

Abstract

Beyond Interference Avoidance: Distributed Sub-network Scheduling in Wireless

Networks with Local Views

by

Pedro Enrique Santacruz

In most wireless networks, nodes have only limited local information

about the state of the network, which includes connectivity and channel

state information. With limited local information about the network, each

node’s knowledge is mismatched; therefore, they must make distributed

decisions. In this thesis, we pose the following question - if every node

has network state information only about a small neighborhood, how and

when should nodes choose to transmit? While link scheduling answers

the above question for point-to-point physical layers which are designed

for an interference-avoidance paradigm, we look for answers in cases when

interference can be embraced by advanced code design, as suggested by

results in network information theory.

To make progress on this challenging problem, we propose two con-

structive distributed algorithms, one conservative and one aggressive, which

achieve rates higher than link scheduling based on interference avoidance,

especially if each node knows more than one hop of network state informa-

tion. Both algorithms schedule sub-networks such that each sub-network

can employ advanced interference-embracing coding schemes to achieve

higher rates. Our innovation is in the identification, selection and schedul-

ing of sub-networks, especially when sub-networks are larger than a single

link.

Using normalized sum-rate as the metric of network performance, we

prove that the proposed conservative sub-network scheduling algorithm is

guaranteed to have performance greater than or equal to pure coloring-

based link scheduling. In addition, the proposed aggressive sub-network

scheduling algorithm is shown, through simulations, to achieve better

normalized sum-rate than the conservative algorithm for several network

classes. Our results highlight the advantages of extending the design space

of possible scheduling strategies to include those that leverage local net-

work information.

Acknowledgements

I would like to begin by expressing my most sincere and deepest grat-

itude to Professor Ashutosh Sabharwal for being an advisor that has pro-

vided support, guidance, motivation, and a great example of what it takes

to be an outstanding researcher. His willingness and ability to understand

the best approach to maximize my abilities is one of the biggest reasons

why I was able to successfully complete this degree. I also would like

to thank my committee: Dr. Behnaam Aazhang, Dr. Edward Knightly,

and Dr. Illya Hicks. Your guidance, comments, and probing questions

added significantly to the work presented in this thesis. A special thanks

to Vaneet Aggarwal, who played and integral role in the development of

the problem and throughout the quest for solutions. Your collaboration

is very much appreciated.

Next, I would like to thank all fellow Ph.D. students who have helped

me throughout my studies. I would like to thank Debashis Dash for be-

ing a great mentor during my early years at Rice. To David Kao and

Evan Everett, thank you for your friendship, support, and insightful dis-

cussions. Also, I am extremely grateful to Achaleshwar Sahai for the

countless times when he provided key assistance in technical matters, but

more importantly for countless times when he shared his friendship and

charisma making the graduate student experience thoroughly enjoyable.

Thanks to my family for the unconditional love and support they have

v

provided all this time. They have always been the foundation that sup-

ports all my endeavors.

With the fullness of my heart, I would like to thank Samantha Sum-

merson. Words cannot express the level of gratefulness, appreciation, and

love I have for everything you have done for me. You make me better,

wiser, stronger, and, above all, happier.

Finally, to the One who guided the beginning of my work, directed its

progress, and brought it to its completion, my humble gratitude always.

A

mi Mamá, mi Papá, Humberto y Gilberto

Gracias

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

2 System Model and Problem Formulation 5

2.1 Network Model . 5

2.2 Local View . 7

2.3 Normalized Sum-rate . 8

3 Related Work 9

3.1 Interference Avoidance: Link Scheduling 9

3.2 Beyond Interference Avoidance . 12

4 Overview 14

4.1 Approach . 14

4.2 Contributions . 15

4.3 Overview of Proposed Algorithms . 16

5 Step 1: Identification (G→ G−ρ (v)) 20

6 Step 2: Selection (G−ρ (v)→ Gρ(v)) 24

6.1 Consevative Selection Algorithm . 24

6.2 Aggressive Selection Algorithm . 29

viii

7 Step 3: Scheduling 37

7.1 Local Multicoloring Algorithm . 38

7.2 Application . 39

7.3 Overhead . 40

8 Results 42

8.1 Conservative Algorithm Guarantee 44

8.2 Numerical Results: Normalized Sum-Rate 46

8.3 Net Sum-rate Comparisons . 52

8.4 Numerical Results: Net Sum-rate . 63

8.5 Remarks on Overhead . 66

9 Conclusion 70

9.1 Summary of Contributions and Significance 70

9.2 Future Directions . 71

References 73

List of Figures

2.1 Interference Network . 6

2.2 Conflict Graph, G, associated with Interference Network in Figure 2.1 6

5.1 Line-clique graph with N nodes, G 21

5.2 G−1 (1) . 21

5.3 G−1 (2) . 21

5.4 G−1 (N) . 22

6.1 G−1 (2)→ G1(2) . 26

6.2 G−1 (1)→ G1(1) . 26

6.3 G−1 (N)→ G1(N) . 27

6.4 G−ρ for ρ = 1 . 31

6.5 Cliques that appear twice elsewhere are removed 31

6.6 Final graph, G1, after algorithm . 32

6.7 r-cliques, r = 0, 1, 2 . 33

6.8 Cliques are removed . 33

6.9 Final graph, G2, after aggressive algorithm 33

8.1 N -node Line-star Graph . 46

8.2 Conservative vs. Agressive Algorithms - Sample Graphs 47

8.3 Sample Random Graph with Low Connectivity, p = 0.1 49

8.4 Sample Random Graph with High Connectivity, p = 0.9 49

8.5 Sample Scale-free Graph . 50

8.6 Sample Geometric Graph . 50

x

8.7 Normalized sum-rate performance comparison in random graphs with

low connectivity, p = 0.1 . 51

8.8 Normalized sum-rate performance comparison in random graphs with

medium connectivity, p = 0.5 . 52

8.9 Normalized sum-rate performance comparison in random graphs with

high connectivity, p = 0.9 . 53

8.10 Normalized sum-rate performance comparison in scale-free graphs . . 54

8.11 Normalized sum-rate performance comparison in geometric graphs, d =

0.25 . 55

8.12 Normalized sum-rate performance comparison in geometric graphs, d =

0.5 . 56

8.13 Two cliques . 57

8.14 Two cliques after conservative algorithm, G1 57

8.15 Two cliques after aggressive algorithm, G1 58

8.16 Clique-star . 60

8.17 Clique-star after conservative algorithm, G1 60

8.18 Clique-star after aggressive algorithm, G1 61

8.19 Net sum-rate performance comparison in random graphs with low con-

nectivity, p = 0.1 . 64

8.20 Net sum-rate performance comparison in random graphs with medium

connectivity, p = 0.5 . 65

8.21 Net sum-rate performance comparison in random graphs with high

connectivity, p = 0.9 . 66

8.22 Net sum-rate performance comparison in scale-free graphs 67

8.23 Net sum-rate performance comparison in geometric graphs, d = 0.25 . 68

8.24 Net sum-rate performance comparison in geometric graphs, d = 0.5 . 69

List of Tables

8.1 Table of Results for Two Example Topologies 62

Chapter 1

Introduction

The shared nature of wireless communication networks results in the fundamental

problem of dealing with interference from other simultaneous transmissions by co-

located flows. The most commonly used technique of managing interference is to

avoid it by scheduling transmissions such that the co-located flows do not transmit

simultaneously. Link scheduling inherently assumes that the underlying physical layer

architecture is designed to decode a single packet. Link scheduling, both centralized

and distributed, has a rich history and continues to be an active area of research, see

[1, 2, 3, 4, 5, 6] and references therein. We pose and study the scheduling problem

for the case when the physical layer architecture can embrace interference by using

advanced coding methods.

While interference-avoidance continues to be the near de-facto strategy in wireless

networks, it has been known for some time that avoiding interference is not a capacity

maximizing strategy for many networks. For example, techniques like multi-user de-

tection [7], Han-Kobayashi coding for 2-user interference channel [8] and interference

alignment for general interference networks [9] are known to yield higher capacity

by embracing, not avoiding, interference; e.g., see the book-length exposition [10] for

details. These new ideas have also inspired new standardization activity, like Coor-

2

dinated Multipoint (COMP) [11], which uses network MIMO to improve capacity at

the edge of the cells. However, almost all such advanced techniques assume exten-

sive knowledge about the network topology, channel statistics, and in many cases,

instantaneous channel information, to achieve capacity gains from embracing inter-

ference [10]. A direct impact of requiring such extensive knowledge at each node is

that the resulting network architecture poses scalability limitations – as the network

size grows, the amount of network state information needed at every node also grows

proportional to the number of users in the network.

