the cryptosystem is IND-CCA secure
and Gap Diffie-Hellman (GDH) problem [27] is hard.

Note that the same result applies to the generic construction of Eff-pkDBp [21],
i.e., not only the one based on GDH and the random oracle. We could indeed
replace Nonce-DH by another key agreement protocol which is D-AKAp secure
[21].

Proof (sketch): We adapt the proof from the privacy proof of Eff-pkDBp [21].
We define games Γ b

i below and the success probability of an adversary is pbi .
Γ b

0 : It is the same game that we defined in Definition 8 where b = ` meaning
we are in the left-game or b = r meaning we are in the right-game.

Γ b
1 : We reduce Γ b

0 to Γ b
1 where we simulate the controller instances without

decrypting the ciphertext that is sent by a vtag. Because of the correctness of
the cryptosystem, pb1 = pb0.

Γ b
2 : We reduce Γ b

1 to Γ b
2 where vtag is simulated by encrypting a random

value instead of (pkT , N). We can easily show pb2 − pb1 is negligible by using the
IND-CCA security of the cryptosystem.

We reduce Γ `
2 to Γ r

2 where we replace all secret/public keys (sk`, pk`) which
are the keys of the tag in the left-side in vtag by replacing secret/public keys
(skr, pkr) of its paired tag. Using D-AKAp security of Nonce-DH (Theorem 7 in
[21]), we can show that p`2 − pr2 is negligible.

Remark that if pk` and pkr are kept in a plaintext and used by the controller,
the replacing pk` with pkr make the same OutC result due to our assumption
which says the paired tags have the same access privileges.

So, p`0 − pr0 is negligible. ut

5 Conclusion

In this paper, we designed a security model for AC which considers the whole
interaction between components. The security model integrates the model of
DB since the distance of the tag is important to detect the relay attacks. In our
model, we preserve the security against adversaries which can be a tag or not.
We also let the adversaries construct the database. We constructed a privacy
model for AC which includes time of communication as well.

We gave a simple framework which securely transforms a DB to an AC. We
proved a similar result for privacy assuming that DataB is trivial. We showed

16



why the theorem does not work for other types of database. Finally, we con-
structed two AC protocols Eff-AC and Eff-ACp which are adapted from existing
public-key distance bounding protocols Eff-pkDB and Eff-pkDBp [21], respec-
tively. We proved their security and privacy in our security and privacy models.

References

1. S. C. Alliance. Using smart cards for secure physical access. Smart Card Alliance
Report, 54, 2003.

2. S. C. Alliance. Industry technical contributions: Opacity, 2013.
3. G. Avoine, E. Dysli, P. Oechslin, et al. Reducing time complexity in RFID systems.

In Selected Areas in Cryptography, volume 3897, pages 291–306. Springer, 2005.
4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Annual

International Cryptology Conference, LNCS 773, pages 232–249. Springer, 1993.
5. I. Boureanu and S. Vaudenay. Optimal proximity proofs. In Inscrypt, LNCS 8957,

pages 170–190. Springer, 2014.
6. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In

EUROCRYPT, LNCS 765, pages 344–359. Springer-Verlag, 1993.
7. Ö. Dagdelen, M. Fischlin, T. Gagliardoni, G. A. Marson, A. Mittelbach, and

C. Onete. A cryptographic analysis of opacity. In European Symposium on Re-
search in Computer Security, LNCS 8134, pages 345–362. Springer, 2013.

8. J. P. Degabriele, V. Fehr, M. Fischlin, T. Gagliardoni, F. Günther, G. A. Marson,
A. Mittelbach, and K. G. Paterson. Unpicking PLAID. In International Conference
on Research in Security Standardisation, LNCS 8893, pages 1–25. Springer, 2014.

9. Y. Desmedt. Major security problems with the “unforgeable” (Feige-) Fiat-Shamir
proofs of identity and how to overcome them. In Congress on Computer and
Communication Security and Protection Securicom, pages 147–159. SEDEP Paris
France, 1988.

10. U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to distance-
bounding RFID protocols. In Information Security, LNCS 7001, pages 47–62.
Springer, 2011.

