1,882 research outputs found

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify ā€œat riskā€ individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development

    Get PDF
    Long noncoding RNA (lncRNA) may contribute to the initiation and progression of tumor. In this study, we first systematically compared lncRNA and mRNA expression between glioblastoma and paired normal brain tissues using microarray data. We found 27 lncRNA and 82 mRNA significantly upregulated in glioblastoma, as well as 198 lncRNA and 285 mRNA significantly downregulated in glioblastoma. We identified 138 coexpressed lncRNAā€“mRNA pairs from these differentially expressed lncRNA and genes. Subsequent pathway analysis of the lncRNA-paired genes indicated that EphrinBā€“EPHB, p75-mediated signaling, TNFĪ±/NF-ĪŗB, and ErbB2/ErbB3 signaling pathways might be altered in glioblastoma. Specifically, lncRNA RAMP2-AS1 had significant decrease of expression in glioblastoma tissues and showed coexpressional relationship with NOTCH3, an important tumor promoter in many neoplastic diseases. Our follow up experiment indicated that (i) an overexpression of RAMP2-AS1 reduced glioblastoma cell proliferation in vitro and also reduced glioblastoma xenograft tumors in vivo; (ii) NOTCH3 and RAMP2-AS1 coexpression rescued the inhibitory action of RAMP2-AS1 in glioblastoma cells; and (iii) RNA pull-down assay revealed a direct interaction of RAMP2-AS1 with DHC10, which may consequently inhibit, as we hypothesize, the expression of NOTCH3 and its downstream signaling molecule HES1 in glioblastoma. Taken together, our data revealed that lncRNA expression profile in glioblastoma tissue was significantly altered; and RAMP2-AS1 might play a tumor suppressive role in glioblastoma through an indirect inhibition of NOTCH3. Our results provided some insights into understanding the key roles of lncRNAā€“mRNA coregulation in human glioblastoma and the mechanisms responsible for glioblastoma progression and pathogenesis. Mol Cancer Ther; 15(12); 2977ā€“86. Ā©2016 AACR

    Predicting breast cancer risk, recurrence and survivability

    Full text link
    This thesis focuses on predicting breast cancer at early stages by using machine learning algorithms based on biological datasets. The accuracy of those algorithms has been improved to enable the physicians to enhance the success of treatment, thus saving lives and avoiding several further medical tests

    NOVEL APPLICATIONS OF MACHINE LEARNING IN BIOINFORMATICS

    Get PDF
    Technological advances in next-generation sequencing and biomedical imaging have led to a rapid increase in biomedical data dimension and acquisition rate, which is challenging the conventional data analysis strategies. Modern machine learning techniques promise to leverage large data sets for finding hidden patterns within them, and for making accurate predictions. This dissertation aims to design novel machine learning-based models to transform biomedical big data into valuable biological insights. The research presented in this dissertation focuses on three bioinformatics domains: splice junction classification, gene regulatory network reconstruction, and lesion detection in mammograms. A critical step in defining gene structures and mRNA transcript variants is to accurately identify splice junctions. In the first work, we built the first deep learning-based splice junction classifier, DeepSplice. It outperforms the state-of-the-art classification tools in terms of both classification accuracy and computational efficiency. To uncover transcription factors governing metabolic reprogramming in non-small-cell lung cancer patients, we developed TFmeta, a machine learning approach to reconstruct relationships between transcription factors and their target genes in the second work. Our approach achieves the best performance on benchmark data sets. In the third work, we designed deep learning-based architectures to perform lesion detection in both 2D and 3D whole mammogram images