In this thesis, we pose the following problem. If each node in the network has

limited information about the network state (connectivity and channel states), say it

only knows the network state information about channels and links h ≥ 1 hops away

from it, then what is the capacity maximizing transmission scheme. Note that limited

local information problems have been extensively studied in distributed scheduling [3,

4, 5, 6]. However, as mentioned above, all of them assume interference avoidance as

their underlying architecture. In our model, the physical layer architecture is not

restricted a priori and is allowed to be any feasible scheme, including those which

embrace interference [10]. However, unlike network information theory formulations

[8, 9, 12], we are explicitly studying only scalable architectures by limiting network

state information at each node.

The new problem turns out to be extremely hard, and is the generalized version

of the distributed capacity problem studied recently in [13, 14]. The formulation

in [13, 14] shared full network connectivity information with all nodes but only h-

hop information about the channel state. The key (and surprising) result in [13] was

that a generalized form of scheduling is information-theoretically optimal for many

networks. The general scheduling, labeled Maximum Independent Graph Scheduling

(MIG Scheduling), schedules connected sub-networks larger than a single link. This

3

is especially true if h > 1, i.e, nodes know more than one hop of channel information.

The size of the sub-networks is such that within each sub-network, an advanced

coding scheme can be used since all nodes have enough channel information to operate

optimally. Since MIGS assumed that the nodes have full connectivity information,

they can coordinate their time of transmission. Thus MIGS is akin to centralized

scheduling, but of connected sub-networks potentially bigger than a single link.

In our work, no global connectivity information is available at any node and

thus all decisions have to be truly distributed. To make progress on the challeng-

ing new network capacity problem, we use MIGS as our starting point and focus on

how sub-networks can be identified, selected and scheduled in a distributed manner.

Thus, our contributions in this thesis are two distributed sub-network scheduling algo-

rithms, both of which achieve better network performance compared to interference-

avoidance, especially when more than one-hop of network state information is made

available at each node.

The first step is in identification of sub-networks which can operate optimally

with limited local information. That is, if the rest of the network was switched off

beyond a small sub-network, there exists an advanced interference-embracing coding

scheme which will achieve the maximum possible capacity in that sub-network. We

limit our attention to a smaller set of sub-graphs, ρ-cliques (defined later), where ρ

depends on the amount of available network information. We note that identification

of maximal independent sub-graph schedules [13], which are a generalization of in-

dependent set scheduling, is an open problem. By limiting our attention to finding

only ρ-cliques, we ensure that each sub-network by itself can operate optimally with

limited local network view at each node, thereby circumventing the open problem

and still guaranteeing the sufficient condition of sub-networks to be used by MIGS.

In the second step, we select a subset of identified ρ-cliques in order to maximize

4

network sum-rate. The challenge, like in any distributed problem, is for nodes to

reach consensus locally such that the global rate is optimized. Towards that end, we

propose two selection algorithms labeled conservative and aggressive. Both selection

algorithms prune the identified ρ-cliques in order to decrease the maximum degree of

the graphs made from the identified ρ-cliques, which is directly related to increasing

the network sum-rate. Thus, the two algorithms use only local graph properties in

their decision making. The conservative algorithm is guaranteed to produce schedules

which will never achieve rates below interference-avoiding link scheduling, but ends

up making conservative decisions for many networks. The aggressive algorithm does

not provide provable guarantees but is shown to achieve better sum-rates for several

network classes. The last step of scheduling sub-networks is performed using Kuhn’s

local multicoloring algorithm [15], applied to the more general graph structure induced

by sub-networks.

We note that once the connected sub-networks are decided and scheduled, each

sub-network uses the appropriate coding scheme based on their topology. Thus, like

traditional link scheduling which is concerned with when links transmit and not how

actual channel coding/decoding is performed, our contributions are to identify the

sub-networks and not what actual codes are used. The decoupling is possible because

of the optimality condition required in MIGS for allowed sub-networks [13].

Chapter 2

System Model and Problem Formulation

2.1 Network Model

In this work, we consider a wireless network in an interference channel model scenario.

The interference network model consists of N source-destination pairs. Each source-

destination pair is considered a user in the network. The source nodes, labeled Si,

are connected to a subset of the destination nodes, labeled Dj, (i, j ∈ {1, ..., N})

if the received power at destination Dj from Si is above some threshold. The set

of transmitters that are connected to receiver Dj is labeled Ij. We assume there is

always a connection between Si and Dj, for all i = j. The channel gain between Si

and Dj is denoted Hij. The received signal at receiver Dj is

Yj =
∑
i:Si∈Ij

HijXi +W, (2.1)

where Xi is the transmit signal from Si subject to its average power constraint Pi

and W is complex gaussian noise CN (0, 1).

Associated with the interference network, there is a conflict graph G(V,E). In

this conflict graph, a vertex v ∈ V represents a user in the interference network and

6

an edge e ∈ E represents interference between those two users, that is, {i, j} ∈ E

if Si is connected to Dj or if Sj is connected to Di. Figure 2.1 depicts an example

interference network and its corresponding conflict graph is illustrated in Figure 2.2.

It is important to note that, since our conflict graph is undirected, there are several

interference networks that result in the same conflict graph. While all our results

hold for arbitrary conflict graphs, we will use the conflict graph in Figure 2.2 as an

illustrative example in the rest of the thesis. Hence, we label the N -node graph (in

Figure 2.2) with a line of size N − 3 and an attached clique of size 3 as the line-clique

graph.

S1 D1

S2 D2

SN-2 DN-2

SN-1 DN-1

SN DN

...

Figure 2.1: Interference Network

1 2 N-2 N-1

N

Figure 2.2: Conflict Graph, G, associated with Interference Network in Figure 2.1

We note some of the differences between our model and the network model com-

monly known as the k-hop interference model in the network scheduling literature

([3, 16, 4, 5] and others). In the k-hop interference model, each node in the interfer-

ence network can be either a transmitter or receiver while in our model each node

7

has an assigned role. Since in our model interference only occurs if a transmitter

directly interferes with another receiver, our model is more closely related to the 1-

hop, or node-exculsive, interference model. All traffic in our model is assumed to be

single-hop traffic and there exist interference connections in the interference network

that are not data links (users) in the network, i.e., connections between Si and Dj for

i 6= j do not represent data links, yet a connection exists and interference behavior is

from the interference network to the conflict graph.

2.2 Local View

In [13], local knowledge at any node was modeled as h-hops of channel information

with that node as the center. However, all nodes were assumed to have full con-

nectivity information. We will study a more detailed model of network information,

giving each node only limited network connectivity and channel state knowledge, as

described below. For convenience, we will describe them in the conflict graph repre-

sentation of the network.

A user is said to have τ hops of connectivity information if it knows all vertices

and edges τ hops away from it in the conflict graph G. Similarly, a user has η hops

of channel information if it has knowledge of all channel gains in the interference

network for all users η hops away in the conflict graph. Notice that η hops of channel

knowledge in conflict graph equals h = 2η + 1 hops of channel knowledge in the

interference network. The same holds true for connectivity information. Also, we

assume that τ ≥ η since, in general, channel information is more difficult to obtain

than connectivity information.

8

2.3 Normalized Sum-rate

Our metric of network performance is a slight modification of the normalized sum-rate,

α, introduced in [13], which is the information-theoretic sum-rate achieved normalized

by the sum-capacity with full network state information. More precisely, a normalized

sum-rate of α(η) with η hops of channel state information in the conflict graph is said

to be achievable if there exists a strategy that allows transmission at rates Ri for each

flow i ∈ {1, 2, ..., N} with error probabilities going to zero, and satisfying

N∑
i=1

Ri ≥ α(η)Csum − ε (2.2)

for all topologies consistent with the local view information, regardless of the real-

ization of the channel gains. Here Csum is the sum capacity of the network with full

information and ε is some non-negative constant independent of channel gains.

In this work, we extend the concept of normalized sum-rate by removing the

assumption that full connectivity information is available at every node. Instead,

we quantify both the hops of channel and connectivity information available at each

node by η and τ , respectively. We propose as our metric of performance the more

general form of normalized sum-rate, denoted α̃(η, τ), as a function of η and τ , such

that the following is satisfied

N∑
i=1

Ri ≥ α̃(η, τ)Csum − ε. (2.3)

The problem we address in this work is to characterize the achievable performance

in a network with η hops of available channel information and τ hops of available

connectivity information. We tackle this problem by creating schemes that use only

(η, τ) hops of information and analyze their performance.

Chapter 3

Related Work

Interference management in wireless networks has been widely studied at both the

network and physical layers. From the networking point of view, prior research has

focused on developing schemes and algorithms that reduce the computational com-

plexity and allow optimal throughput strategies to be executed in a distributed fash-

ion. At the physical layer, the focus has been set on finding schemes that approach

the holy grail of network capacity. Approaches at both the networking and physical

layer have acknowledged and tried to address the issue of local information in some

form or another. In this section, we review some of the works related to our goal of

characterizing the effects of local information in wireless networks.

