3,493 research outputs found

    Consumer Segmentation and Knowledge Extraction from Smart Meter and Survey Data

    Get PDF
    Many electricity suppliers around the world are deploying smart meters to gather fine-grained spatiotemporal consumption data and to effectively manage the collective demand of their consumer base. In this paper, we introduce a structured framework and a discriminative index that can be used to segment the consumption data along multiple contextual dimensions such as locations, communities, seasons, weather patterns, holidays, etc. The generated segments can enable various higher-level applications such as usagespecific tariff structures, theft detection, consumer-specific demand response programs, etc. Our framework is also able to track consumers' behavioral changes, evaluate different temporal aggregations, and identify main characteristics which define a cluster

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    Clustering Methods for Electricity Consumers: An Empirical Study in Hvaler-Norway

    Get PDF
    The development of Smart Grid in Norway in specific and Europe/US in general will shortly lead to the availability of massive amount of fine-grained spatio-temporal consumption data from domestic households. This enables the application of data mining techniques for traditional problems in power system. Clustering customers into appropriate groups is extremely useful for operators or retailers to address each group differently through dedicated tariffs or customer-tailored services. Currently, the task is done based on demographic data collected through questionnaire, which is error-prone. In this paper, we used three different clustering techniques (together with their variants) to automatically segment electricity consumers based on their consumption patterns. We also proposed a good way to extract consumption patterns for each consumer. The grouping results were assessed using four common internal validity indexes. We found that the combination of Self Organizing Map (SOM) and k-means algorithms produce the most insightful and useful grouping. We also discovered that grouping quality cannot be measured effectively by automatic indicators, which goes against common suggestions in literature.Comment: 12 pages, 3 figure

    Identifying the time profile of everyday activities in the home using smart meter data

    Get PDF
    Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to households’ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ‘ontologies’ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process

    Business intelligence in the electrical power industry

    Get PDF
    Nowadays, the electrical power industry has gained tremendous interest from both entrepreneurs and researchers due to its essential roles in everyday life. However, the current sources for generating electricity are astonishing decreasing, which leads to more challenges for the power industry. Based on the viewpoint of sustainable development, the solution should maintain three layers of economically, ecologically, and society; simultaneously, support business decision-making, increases organizational productivity and operational energy efficiency. In the smart and innovative technology context, business intelligence solution is considered as a potential option in the data-rich environment, which is still witnessed disjointed theoretical progress. Therefore, this study aimed to conduct a systematic literature review and build a body of knowledge related to business intelligence in the electrical power sector. The author also built an integrative framework displaying linkages between antecedents and outcomes of business intelligence in the electrical power industry. Finally, the paper depicted the underexplored areas of the literature and shed light on the research objectives in terms of theoretical and practical implications

    Electricity clustering framework for automatic classification of customer loads

    Get PDF
    Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classificationphase. The computation time of the proposed framework is less than that of previous classification tech- niques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.Ministerio de Economía y Competitividad TEC2013-40767-RMinisterio de Economía y Competitividad IDI- 2015004

    Activity Detection And Modeling Using Smart Meter Data: Concept And Case Studies

    Full text link
    Electricity consumed by residential consumers counts for a significant part of global electricity consumption and utility companies can collect high-resolution load data thanks to the widely deployed advanced metering infrastructure. There has been a growing research interest toward appliance load disaggregation via nonintrusive load monitoring. As the electricity consumption of appliances is directly associated with the activities of consumers, this paper proposes a new and more effective approach, i.e., activity disaggregation. We present the concept of activity disaggregation and discuss its advantage over traditional appliance load disaggregation. We develop a framework by leverage machine learning for activity detection based on residential load data and features. We show through numerical case studies to demonstrate the effectiveness of the activity detection method and analyze consumer behaviors by time-dependent activity modeling. Last but not least, we discuss some potential use cases that can benefit from activity disaggregation and some future research directions.Comment: 2020 IEEE Power & Energy Society General Meetin
    • 

    corecore