210 research outputs found

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv

    Topology control for wireless networks with highly-directional antennas

    Get PDF
    In order to steer antenna beams towards one another for communication, wireless nodes with highly-directional antennas must track the channel state of their neighbors. To keep this overhead manageable, each node must limit the number of neighbors that it tracks. The subset of neighbors that each node chooses to track constitutes a network topology over which traffic can be routed. We consider this topology design problem, taking into account channel modeling, transmission scheduling, and traffic demand. We formulate the optimal topology design problem, with the objective of maximizing the scaling of traffic demand, and propose a distributed method, where each node rapidly builds a segment of the topology around itself by forming connections with its nearest neighbors in discretized angular regions. The method has low complexity and message passing overhead. The resulting topologies are shown to have desirable structural properties and approach the optimal solution in high path loss environments.National Science Foundation (U.S.) (Grant CNS-1524317)National Science Foundation (U.S.) (Grant CNS-1116209)National Science Foundation (U.S.) (Grant AST-1547331)United States. Air Force (Contract FA8721-05-C-0002

    Logical Embeddings for Minimum Congestion Routing in Lightwave Networks

    Get PDF
    The problem considered in this paper is motivated by the independence between logical and physical topology in Wavelength Division Multiplexing WDM based local and metropolitan lightwave networks. This paper suggests logical embeddings of digraphs into multihop lightwave networks to maximize the throughput under nonuniform traffic conditions. Defining congestion as the maximum flow carried on any link, two perturbation heuristics are presented to find a good logical embedding on which the routing problem is solved with minimum congestion. A constructive proof for a lower bound of the problem is given, and obtaining an optimal solution for integral routing is shown to be NP-Complete. The performance of the heuristics is empirically analyzed on various traffic models. Simulation results show that our heuristics perform on the average from a computed lower bound Since this lower bound is not quite tight we suspect that the actual performance is better In addition we show that 5%-20% performance improvements can be obtained over the previous work

    Energy efficient broadcasting in wireless ad hoc networks

    Get PDF
    In recent years wireless multi-hop networks have attracted significant attention due to their wide range of potential civil and military applications. Broadcasting is a funda- mental data dissemination scheme for these networks. The transmission power control is an important issue in wireless ad hoc networks and still has no satisfactory solution methods. The wireless networking environment presents formidable challenges to the study of broadcasting problems. In particular, the properties of the wireless medium and the presence of battery-powered devices require novel modeling and algorithmic approaches concentrating on judicious use of limited energy resources in wireless net- works. In addition, networks are often required to provide certain quality of service (QoS) guarantees in terms of the end-to-end delay along the individual paths from the source to each of the destination nodes. Moreover, the received signal at each receiv- ing node must be strong enough to be successfully decoded. In this study we address the minimum-energy broadcast problem in multi-hop wireless networks with respect to two different constraints: (i) each node must receive broadcast message within a given delay bound Δ, and (ii) signal-to-interference-plus-noise ratio (SINR) of the received signal must be above a given threshold [y] so that the received signal can be successfully decoded at the receiving node. We propose two distinct algorithms Distributed Tree Expansion (DTE) and SINR-BIP which aim to generate minimum power broadcast tree with respect to constraint (i) and (ii), respectively and exclusively. DTE is based on an implementation of a distributed minimum spanning tree algorithm in which the tree grows at each iteration by adding a node that can cover the maximum number of currently uncovered nodes in the network with minimum incremental transmission power and without violating the delay constraint. In SINR-BIP, we apply the similar idea of well-known Broadcast Incremental Power (BIP) algorithm while considering the SINR values of received powers. In addition, we use an embedded pruning procedure in SINR-BIP, so that the myopic effect of the algorithm is mitigated. Both the algo- rithms DTE and SINR-BIP are constructive in nature since the broadcast tree grows at each iteration. We observed that the DTE outperforms the existing algorithms and the total energy consumptions of the generated broadcast trees by DTE is within 20% percent of the solutions obtained by Integer Programming

    Beyond Interference Avoidance: Distributed Sun-network Scheduling in Wireless Networks with Local Views

    Get PDF
    In most wireless networks, nodes have only limited local information about the state of the network, which includes connectivity and channel state information. With limited local information about the network, each node’s knowledge is mismatched; therefore, they must make distributed decisions. In this thesis, we pose the following question - if every node has network state information only about a small neighborhood, how and when should nodes choose to transmit? While link scheduling answers the above question for point-to-point physical layers which are designed for an interference-avoidance paradigm, we look for answers in cases when interference can be embraced by advanced code design, as suggested by results in network information theory. To make progress on this challenging problem, we propose two constructive distributed algorithms, one conservative and one aggressive, which achieve rates higher than link scheduling based on interference avoidance, especially if each node knows more than one hop of network state information. Both algorithms schedule sub-networks such that each sub-network can employ advanced interference-embracing coding schemes to achieve higher rates. Our innovation is in the identification, selection and scheduling of sub-networks, especially when sub-networks are larger than a single link. Using normalized sum-rate as the metric of network performance, we prove that the proposed conservative sub-network scheduling algorithm is guaranteed to have performance greater than or equal to pure coloring-based link scheduling. In addition, the proposed aggressive sub-network scheduling algorithm is shown, through simulations, to achieve better normalized sum-rate than the conservative algorithm for several network classes. Our results highlight the advantages of extending the design space of possible scheduling strategies to include those that leverage local network information

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems
    • …
    corecore