3.1 Interference Avoidance: Link Scheduling

In the seminal work by Tassiulas and Ephremides [1], the capacity of a constrained

queueing system for an interference-avoiding physical layer was derived and charac-

terized. The problem was shown to be solved by finding a maximum-weight inde-

pendent set of nodes in the network graph in each transmission time-slot. While this

schemes yields optimal throughput under the interference-avoidance paradigm, it re-

10

quires complete information about the connectivity and queue states of the network

by all members of the network or, alternatively, a centralized entity that computes the

optimal schedule and communicates it to the members of the network in each time-

slot. Furthermore, even when complete information is available, the optimization

problem that needs to be solved has high complexity. The need for complete infor-

mation and the high computation complexity of the optimal solution make maximum

weight-scheduling unfeasible for most practical purposes, especially in wireless scenar-

ios. There has been a significant amount of work on reducing the amount of network

information required at each node, developing algorithms that are implementable in

a distributed manner, and reducing the computational complexity of the algorithms.

Some prior work aims to maximize performance in terms of utility [17, 18, 19] while

others are concerned with improving throughput. Most state-of-the-art approaches

that aim to maximize throughput can be arranged into four categories.

1. The first category of link scheduling algorithms is denoted Maximal Matching.

The algorithms proposed in this class, [6], [3], [4], [5], attempt to produce a

maximal schedule in each time-slot. A maximal schedule is defined as a set of

links such that no two links interfere with each other and such that there are no

other links that could be added to the set without creating interference. These

algorithms produce throughput guarantees and are suitable for distributed im-

plementation, yet they require global knowledge about the connectivity of the

network, or at least some predetermined global ordering that allows nodes to

avoid conflicts during algorithm execution. Moreover, the amount of overhead

in each time-slot requires O(log2N) rounds of message passing in the worst-case

scenario.

2. The second category consists of the so-called Pick-and-compare policies where,

at each time-slot, the current schedule serves as a building block for the next

11

schedule. Some examples include the work in [20] where schedules are aug-

mented in order to improve performance, and the work in [21] where the cur-

rent schedule is mixed with a new random schedule. Both of these algorithms

make a comparison between the current schedule and the potential new one

by choosing the schedule that results in higher throughput. Once again, these

algorithms require global connectivity information and large number of rounds

of execution. In addition, the long convergence time to the optimal schedule

can result in increased delay.

3. Another class of algorithms under the paradigm of interference-avoidance are

the policies that require a constant-time overhead. These policies are all based

on separating each time frame into a scheduling time-slot and data transmission

time-slot. The policies in this class include the random-access-type algorithms in

[16], [22], and [23]. The design of these algorithms presents an explicit tradeoff

between performance and overhead. Constant-time overhead algorithms also

include those that employ Carrier Sense Multiple Access/Collision Avoidance

(CSMA/CA). The schemes presented in [24], [25], and [26], assume carrier-

sensing capabilities by the nodes in the network.

4. Finally, recent work ([27] and[28]) has further developed algorithms that in-

troduce the idea of network locality in the process of scheduling. These algo-

rithms provide local greedy scheduling schemes that approximate Greedy Max-

imal Scheduling [3] with nodes in the network using only information about

themselves and their neighbors. The information being exchanged before each

data communication session include channel, connectivity, and queue state in-

formation.

12

All algorithms described in this section, and other approaches not categorized here

[29, 30, 31, 32, 33, 34, 35, 36] have the predetermined assumption that receivers in the

network decode an incoming transmission successfully only if none of the other links

within reception range transmit concurrently. Some of the implementation issues of

the optimal solution presented in [1] are addressed by the works described above,

yet the underlying interference-avoidance physical-layer architecture remains. This

results in more practical and more easily implementable schemes that can guarantee

a fraction of the performance of the scheduling capacity region described in [1], but

leaves the possibility of leveraging advanced physical layers with local information

open for exploration.

3.2 Beyond Interference Avoidance

Interference-avoidance strategies are often not the optimal approach from a sum-

capacity perspective and developments in network information theory describe ad-

vanced coding techniques that achieve higher sum-capacity [10]. In fact, the capacity

region of a network with interference-avoidance as the assumed physical layer must lie

completely inside the capacity region where all physical layer techniques are available.

Naturally, the major drawback of these results is the need for complete (or almost

complete) network information, including connectivity and channel information.

Several works have addressed this prohibitive requirement by analyzing the per-

formance of networks with only limited information. In [37], the author considers an

interference channel where transmitters do not have channel information and only

connectivity information is available. Network performance under different example

topologies is analyzed in terms of degrees of freedom (DoF). Techniques and results

used in the problem of wired networks with linear network coding are applied to the

wireless problem. The work in [38] produces results in a similar scenario that assumes

13

connectivity information but no channel information is available to the transmitters.

A study of the capacity region for the 2-user interference channel when each trans-

mitter knows only a subset of the channel gains in the network is presented in [39].

These results along with the work by Aggarwal et al. [13] motivate the argument

that it is possible to use advanced coding techniques with limited local knowledge.

We will use the work by Aggarwal et al. as the launchpad for our work and expand

it to capture a more detailed analysis of the impact of local information on network

performance.

Chapter 4

Overview

4.1 Approach

In [13], the authors examine optimal schemes with local channel state and global

connectivity knowledge, and propose a strategy called Maximal Independent Graph

(MIG) Scheduling which is information-theoretically optimal for various classes of

networks. Information-theoretic optimality means that there exist no other physi-

cal layer coding strategy which can achieve higher sum-rates given the amount of

knowledge available. In MIG Scheduling, every node in the interference network

knows the complete topology of the network and each node is assumed to have h

hops of channel information. The network is separated into sub-networks that can

achieve a normalized sum-capacity of 1 with the h hops of channel information (i.e.,

sub-networks with enough local knowledge to simultaneously transmit in an optimal

way). Thus, the important result from [13] is that a generalized form of network

scheduling is information-theoretically optimal in many cases. Our approach finds

simple distributed algorithms that use only local connectivity information and local

channel information to find key sub-networks and implement this generalized form of

network scheduling.

15

In MIG Scheduling, the sub-networks that are able to achieve normalized sum-

capacity of 1 are labeled independent sub-graphs. MIG scheduling divides the network

into t independent sub-graphs, A1, . . . ,At (not all distinct, for some t), and each user i

belongs to di independent sub-graphs. An important result in [13] is that this scheme

of dividing the network into independent sub-graphs achieves a normalized sum-rate

of

α(h) = min
i∈1,2,...N

di
t
. (4.1)

The set of independent sub-graphs, A1, . . . ,At, that maximizes the value of α(h) is

called the MIG schedule.

The problem of finding the MIG schedule for an arbitrary network is a difficult

task, even with complete connectivity knowledge, and particularly challenging with

only local connectivity information at each node. The optimal independent sub-

graphs are only known for few topologies and small number of users. In this work,

to answer our posed capacity problem, we focus on identification of independent sub-

graphs in a distributed fashion with only (τ, η)-hops of knowledge about network

state.

4.2 Contributions

The contributions of the work presented in this thesis are threefold. The first contri-

bution is associated with our problem formulation. While previous work has looked

into network performance using normalized sum-rate [13, 14, 40], the formulation in

that literature has assumed that only channel state information is locally available

and connectivity information is available globally to all users in the network. In this

work we remove the assumption of globally available connectivity information and

16

formulate the problem to characterize a more general form of normalized sum-rate

with η hops of channel information and τ hops of connectivity information.

The second contribution of this thesis is the design of two constructive distributed

sub-network scheduling algorithms to improve normalized sum-rate performance using

local network views. The two algorithms are denoted conservative and aggressive.

These are one-shot algorithms that are based on simple heuristics and use η hops of

channel state information and τ hops of connectivity information.

Finally, our third contribution is the analysis of the two proposed algorithms in

terms of normalized sum-rate performance. We show that the performance of the

conservative sub-network scheduling algorithm is guaranteed to be a non-decreasing

function of the number of hops of information available to each node. Through sim-

ulations, we also show that the aggressive algorithm achieves significant performance

gains over several important network classes.

4.3 Overview of Proposed Algorithms

In this section, we give a general overview our algorithms to distributedly find inde-

pendent sub-graphs as required by Independent Graph Scheduling. We propose two

algorithms labeled as conservative and aggressive. Both algorithms consist of three

major steps: 1) identification, 2) selection, and 3) scheduling. In the first step, we

use the available channel and topology information to identify all sub-networks of

diameter at-most ρ such that each sub-network independently achieves a normalized

sum-capacity of 1. In the second step, we strategically select a subset of these sub-

networks. The selected subset of sub-networks will be the only sub-networks that

will be transmitting. Finally, in the third step we arrange several of these connected

sub-networks into independent sub-graphs that still achieve normalized sum-capacity

of 1. The creation of independent graph is done by using a distributed coloring al-

17

gorithm that assigns a single color to groups of sub-networks. Our algorithms are

parametrized by ρ, which is the maximum diameter of the connected sub-networks

being identified. Given a ρ, we assume that each node has at least η = ρ+ 1 hops of

channel knowledge and either τ = 3ρ+ 3 or τ = 3ρ+ 1 hops of connectivity informa-

tion, depending on the algorithm used. For simplicity, we also denote the generalized

normalized sum-rate, α̃(η, τ), by a single parameter, ρ, and use the symbol α̃(ρ).

