3,116 research outputs found

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A Wearable Fall Detection System based on LoRa LPWAN Technology

    Get PDF
    Several technological solutions now available in the market offer the possibility of increasing the independent life of people who by age or pathologies otherwise need assistance. In particular, internet-connected wearable solutions are of considerable interest, as they allow continuous monitoring of the user. However, their use poses different challenges, from the real usability of a device that must still be worn to the performance achievable in terms of radio connectivity and battery life. The acceptability of a technology solution, by a user who would still benefit from its use, is in fact often conditioned by practical problems that impact the person’s normal lifestyle. The technological choices adopted in fact strongly determine the success of the proposed solution, as they may imply limitations both to the person who uses it and to the achievable performance. In this document, targeting the case of a fall detection sensor based on a pair of sensorized shoes, the effectiveness of a real implementation of an Internet of Things technology is examined. It is shown how alarming events, generated in a metropolitan context, are effectively sent to a supervision system through Low Power Wide Area Network technology without the need for a portable gateway. The experimental results demonstrate the effectiveness of the chosen technology, which allows the user to take advantage of the support of a wearable sensor without being forced to substantially change his lifestyle

    The application of iterative equalisation to high data rate wireless personal area networks

    Get PDF

    Technoligical Life Cycles Regional Clusters Facing Disruption

    Get PDF
    The phenomenon of technological life cycles is argued to be of great importance in the development of regional clusters. New 'disruptive' technologies may initiate the emergence of new regional industrial clusters and/or create new opportunities for further development of existing ones. However, they may also result in stagnation and decline of the latter. The term disruptive refers to such significant changes in the basic technologies that may change the industrial landscape, even in the shorter run. The paper examines the key features of a regional cluster, where the economic development patterns are quite closely related to the emergence of new key technologies.Technological life cycles, regional clusters, communication technology

    A heterogeneous short-range communication platform for internet of vehicles

    Get PDF
    The automotive industry is rapidly accelerating toward the development of innovative industry applications that feature management capabilities for data and applications alike in cars. In this regard, more internet of vehicles solutions are emerging through advancements of various wireless medium access-control technologies and the internet of things. In the present work, we develop a short-range communication–based vehicular system to support vehicle communication and remote car control. We present a combined hardware and software testbed that is capable of controlling a vehicle’s start-up, operation and several related functionalities covering various vehicle metric data. The testbed is built from two microcontrollers, Arduino and Raspberry Pi 3, each of which individually controls certain functions to improve the overall vehicle control. The implementation of the heterogeneous communication module is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 and IEEE 802.15 medium access control technologies. Further, a control module on a smartphone was designed and implemented for efficient management. Moreover, we study the system connectivity performance by measuring various important parameters including the coverage distance, signal strength, download speed and latency. This study covers the use of this technology setup in different geographical areas over various time spans

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions
    • 

    corecore