11. M. Fischlin and C. Onete. Terrorism in distance bounding: modeling terrorist-fraud
resistance. In Applied Cryptography and Network Security, LNCS 7954, pages 414–
431. Springer, 2013.

12. A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless entry
and start systems in modern cars. In NDSS, 2011.

13. L. Francis, G. Hancke, K. Mayes, and K. Markantonakis. Practical NFC peer-
to-peer relay attack using mobile phones. In International Workshop on Radio
Frequency Identification: Security and Privacy Issues, LNCS 6370, pages 35–49.
Springer, 2010.

14. C. A. governments Department of Human Services (DHS). Protocol for lightweight
authentication of identity (PLAID), 2010.

15. J. Ha, S. Moon, J. Zhou, and J. Ha. A new formal proof model for RFID location
privacy. In Computer Security-ESORICS 2008, pages 267–281. Springer, 2008.

16. G. P. Hancke. A practical relay attack on iso 14443 proximity cards. Technical
report, University of Cambridge Computer Laboratory, 59:382–385, 2005.

17. G. P. Hancke. Practical attacks on proximity identification systems. In Security
and Privacy, 2006 IEEE Symposium on, pages 6–pp. IEEE, 2006.

18. J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel. A new RFID privacy
model. In ESORICS, LNCS 6879, pages 568–587. Springer, 2011.

17



19. J. Hermans, R. Peeters, and C. Onete. Efficient, secure, private distance bounding
without key updates. In WiSec, Proceedings of the Sixth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pages 207–218, 2013.

20. A. Juels and S. A. Weis. Defining strong privacy for RFID. ACM Transactions on
Information and System Security (TISSEC), 13(1):7, 2009.

21. H. Kılınç and S. Vaudenay. Efficient public-key distance bounding protocol. In
ASIACRYPT, 2016.

22. C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira. The swiss-knife
RFID distance bounding protocol. In Information Security and Cryptology–ICISC
2008, pages 98–115. Springer, 2008.

23. Y. Li, R. H. Deng, J. Lai, and C. Ma. On two RFID privacy notions and their rela-
tions. ACM Transactions on Information and System Security (TISSEC), 14(4):30,
2011.

24. K. Markantonakis. Practical relay attack on contactless transactions by using NFC
mobile phones. Radio Frequency Identification System Security: RFIDsec, 12:21,
2012.

25. A. Mitrokotsa, C. Onete, and S. Vaudenay. Location leakage in distance bounding:
Why location privacy does not work. Computers & Security, 45:199–209, 2014.

26. C. Y. Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. RFID privacy models revisited.
In European Symposium on Research in Computer Security, LNCS 5283, pages
251–266. Springer, 2008.

27. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Public Key Cryptography, pages 104–118.
Springer, 2001.

28. M. Roland, J. Langer, and J. Scharinger. Applying relay attacks to Google Wallet.
In Near Field Communication (NFC), 2013 5th International Workshop on, pages
1–6. IEEE, 2013.

29. S. Vaudenay. On privacy models for RFID. In ASIACRYPT, LNCS 4833, pages
68–87. Springer, 2007.

30. S. Vaudenay. On privacy for RFID. In Provable Security, pages 3–20. Springer,
2015.

31. S. Vaudenay. Private and secure public-key distance bounding application to NFC
payment. In Financial Cryptography, LNCS 8975, pages 207–216, 2015.

32. S. Vaudenay. Sound proof of proximity of knowledge. In Provable Security, LNCS
9451, pages 105–126. Springer, 2015.

33. E. R. Wognsen, H. S. Karlsen, M. Calverley, M. N. Follin, B. Thomsen, and H. Hut-
tel. A secure relay protocol for door access control. In Proceedings of the Xii Brazil-
ian Symposium on Information and Computer System Security. SBC-Sociedade
Brasileira de Computação, 2012.

34. A. Yang, Y. Zhuang, D. S. Wong, and G. Yang. A new unpredictability-based
RFID privacy model. In Network and System Security, pages 479–492. Springer,
2013.

18