In Step 1, we leverage the local knowledge available at each node by finding r-

cliques for r ≤ ρ which is defined as follows:

Definition 1. A r-clique in a graph G = (V,E) is a subgraph, G[S], induced by a

subset of nodes S ⊂ V that satisfies the following three conditions:

1. Every node in G[S] is at most a distance of r hops away from all other nodes

in G[S].

2. The diameter of G[S] is r.

3. There is no S ′ ⊂ V that also satisfies Conditions 1 and 2 and such that S ⊂ S ′.

In other words, G[S] is a maximal subgraph.

Note that a single node is a graph by itself and a 0-clique according to the above

definition.

Step 1 consists of identifying r-cliques, for r = 0, ..., ρ, in the conflict graph, G.

After the r-cliques have been identified, Step 2 consists of selecting a subset of the

identified r-cliques and consolidating the selected r-cliques into single vertices to gen-

erate a consolidated graph, Gρ, where each vertex represents an r-clique, r = 0, ..., ρ,

from the conflict graph, G. An edge exists between two vertices in the consolidated

graph if there exists an edge between members of the two cliques in the original

conflict graph.

18

Step 3 of the general procedure is performed by applying the distributed multi-

coloring algorithm by Kuhn [15] to the consolidated graph, Gρ, which results in the

assignment of time slots to each one of the cliques. The set of cliques with the same

color are defined as an independent clique set. An independent clique set achieves

α(η) = 1 because each clique achieves α(η) = 1 and the cliques do not interfere with

each other. When we assign a time slot to each of the independent clique sets we

create a scheme for Independent Graph Scheduling. We have chosen Kuhn’s multi-

coloring algorithm because it requires only one round of communication and ensures

that each node in the graph being colored receives at least a fraction 1/(∆ + 1) of

the total colors assigned. We note that our metric of normalized sum-rate is directly

related to the time slots assigned to the worst-case user [13]. Thus, given a fixed

number of cliques containing a specific node, it is desirable to use the multicoloring

algorithm in consolidated graphs which have smaller maximum degree, ∆.

With the objective to find the consolidated graph, Gρ, with a smaller maximum

degree, ∆, our major innovations occur in Step 2 to convert G to Gρ. Here, we

summarize the steps of our proposed algorithms.

1. Identification: Each node identifies all the potential cliques it can belong to.

This step is mainly governed by the amount of network information available to

identify r-cliques (for r ≤ ρ) that achieve individual α̃(η, τ) = 1. With τ = ρ+1

hops of connectivity information r-cliques (r ≤ ρ) can be identified and with

η = ρ + 1 hops of channel information, we ensure the normalized sum-rate of

each r-cliques is 1.

2. Selection: Select which of the potential cliques from Step 1 will become vertices

in the consolidated graph, Gρ. This step is crucial to ensure that agreement in

the distributed coloring process of Step 3 and overall improvement in normalized

sum-rate are possible. We will describe two different algorithms for this step,

19

needing τ = 3ρ+3 and τ = 3ρ+1 hops of connectivity information respectively.

3. Scheduling: The consolidated graph, Gρ, is colored using Kuhn’s distributed

multicoloring algorithm. Each sub-network receives a series of colors that rep-

resent time-slots. A group of sub-networks with the same color represents an

independent sub-graph, and thus achieve normalized sum-rate equal to 1. The

overall performance of the algorithm depends on the number of time-slots when

the worst-case sub-network is active (as described in Chapter 3).

We describe the Identification, Selection, and Scheduling steps in more detail in

the following chapters. We will propose two different methods for Step 2. The first

method presents a conservative approach that ensures that the normalized sum-rate

does not decrease when more knowledge is available with respect to the traditional

distributed scheduling with complete interference avoidance. The conservative ap-

proach ensures improvement, but its conservative nature may limit gains. We also

present an alternative method which is an aggressive approach where we do not en-

sure improvements for all graphs. The normalized sum-rate performance with this

method is significantly better, on average, than the conservative approach for prac-

tical classes of graphs, such as random graphs and scale-free graphs, especially with

smaller amount of local information.

Finally, we note that to derive our results we do not need to state the form of

optimal coding methods used by each node in the identified sub-networks. The fact

that we can analyze sum-rate without explicitly defining coding methods is possible

due to the characteristics of normalized sum-rate.

Chapter 5

Step 1: Identification (G→ G−ρ (v))

Let us begin by describing in detail the procedure followed in the Identification step.

Consider a conflict graph G and a parameter ρ. We assume each user in the network

has η = ρ + 1 hops of channel information and τ = ρ + 1 hops of connectivity

information. In Step 1, for a given ρ, we identify the r-cliques, r = 0, ..., ρ which

can be done with ρ + 1 hops of connectivity information. We are interested in these

r-cliques because, with the available channel information, it is ensured that each r-

clique can achieve α̃(ρ) = 1. These potential cliques are the candidates to ultimately

be represented by a vertex in the consolidated graph Gρ.

Since each node has a different local view of the conflict graph, G, the potential

cliques discovered by each node will be different. Thus, in Step 1, each node will

generate a temporary graph where the potential cliques it sees are turned into vertices.

We will denote the temporary graph from the point to view of node v as G−ρ (v) =

(W−(v), F−(v)), which is described as follows. The set of vertices W−(v) represents

all the r-cliques (r ≤ ρ) in the part of the graph known to node v with ρ + 1 hops

of connectivity information. Each node in w ∈ W−(v) maps to a set of nodes in the

original conflict graph; we denote that set of nodes in the conflict graph represented

by vertex w as nodes(w). An edge exists between two vertices in G−ρ (v), w1 and w2,

21

if there is an edge between a member of nodes(w1) and a member of nodes(w2) in G

or if a member of nodes(w1) is also a member of nodes(w2).

The following example shows the construction G → G−ρ (v) with the parameter

ρ = 1 using the example original conflict graph G in Figure 2.2.

1 2 N-2 N-1

N

Figure 5.1: Line-clique graph with N nodes, G

1 2

1,2

3

2,3

Figure 5.2: G−1 (1)

1 2

1,2

3

2,3

4

3,4

Figure 5.3: G−1 (2)

Figure 5.2 shows what the graph of all potential vertices looks like from the point

of view of node 1, which has 2 hops of connectivity knowledge. The vertices are

labeled according to their corresponding set of nodes from the original conflict graph

(in other words, the label of node w is nodes(w)). As we can see, node 1 observes

5 potential cliques, three 0-cliques ({1}, {2}, {3}) and two 1-cliques ({1, 2}, {2, 3}).

There exists an edge between the vertices labeled {1} and {1, 2} because 1 is present

22

N-2 N-1 N

N-2,
N-1,

N

N-3

N-3,
N-2

Figure 5.4: G−1 (N)

in both vertices and because there is an edge between 1 and 2 in the original conflict

graph. Similarly, there are edges between {1, 2} and {2} and between {1} and {2}

and so on.

Figure 5.3 depicts the graph G−1 (2). In this case, node 2 in G sees four 0-cliques:

{1}, {2}, {3}, and {4}. Also, node 2 sees three different 1-cliques {1, 2}, {2, 3} and

{3, 4} that could be formed so there is a total of 7 vertices in the graph G−1 (2).

The edges are generated following the rules explained earlier. Similarly, Figure 5.4

describes the graph G−1 (N). In this last case, notice that the vertex {N−2, N−1, N}

was created since it forms a 1-clique and node N belongs to it. An important point is

the exclusion of the sets {N − 1, N} and {N − 2, N}. These sets are not included as

vertices in G−1 (N) because we have defined an r-clique as a maximal subset and both

{N−1, N} and {N−2, N} are 1-cliques superseded by the 1-clique {N−2, N−1, N},

therefore {N − 2, N − 1, N} is the only set that becomes a vertex in G−1 (N).

The clique identification process is easily extended for any ρ > 1 by identifying all

r-cliques, for r = 0, ..., ρ. For example, if ρ = 2, G−2 (v) would consist of the full G−1 (v)

plus all the 2-cliques in the 2-neighborhood of v, along with their respective edges.

As we have mentioned, a larger ρ would increase the minimum amount of information

required at each node. Also, finding maximal r-cliques is in general a hard problem,

but since our goal is to leverage local information, we primarily concentrate on the

cases of small r.

Up to this point, we have identified cliques that are made up of nodes that can

23

transmit simultaneously in an optimal manner with the available local knowledge.