    DiseƱo de sistemas neurocomputacionales en el Ɣmbito de la Biomedicina

    Get PDF
    El Ć”rea de la biomedicina es un Ć”rea extensa en el que las entidades pĆŗblicas de cada paĆ­s han invertido y continĆŗan invirtiendo en investigaciĆ³n una gran cantidad de financiaciĆ³n a travĆ©s de proyectos nacionales, europeos e internacionales. Los avances cientĆ­ficos y tecnolĆ³gicos registrados en los Ćŗltimos quince aƱos han permitido profundizar en las bases genĆ©ticas y moleculares de enfermedades como el cĆ”ncer, y analizar la variabilidad de respuesta de pacientes individuales a diferentes tratamientos oncolĆ³gicos, estableciendo las bases de lo que hoy se conoce como medicina personalizada. Ɖsta puede definirse como el diseƱo y aplicaciĆ³n de estrategias de prevenciĆ³n, diagnĆ³stico y tratamiento adaptadas a un escenario que integra la informaciĆ³n del perfil genĆ©tico, clĆ­nico, histopatolĆ³gico e inmuhistoquĆ­mico de cada paciente y patologĆ­a. Dada la incidencia de la enfermedad de cĆ”ncer en la sociedad, y a pesar de que la investigaciĆ³n se ha centrado tradicionalmente en el aspecto de diagnĆ³stico, es relativamente reciente el interĆ©s de los investigadores por el estudio del pronĆ³stico de la enfermedad, aspecto integrado en la tendencia creciente de los sistemas nacionales de salud pĆŗblica hacia un modelo de medicina personalizada y predictiva. El pronĆ³stico puede ser definido como conocimiento previo de un evento antes de su posible apariciĆ³n, y puede enfocarse a la susceptibilidad, supervivencia y recidiva de la enfermedad. En la literatura, existen trabajos que utilizan modelos neurocomputacionales para la predicciĆ³n de casuĆ­sticas muy particulares como, por ejemplo, la recidiva en cĆ”ncer de mama operable, basĆ”ndose en factores pronĆ³stico de naturaleza clĆ­nico-histopatolĆ³gica. En ellos se demuestra que estos modelos superan en rendimiento a las herramientas estadĆ­sticas tradicionalmente utilizadas en anĆ”lisis de supervivencia por el personal clĆ­nico experto. Sin embargo, estos modelos pierden eficacia cuando procesan informaciĆ³n de tumores atĆ­picos o subtipos morfolĆ³gicamente indistinguibles, para los que los factores clĆ­nicos e histopatolĆ³gicos no proporcionan suficiente informaciĆ³n discriminatoria. El motivo es la heterogeneidad del cĆ”ncer como enfermedad, para la que no existe una causa individual caracterizada, y cuya evoluciĆ³n se ha demostrado que estĆ” determinada por factores no sĆ³lo clĆ­nicos sino tambiĆ©n genĆ©ticos. Por ello, la integraciĆ³n de los datos clĆ­nico-histopatolĆ³gicos y proteĆ³mico-genĆ³mica proporcionan una mayor precisiĆ³n en la predicciĆ³n en comparaciĆ³n con aquellos modelos que utilizan sĆ³lo un tipo de datos, permitiendo llevar a la prĆ”ctica clĆ­nica diaria una medicina personalizada. En este sentido, los datos de perfiles de expresiĆ³n provenientes de experimentos con plataformas de microarrays de ADN, los datos de microarrays de miRNA, o mĆ”s recientemente secuenciadores de Ćŗltima generaciĆ³n como RNA-Seq, proporcionan el nivel de detalle y complejidad necesarios para clasificar tumores atĆ­picos estableciendo diferentes pronĆ³sticos para pacientes dentro de un mismo grupo protocolizado. El anĆ”lisis de datos de esta naturaleza representa un verdadero reto para clĆ­nicos, biĆ³logos y el resto de la comunidad cientĆ­fica en general dado el gran volumen de informaciĆ³n producido por estas plataformas. Por lo general, las muestras resultantes de los experimentos en estas plataformas vienen representadas por un nĆŗmero muy elevado de genes, del orden de miles de ellos. La identificaciĆ³n de los genes mĆ”s significativos que incorporen suficiente informaciĆ³n discriminatoria y que permita el diseƱo de modelos predictivos serĆ­a prĆ”cticamente imposible de llevar a cabo sin ayuda de la informĆ”tica. Es aquĆ­ donde surge la BioinformĆ”tica, tĆ©rmino que hace referencia a cĆ³mo se aplica la ciencia de la informaciĆ³n en el Ć”rea de la biomedicina. El objetivo global que se intenta alcanzar en esta tesis consiste, por tanto, en llevar a la prĆ”ctica clĆ­nica diaria una medicina personalizada. Para ello, se utilizarĆ”n datos de perfiles de expresiĆ³n de alguna de las plataformas de microarrays mĆ”s relevantes con objeto de desarrollar modelos predictivos que permitan obtener una mejora en la capacidad de generalizaciĆ³n de los sistemas pronĆ³stico actuales en el Ć”mbito clĆ­nico. Del objetivo global de la tesis pueden derivarse tres objetivos parciales: el primero buscarĆ” (i) pre-procesar cualquier conjunto de datos en general y, datos de carĆ”cter biomĆ©dico en particular, para un posterior anĆ”lisis; el segundo buscarĆ” (ii) analizar las principales deficiencias existentes en los sistemas de informaciĆ³n actuales de un servicio de oncologĆ­a para asĆ­ desarrollar un sistema de informaciĆ³n oncolĆ³gico que cubra todas sus necesidades; y el tercero buscarĆ” (iii) desarrollar nuevos modelos predictivos basados en perfiles de expresiĆ³n obtenidos a partir de alguna plataforma de secuenciaciĆ³n, haciendo hincapiĆ© en la capacidad predictiva de estos modelos, la robustez y la relevancia biolĆ³gica de las firmas genĆ©ticas encontradas. Finalmente, se puede concluir que los resultados obtenidos en esta tesis doctoral permitirĆ­an ofrecer, en un futuro cercano, una medicina personalizada en la prĆ”ctica clĆ­nica diaria. Los modelos predictivos basados en datos de perfiles de expresiĆ³n que se han desarrollado en la tesis podrĆ­an integrarse en el propio sistema de informaciĆ³n oncolĆ³gico implantado en el Hospital Universitario Virgen de la Victoria (HUVV) de MĆ”laga, fruto de parte del trabajo realizado en esta tesis. AdemĆ”s, se podrĆ­a incorporar la informaciĆ³n proteĆ³mico-genĆ³mica de cada paciente para poder aprovechar al mĆ”ximo las ventajas aƱadidas mencionadas a lo largo de esta tesis. Por otro lado, gracias a todo el trabajo realizado en esta tesis, el doctorando ha podido profundizar y adquirir una extensa formaciĆ³n investigadora en un Ć”rea tan amplia como es la BioinformĆ”tica
    • ā€¦
    corecore