However, in order to assign time slots to each one of these cliques, there are two

problems that need to be addressed. First, there is the issue that each node now has

a graph with a maximum degree which is significantly higher the maximum degree of

the original conflict graph. As we have described before, the maximum graph degree

and normalized sum-rate achieved by our scheme are intimately related, so our goal

is a consolidated graph, Gρ, with smallest degree. The second issue is the fact that

we need to ensure that a distributed coloring algorithm does not lead to coloring

conflicts especially since the graphs seen by different nodes differ so much from each

other. In the next section we will select which vertices of the graph G−ρ (v) should

remain and which should be pruned in order to reduce the maximum degree of the

final consolidated graph, Gρ, and to ensure that there will be no conflict in the use

of a distributed coloring algorithm.

Chapter 6

Step 2: Selection (G−ρ (v)→ Gρ(v))

In this chapter, we will describe the Selection step, which consists of selecting which

of the potential vertices in G−ρ (v) identified by each node in Step 1 will be pruned

and which will be kept in their own view of the final consolidated graph Gρ(v). We

propose two different approaches to Step 2. The first approach is a conservative

selection algorithm that allows each user to be represented by only one vertex in the

consolidated graph and ensures that the normalized sum-rate of the network never

decreases. The second approach allows each user to be represented by more then one

vertex in the consolidated graph, and while strict guarantees cannot be provided, the

gains in normalized sum-rate are significant in most classes of graphs, especially with

small amounts of local knowledge.

6.1 Consevative Selection Algorithm

In Step 1, we created a graph G−ρ (v) that consists of vertices that represent cliques

from the original conflict graph and can simultaneously transmit in an optimal way.

As discussed above, graphs G−ρ (v) can have the maximum degree which is higher

than G. The increase in maximum degree is expected; since cliques of nodes are now

25

transmitting simultaneously, their joint interference footprint is expected to grow. To

guarantee improvement in normalized sum-rates, the simplest way is a conservative

selection algorithm that satisfies two properties:

1. Each node v from the conflict graph G is represented by only one node in the

consolidated graph Gρ(v)

2. The degree of the vertex that represent v in the consolidated graph Gρ(v) is

less than or equal to the degree of v in the conflict graph G.

Please note that we say user v inG is represented by vertex w inGρ(v) if v ∈ nodes(w).

The two simple properties described above ensure that the procedure will achieve a

normalized sum-rate of α̃(ρ) = 1/(∆Gρ + 1), where ∆Gρ is the maximum over all

maximum degrees of the Gρ(v) graphs.

In Step 1, we assumed ρ+ 1 hops of connectivity information. In this algorithm,

we will assume 3ρ+3 hops of connectivity knowledge. Generally speaking, the reason

behind the significant amount of connectivity information required is that each node

needs to know not only its own consolidated graph but also the consolidated graphs

of its neighbors because the distributed multicoloring algorithm is a process with a

1 hop footprint. By requiring 3ρ + 3 hops of connectivity knowledge we ensure that

there will be no coloring conflicts in the Scheduling step (Step 3) of the algorithm.

We label the conservative selection algorithm as Algorithm A1(3ρ+ 3)

6.1.1 Example

Carrying on with the previous example, we illustrate the heuristics of the conservative

selection algorithm. Let ρ = 1 and consider the temporary graphs of Figures 5.2,

5.3 and 5.4. For illustrative purposes, let us begin with graph G−1 (2) and node 2’s

conservative selection process. According to our required properties, described in

26

Section 6.1, to guarantee improvement in normalized sum-rate, node 2 can only be

represented by one vertex in the graph Gρ(2). Node 2 must choose one of the three

options {1, 2}, {2, 3} or {2} and the others must be pruned. When possible, we

want to keep vertices that represent more nodes since that could result, intuitively, in

consolidated graphs with less vertices and with smaller maximum degree. The first

step is, therefore, to check if there exists a vertex that represents a unique maximum

ρ-clique, meaning a unique ρ-clique with the maximum number of members. In this

case, there are two cliques with two members each. Since we do not have a heuristic to

prefer clique {1, 2} over clique {2, 3}, to avoid conflicts with neighboring nodes about

the clique chosen, node 2 concludes that neither of the two ρ-cliques will be selected

to represent it in the consolidated graph. Therefore node 2 chooses the vertex {2} as

its vertex to keep. Similarly, it chooses all the single node vertices for all other nodes

in the graph as shown in Figure 6.1.

Not Unique Maximum

1 2

1,2

3

2,3

4

3,4

1 2 3 4

Figure 6.1: G−1 (2)→ G1(2)

Not Unique Maximum

1 2

1,2

3

2,3

1 2 3

Figure 6.2: G−1 (1)→ G1(1)

Now, consider the graph G−1 (1) and which vertices node 1 will select to be kept

in the consolidated graph Gρ(1). Node 1 sees that node 2 does not have a unique

ρ-clique, therefore vertices {1, 2} and {2, 3} cannot be kept, so all the single nodes

27

Replace by clique

N-2 N-1 N

N-2,
N-1,

N

N-3
N-2,
N-1,

N
N-3

N-3,
N-2

Figure 6.3: G−1 (N)→ G1(N)

vertices are chosen shown by Figure 6.2.

Finally, let us look at the graph G−1 (N) and node N ’s selection process. Node

N has a unique maximum clique {N − 2, N − 1, N} and, in this case, it is also the

maximum clique for nodes N − 1 and N . Also, the degree of the vertex representing

that clique in Gρ(v) would be 1, which is smaller than the degree of nodes N − 2,

N−1 and N in G. Therefore, node N decides that it will be represented by the vertex

{N − 2, N − 1, N} in the consolidated graph, Gρ(N), shown in Figure 6.3. After the

conservative selection process with ρ = 1, the graphs Gρ(v), for all v ∈ G have, at

most a maximum degree of 2, hence ∆Gρ = 2. This means that the conservative

selection algorithm achieves normalized sum-rate of 1/3 which is an improvement

over the simple distributed Independent Set Scheduling which achieves a normalized

sum-rate of 1/4.

In general, in the conservative selection algorithm, each node will be represented

either by the vertex associated to a ρ-clique or a vertex associated to the single

node. When the single node vertex is chosen, the algorithm is essentially taking the

conservative approach and reverting back to the original conflict graph. In other

words, a ρ-clique will be kept only when it is guaranteed to help. Throughout the

whole process we have only been concerned with ρ-cliques and single nodes vertices (0-

cliques). In cases where ρ > 1, all r-cliques in G−ρ (v), for 0 < r < ρ are automatically

pruned. Also note that if the diameter of the graph G is 3ρ+ 3 or less, we no longer

have incomplete connectivity information and we can use the techniques in [13] or [40].

28

6.1.2 Conservative Selection Algorithm Description

Now that we have given a heuristic about the conservative selection process, we go

ahead and provide a formal description. We begin with a given ρ and the assumption

that each node knows 3ρ + 3 hops of connectivity in the conflict graph G = (V,E).

After each node v ∈ V performs the conservative selection algorithm, they will have

generated a graph Gρ(v) = (W (v), F (v)), where each w ∈ W (v) represents a subset

of nodes from the graph G.

To initialize the algorithm, each node v in G finds the maximum ρ-clique it belongs

to and checks to see if it is unique. This is easily performed by inspection of the graph

G−ρ (v). If the unique maximum ρ-clique exists, we call that vertex representing that

clique w∗(v), otherwise node v will be represented by vertex {v} in the consolidated

graph. Given the existence of a unique maximum ρ-clique, node v needs to know

the vertices representing every u ∈ nodes(w∗(v)), i.e., the w∗(u) of every member in

nodes(w∗(v)).

With this knowledge, node v must find the degree of w∗(v) if it were to be kept in

the final consolidated graph. Node v knows also the clique representing every neighbor

of every node in nodes(w∗(v)) since it has 3ρ+ 3 hops of knowledge. That is, node v

can create a set of these potential neighboring vertices U−(v) = {
⋃
z∈Z w

∗(z)}, where

Z =
⋃
u∈nodes(w∗(v)) ΓG(u) and ΓG(u) is the set of neighbors of u in G, u inclusive.

Furthermore, v estimates which cliques from U−(v) will be kept in the consolidated

graph based on the 3ρ + 3 hops of knowledge since with this amount of knowledge

v has access to all potential cliques neighboring each one of the members of U−(v).

Therefore, v is able to generate the set U(v) which consists of the vertices that v

considers will be present in the consolidated graphs. The degree of w∗(v) in Gρ(v) if

it were selected is the number of members of U(v), δw∗(v) = |U(v)|.

If δw∗(v) ≤ δu for all u ∈ nodes(w∗(v)), then w∗(v) is formed and it will appear

29

as a clique in the consolidated graph Gρ(v). Otherwise, each u ∈ nodes(w∗(v)) will

be represented by the 0-clique {u} in Gρ(v). The summary of this algorithm can be

found in Algorithm 1.

Algorithm 1 Conservative Selection A1(3ρ+ 3)

Input: Graphs G−ρ (v) for each node v ∈ V and 3ρ+ 3 hops of connectivity informa-
tion

1: Every node v ∈ V find its unique maximum ρ-clique
2: if a unique maximum ρ-clique does not exists then
3: The vertex labelled {v} is a vertex in the final graph Gρ(v)
4: else
5: if w∗(u) 6= w∗(v) for some u ∈ nodes(w∗(v)) then
6: Every u ∈ nodes(w∗(v)) is represented by a vertex {u} in the consolidated

graph Gρ(v)
7: else
8: if δw∗(v) > δu for some u ∈ w∗(v) then
9: Every u ∈ nodes(w∗(v)) is represented by a vertex {u} in the consolidated

graph Gρ(v)
10: else
11: w∗(v) will be a vertex in the final graph Gρ(v)
12: end if
13: end if
14: end if
15: The graph Gρ(v) consists of all the vertices representing cliques selected to be

kept by node v.

6.2 Aggressive Selection Algorithm

In this subsection, we will present a second approach to selecting which vertices from

the graphs G−ρ (v) should be carried over to graphs Gρ(v). The conservative selection

algorithm in the previous section ensures that α1(ρ) ≥ α(0), for all ρ and for any

arbitrary graph. However, since it must provide this strict guarantee, it tends to be

overly conservative and loses potential gains in large classes of graph. To address this

issue, we propose a second clique selection algorithm that is more aggressive.

30

The Aggressive Selection Algorithm relaxes the two major constraints of the con-

servative algorithm: 1) it allows nodes from the original conflict graph to be repre-

sented by more than one vertex in the consolidated graph and 2) the degrees of the

vertices being kept for the consolidated graphs are allowed to be larger than the de-

grees in the conflict graph of the nodes that make up the vertices. We have mentioned

that graphs with larger maximum degrees are undesirable, so the aggressive algorithm

provides a heuristic that balances the maximum degree of the consolidated graphs

with the number of vertices representing each node. Recall that the normalized sum-

rate of a network is the fraction of active time slots of the worst-case node in the

network. Using our proposed distributed procedure, this is simply minv∈V a(v)/∆Gρ ,

where a(v) is the number of vertices in Gρ(v) representing node v from the original

conflict graph. As long as the number of vertices representing each node in the net-

work increases enough to counteract for the increase in the maximum degree of the

consolidated graph, gains in normalized sum-rate can be achieved. We now describe

the heuristic of the Aggressive Selection Algorithm.

We begin with some assumptions about the amount of network information avail-

able to each node in the network. For purposes of exposition, we will describe the

general idea of the aggressive algorithm by assuming complete connectivity informa-

tion and later show that only 3ρ+ 1 hops of connectivity information is needed. We

denote this centralized aggressive selection algorithm by A2(Full). The distributed

form of the aggressive selection is denoted A2(3ρ + 1). Also, we consider the idea of

a temporary graph G−ρ . In Step 1 we described the process of each node obtaining

G−ρ (v), the graph G−ρ can be described as a “centralized temporary graph” with full

topology information, but still forming cliques of at most diameter ρ. The graph G−ρ

is a single graph that contains all the possible r-cliques, r = 0, ..., ρ, in the original

conflict graph G. We show the aggressive algorithm’s heuristic by using an example.

31

6.2.1 Example

Once again we present an example using the N -node line-clique graph depicted in

Figure 2.2. We begin with the case where ρ = 1. Consider the graph G−ρ and the

process the centralized entity uses to decide which vertices to keep and which vertices

to prune to make the consolidated graph Gρ.

The basis for the aggressive selection algorithm is quite simple. We wish to keep

as many vertices from G−ρ as possible but there are some vertices that create a lot of

interference and are somewhat redundant. For this reason, a vertex, w, representing

a set of nodes, nodes(w), is removed if every member of nodes(w) appears more twice

somewhere else in the vertices of graph G−ρ . For example, consider the 0-clique, {2},

since node 2 appears in the cliques consisting of {1, 2} and {2, 3}, the 0-clique {2} is

removed. The intuition behind the selection process is that we wish to remove nodes

to avoid interference and increasing degrees, but at the same time let every user in

the original graph have enough contributions in order to have increasing normalized

sum-rate. The aggressive selection step is illustrated in Figure 6.5. With these nodes

removed, the final graph that is scheduled is shown in Figure 6.6.

1 2 3 N-2 N-1

1, 2 2, 3 N-3,
N-2

N-2,
N-1,

N

N

Figure 6.4: G−ρ for ρ = 1

1 2 3 N-2 N-1

1, 2 2, 3 N-3,
N-2

N-2,
N-1,

N

N

Figure 6.5: Cliques that appear twice elsewhere are removed

32

1

N-1

1, 2 2, 3 3, 4 N-3,
N-2

N-2,
N-1,

N

N

Figure 6.6: Final graph, G1, after algorithm

Now, consider the algorithm when we begin by letting ρ = 2. First, all 1-cliques

and 2-cliques are generated as in Figure 6.7. For clarity, we omit the edges is these

graphs. Now, starting with the 0-cliques (i.e., the single nodes), they are removed

if every member is present 2 times in any of the 1-cliques or 2-cliques. There is an

exception to the removal of 0-cliques that establishes that all 0-cliques representing

a node of degree 1 remain in the graph even if they are appear twice elsewhere. This

is to avoid pathological cases of possible starvation of end nodes. In this case, clique

1 is not removed. We define the set of nodes with degree 1 in the conflict graph G as

OΛ.

Next, the 1-cliques are removed if they appear 2 times in the set of 2-cliques. It

is important to note that i-cliques are removed only if they appear twice in the set of

j-cliques, for all j > i. After performing this operation, illustrated in Figure 6.8, the

final graph is shown in Figure 6.9.

Notice that the achievable normalized sum-rate in our example line-clique with

ρ = 0 was α = 1/4, with the aggressive selection algorithm when ρ = 1 then α2(ρ) =

2/5, and when ρ = 2 then α2(ρ) = 3/7. Also, compare to the conservative algorithm

with achieves α1(ρ) = 1/3, for both ρ = 1 and ρ = 2. This increase in normalized

sum-rate exemplifies the advantages of the aggressive algorithm.

33

1 2 3 4 N-2 N-1

1, 2 2, 3 3, 4 N-3,
N-2

N-2,
N-1,

N

N

1, 2,
3

2, 3,
4

N-4,
N-3,
N-2

N-3,
N-2,

N-1, N

...

...

...

Figure 6.7: r-cliques, r = 0, 1, 2

1 2 3 4 N-2 N-1

1, 2 2, 3 3, 4 N-3,
N-2

N-2,
N-1,

N

N

1, 2,
3

2, 3,
4

N-4,
N-3,
N-2

N-3,
N-2,

N-1, N

...

...

...

Figure 6.8: Cliques are removed

6.2.2 Distributed Aggressive Algorithm

We now show that the centralized aggressive selection algorithm described above can

be performed in a distributed manner. Let Gρ be the consolidated graph of the

centralized algorithm and let Gρ(v) be the consolidated graph from node v’s point of

view of a distributed algorithm to be described in this subsection. The requirement

that must be fulfilled is that each node performing Kuhn’s multicoloring algorithm on

Gρ(v) is equivalent to applying the multicoloring algorithm to Gρ. Because Kuhn’s

algorithm only requires knowledge about the 1-hop neighbors, our individual nodes

are only interested in knowing 1-hop information about Gρ. In other words, our

objective is to show that the neighborhood of vertices containing each node v in

Gρ(v) is identical to their neighborhood in Gρ. We now describe the distributed

1, 2

1, 2,
3

2, 3,
4

N-4,
N-3,
N-2

N-3,
N-2,

N-1, N

N-2,
N-1,

N

1

Figure 6.9: Final graph, G2, after aggressive algorithm

34

aggressive selection algorithm.

We assume that each node has only 3ρ+ 1 hops of topology information and that

each node will be performing independent actions. Based on the removal heuristic of

the centralized algorithm, each node will remove nodes that appear twice somewhere

else in the graph they observe using the algorithm described in Algorithm 2. We

define the set O3ρ+1(v) as the set of nodes of degree 1 in the 3ρ+ 1-neighborhood of

node v in the original conflict graph G. Also define Avu(s) as the number of s-cliques

representing node u in G−ρ (v). The summary of the Distributed Aggressive Selection

Algorithm is shown in Algorithm 2.

Algorithm 2 Ditributed Aggressive Selection A2(3ρ+ 1)

Input: Graphs G−ρ (v) for each node v ∈ V with 3ρ + 1 hops of topology informa-
tion

1: The 0-cliques representing members of O3ρ+1(v) are ensured remain in Gρ(v).
2: for r = 0 to ρ− 1 do
3: Consider vertex w ∈ W−(v) (except those representing a node in O3ρ+1(v))

that represents an r-clique in G. A vertex w ∈ W−(v) is removed from G−ρ (v)
if for every u ∈ nodes(w)

Avu(s) ≥ 2, for s > i if u /∈ O3ρ+1(v)

Avu(s) ≥ 1, for s > i if u ∈ O3ρ+1(v)

4: end for
5: The graph G−ρ (v) is updated by removing all identified nodes and their connecting

edges. The final result is a graph Gρ(v).

6.2.3 Consistency of A2(3ρ+ 1)

We wish to establish that the A2(3ρ+1) algorithm is a valid distributed implementa-

tion of algorithm A2(Full). Since our final objective is to schedule Gρ, all we have to

do to establish the validity of A2(3ρ+ 1) is to show that the neighborhood of cliques

containing each node v in Gρ(v) is identical to their neighborhood in Gρ. To do this

we present the following theorem.

35

Theorem 1. Let each node v ∈ V have 3ρ+ 1 hops of knowledge. The neighborhood

of every v ∈ nodes(w) for every w ∈ Gρ(v) is identical to the neighborhood of w in

Gρ.

Proof. We will break up the proof into two parts. First, we show that, from the point

of view of a node v, the neighborhoods of every vertex representing v in G−ρ and

G−ρ (v) are identical, then we show that the cliques removed from each neighborhood

are the same.

Lemma 1. Let each node v ∈ V have 3ρ+1 hops of connectivity knowledge.

The neighborhood of every w ∈ G−ρ (v) such that v ∈ nodes(w) is identical

to the neighborhood of w in G−ρ .

Proof. (Lemma 1) Let ΓG−
ρ

(w) be the neighborhood of vertex w in G−ρ .

Also, consider G−ρ (v), where v is a member of nodes(w). There exists a

vertex w′ in G−ρ (v) such that nodes(w) = nodes(w′), since there are at least

ρ hops of topology knowledge. Now, let ΓG−
ρ (v)(w

′) be the neighborhood of

w′ in G−ρ (v). Because v has 3ρ+ 1 hops of knowledge and the cliques being

made are of, at most, diameter ρ, v has perfect knowledge of all cliques of

up to diameter ρ that include nodes that are at most 2ρ + 1 hops away.

Now, every vertex in ΓG−
ρ

(w) represents nodes that are at most 2ρ+1 hops

away from v since each vertex in ΓG−
ρ

(w) has at most diameter ρ. Therefore

ΓG−
ρ

(w) = ΓG−
ρ (v)(w

′).

Now that we have shown all the correct neighborhood cliques are generated, we

continue by showing that the correct cliques are removed as well.

Lemma 2. A vertex in ΓG−
ρ (v)(w

′) is removed if and only if it is also re-

moved from ΓG−
ρ

(w).

36

Proof. (Lemma 2) We begin the proof by proving the forward direction,

i.e., if a vertex is removed from ΓG−
ρ (v)(w

′), it is also removed from ΓG−
ρ

(w).

A vertex is removed from ΓG−
ρ (v)(w

′) if and only if all its members appear

two or more times somewhere else in the graph. By construction, for every

u in a clique in ΓG−
ρ (v)(w

′), Avu(s) ≤ Au(s) for every s = 1, ..., ρ. This is

because the vertices in G−ρ (v) are a subset of the vertices in G−ρ . Therefore,

a vertex is removed from ΓG−
ρ (v)(w

′), it is also removed from ΓG−
ρ

(w).

In the other direction, we prove that if a clique is removed from ΓG−
ρ

(w),

it is also removed from ΓG−
ρ (v)(w

′). A clique is removed from ΓG−
ρ

(w) if and

only if all its members appear twice elsewhere in the graph. All cliques in

ΓG−
ρ

(w) are composed by nodes at most 2ρ + 1 hops away from v. Since

every formed clique is at most diameter ρ, every appearance of nodes that

compose the ΓG−
ρ

(w) can only occur in cliques with members that are at

most 2ρ+ 1 + ρ = 3ρ+ 1 from v. Since v has this amount of knowledge, if

a clique is removed from ΓG−
ρ

(w), it is also removed from ΓG−
ρ (v)(w

′).

Since ΓG−
ρ

(w) = ΓG−
ρ (v)(w

′) and a node is removed from ΓG−
ρ (v)(w

′) if and only if

it is also removed from ΓG−
ρ (v)(w

′), for any arbitrary w and v, then we have that the

neighborhood of every v ∈ nodes(w) for every w ∈ Gρ(v) is identical to the to the

neighborhood of w in Gρ.

In general, once the algorithm has been shown to be consistent we can describe

the graph Gρ as the union of all Gρ(v) and each Gρ(v) is a local view subgraph of

the Gρ graph centered around node v. The algorithm is finalized by each node apply-

ing Kuhn’s multicoloring to the graph Gρ(v). The normalized sum-rate achieved

by the Aggressive Selection Algorithm A2(3ρ + 1) with parameter ρ is α2(ρ) =

minv∈V a(v)/∆Gρ , where a(v) is the number of vertices in Gρ(v) representing node

v and ∆Gρ = maxv∈V ∆Gρ(v).

Chapter 7

Step 3: Scheduling

In Step 2 of the algorithms, each user v in the network finishes with a graph Gρ(v)

that is composed of nodes representing r-cliques of at most diameter ρ and at least

one of those nodes includes user v. The resulting r-cliques from Step 2 indicate that

whenever user v transmits, it will do so along with all the other users that are members

of the r-cliques that include user v using the optimal physical layer scheme. In the

third step of the proposed algorithms, users in the network determine the time-slots

when their respective r-cliques have been assigned to transmit. In other words, in

Step 3, the graphs formed in Step 2 are scheduled. One approach to schedule nodes

in a graph is to use graph coloring [41]. The problem of minimizing the number

of required colors to color a graph has been a widely studied [42, 43, 44]. In [45]

it was shown that coloring a graph with the optimal number of colors, defined as

the chromatic number, is an NP-hard problem, even for a centralized algorithm with

full connectivity information. Also, some distributed algorithms, including [43] and

[44] can achieve coloring with O(∆) colors in O(logN) number of rounds, where ∆

is the maximum degree of the graph and N is the number of nodes in the graph.

Other variations of distributed algorithms exploit specific graph structures to reduce

complexity [46, 47].

38

To perform scheduling in our algorithms, we use a local multicoloring algorithm

introduced by Kuhn in [15] since it is a one-shot algorithm and does not add to the

number of hops of network information required for execution. First, we describe the

local multicoloring algorithm in terms of a normal graph and explain the performance

that can be expected, then we go into the detail of how this algorithm is used in our

Step 3 of our algorithms.

7.1 Local Multicoloring Algorithm

Consider a graph G = (V,E) with N nodes. We assume each node knows the number

of users, N , and a parameter, k. The local multicoloring algorithm proceeds in three

steps:

1. Each node v ∈ V generates a vector Lv = [lv,1, lv,2, . . . , lv,k] of k random num-

bers, where each lv,i is chosen uniformly from the set {1, 2, . . . , kN4}.

2. Each node v sends the vector Lv to all its neighbors. We call the set of neighbors

of node v, Γ(v). Each node v also receives the vectors Lu, for all u ∈ Γ(v)

3. Each node v acquires all colors i for which lv,i < lu,i, for all u ∈ Γ(v).

The results in [15] show that if k is chosen to be greater that or equal to 6(∆ +

1) ln(N)/ε2, then each node v will acquire at least a fraction 1−ε
δv+1

of the k colors

available, with high probability. It is important to note that one could relax the

assumption of having to know N and k (which requires knowledge of ∆) and only

require knowledge of an upper bound on N , denoted as N , and a predetermined,

network-wide ε. With this information, each node would know that the length of the

random number vector it has to choose is k = 6(N + 1) ln(N)/ε and each random

number would be uniformly chosen from the set {1, 2, . . . , kN4}.

39

7.2 Application

The local multicoloring algorithm can be used to schedule the sub-networks that have

been formed in Step 2. We begin by assuming each node v in the original conflict

graph G generates a random number vector Lv = [lv,1, lv,2, . . . , lv,k] of k random

numbers, where each lv,i is chosen uniformly from the set {1, 2, . . . , kN4} and

k = 6(N + 1) ln(N)/ε2. (7.1)

Consider the graph Gρ(v) = (W (v), F (v)) from the point of view of node v. We

have assumed that each node has τ = 3ρ + 3 hops of connectivity information for

the conservative algorithm and τ = 3ρ + 1 hops of connectivity information for the

aggressive algorithm. We now assume that in the process of information exchange to

learn the connectivity of the network, the random vectors from all nodes τ hops away

are also learned by each node. This means that every user v in the original conflict

graph, G, knows all the random number vectors for all users in its r-clique(s) and all

the random number vectors for all members of its neighboring r-cliques in Gρ(v).

Each node v finds the node with the smallest ID in each w ∈ W (v). Node v

assumes that the random number vector for vertex w ∈ W (v) is the random number

vector corresponding to the node with the smallest ID in that r-clique. In other

words,

Lw∈W (v) = Lmin{x:x∈nodes(w)}. (7.2)

Once the random vectors for each vertex in Gρ(v) have been identified, we can

apply the local multicoloring algorithm such that node v knows the colors assigned

to all r-cliques to which it belongs. A vertex w ∈ Gρ(v) will be assigned time-slot i if

lw,i < lz,i, for all z ∈ Γ(w). If node v is represented by vertex w, then node v knows

Lw and Lz for all z ∈ Γ(w) because we assume each node knows the random number

40

vectors of nodes τ hops away. This also ensures that all Lw are consistent over all

Gρ(v).

Using the result from [15], it can be concluded that each r-clique represented by

some vertex w will be assigned a fraction at least

1− ε
δw + 1

(7.3)

of the total k time-slots assigned with high probability, where δw is the degree of

vertex w in the graph Gρ.

7.3 Overhead

Let us analyze the overhead of the Step 3 in our algorithms in more detail. First, we

note that in terms of hops of information, this step does not require any extra hops

beyond the τ hops of connectivity we assumed in Step 2. We have assumed that as

the connectivity information is being exchanged the random number vectors required

for local multicoloring are also being communicated. The sharing of these vectors re-

quires communication by each node of 6(N +1) ln(N)/ε2 random numbers, each with

a possible magnitude of up to kN
4
. This results in generation and communication of

O(N log2(N)/ε2) random bits by each node. We can use the same non-trivial prob-

abilistic argument mentioned in [15] to claim the same results with only O(log(N))

bits required.

Another important consideration to keep in mind is that we have assumed that

the parameter k can be chosen arbitrarily at the cost of complexity and amount

of random bits to be exchanged. Since k represents the number of time-slots to be

assigned assuming a static graph Gρ, in practical applications, the value of k might be

constrained by the coherence time of the network. In the description of our algorithms

41

we have assumed that k is smaller than the connectivity and channel coherence time

of the network.

Chapter 8

Results

We first characterize the normalized sum-rate, α̃(ρ), achieved by the proposed algo-

rithms with (η, τ) hops of network information. Both algorithms conclude with a

set of graphs, Gρ(v), ∀v ∈ G, and the performance of both proposed algorithms can

be described in terms of the topology characteristics of the consolidated final graph,

Gρ. The graph Gρ is the union over all graphs Gρ(v). The normalized sum-rate

performance of the algorithms is described in the following theorems.

Theorem 2. Consider a conflict graph, G, where each user has η hops of channel

information and τ hops of connectivity information. Using the conservative sub-

network scheduling algorithm, the achievable normalized sum-rate is

α̃1(η, τ) = α̃1(ρ) =
1− ε

∆Gρ + 1
, (8.1)

with high probability, where ∆Gρ is the maximum degree of graph Gρ and ε > 0.

Proof. We use the result from [13] regarding the normalized sum-rate of independent

graph scheduling. The results says that if a network is divided into t sub-graphs,

A1, ...At (not all distinct, for some t) and each user i belongs to di independent

43

sub-graphs, then the normalized sum-rate of the network is

min
i∈1,2,...N

di
t
. (8.2)

In our sub-network scheduling algorithms, we have generated k independent sub-

graphs. A set of sub-networks that share one of the k colors is an independent sub-

graph since is composed by a set of sub-networks, each with a normalized sum-rate

of 1, that do not interfere with each other.

By properties of the local multicoloring algorithm, each sub-network w ∈ Gρ will

be assigned
(

1−ε
δw+1

)
k colors in total. Since in the conservative algorithm each user

can only be represented by one sub-network, a user j in sub-network w appears in

dj =
(

1−ε
δw+1

)
k sub-graphs. Therefore,

α̃1(ρ) = min
i∈1,2,...N

di
t

(8.3)

= min
w∈Gρ

(
1−ε
δw+1

)
k

k
(8.4)

=
1− ε

∆Gρ + 1
. (8.5)

Similarly, we also describe the performance of the aggressive sub-network schedul-

ing algorithm.

Theorem 3. Consider a conflict graph, G, where each user has η hops of channel

information and τ hops of connectivity information. Using the aggressive sub-network

44

scheduling algorithm, the achievable normalized sum-rate is

α̃2(η, τ) = α̃2(ρ) = min
v∈G

∑
v∈nodes(w)

1− ε
δw + 1

, (8.6)

with high probability.

Proof. In the case of the aggressive algorithm, each user can be represented in more

than one sub-network. Each sub-network will be active a total of
(

1−ε
δw+1

)
k time-slots.

Hence, the number of time-slots each user will be active is the sum of all the time-slots

the sub-networks to which it belongs are active, in other words,

di =
∑
i∈w

(
1− ε
δw + 1

)
k (8.7)

The worst-case node in terms of active time-slots gives us the normalized sum-rate

of the network:

α̃2(ρ) = min
i∈1,2,...N

di
t

(8.8)

= min
v∈G

∑
v∈w

(
1−ε
δw+1

)
k

k
(8.9)

= min
v∈G

∑
v∈nodes(w)

1− ε
δw + 1

. (8.10)

8.1 Conservative Algorithm Guarantee

The key objective of the proposed work is to provide techniques that harness the

availability of local connectivity and channel information to improve the performance

of a network in terms of generalized normalized sum-rate. This goal is achieved by

45

the proposed Conservative Algorithm. The main characteristic of the conservative

algorithm is that, by leveraging local information when ρ ≥ 1, the normalized sum-

rate is ensured to be greater than or equal than the normalized sum-rate achieved by

local multicoloring of the original network, G.

Theorem 4. Let α̃1(ρ) be the normalized sum-rate of a network after applying Algo-

rithm A1(3ρ+3) to the original graph G. If α(0) is the normalized sum-rate achieved

by distributed multicoloring of the original network, G, then α(0) ≤ α1(ρ), for ρ ≥ 1.

Proof. Since our overall distributed scheduling algorithm will conclude with the use

of Kuhn’s algorithm, the normalized sum-rate of the network is governed by the

maximum degree of the final graph being scheduled. Using Kuhn’s distributed multi-

coloring, α(0) = 1/(∆G + 1), where ∆G is the maximum degree of the original graph,

G. Now, Algorithm A1(3ρ + 3) ensures that, for every v ∈ V , the maximum degree

of graph Gρ(v), ∆Gρ(v), is less than or equal to ∆G. Since the proposed algorithm is

an instance of Independent Graph Scheduling, the achievable normalized sum-rate is

the fraction of active time slots of the worst-case user. Since Kuhn’s multicoloring

assigns a fraction of at least 1/(∆Gρ(v) + 1) to each clique in Gρ(v) and each v only

appears once in Gρ(v), the worst-case user is active a fraction 1/(∆Gρ + 1), where

∆Gρ is the largest maximum degree over all ∆Gρ(v). Therefore, for every ρ ≥ 1,

α(0) =
1

∆G + 1
≤ 1

∆Gρ(v) + 1
= α̃1(ρ). (8.11)

We compare our algorithm’s performance to the distributed multicoloring algo-

rithm of the original graph to highlight the advantages of leveraging local information.

The distributed multicoloring algorithm serves as a reasonable baseline of performance

for one-shot algorithms. In contrast, other algorithms such as distributed greedy

46

scheduling [5] or randomized maximal schedulers [21] consist of rounds of exchanges

to make decisions. By making our algorithm a one-shot algorithm, we ensure that

the amount of knowledge required is constrained to 3ρ + 3 hops. This quantifiable

guarantee cannot be made under algorithms that involve several rounds as knowl-

edge about the network propagates with each round. We address the performance,

overhead, and complexity of several algorithms more in detail in Chapter ??.

8.2 Numerical Results: Normalized Sum-Rate

In this section, we present results that compare the performance of the Conservative

and the Aggressive Selection Algorithms. First, we present the performance of both

algorithms in two example graphs for several values of the parameter ρ = 0, 1, 2, 3. In

these results, ρ = 0 reflects the case when there is no topology information and Kuhn’s

multicoloring algorithm is performed directly on the conflict graph, G. The two

sample graphs being compared are the N -node line-clique, which has been presented

as an example throughout this paper, and the N -node line-star graph shown in Figure

8.1.

N

4

1

3

2

N-1

N-2

Figure 8.1: N -node Line-star Graph

47

The results shown in Figure 8.2 show that in both of these example graphs, the

Aggressive Selection Algorithm outperforms the Conservative Selection Algorithm

and the gain increases as the diameter of the cliques being formed increases. The

results on these sample graphs expose some of the limitations of the conservative

algorithm, namely, the need for a unique maximum ρ-clique to exist in order to

form cliques. In highly symmetrical graph such as the ones in these examples, the

conservative algorithm provides marginal gains. On the other hand, it is precisely in

these situations where the aggressive algorithm displays its strengths.

0.2

0.3

0.4

0.5

0 1 2 3

N
or

m
al

ize
d

Su
m

-r
at

e

Parameter ρ

Conservative (Line-star) Aggressive (Line-star)
Conservative (Line-clique) Aggressive (Line-Clique)

Figure 8.2: Conservative vs. Agressive Algorithms - Sample Graphs

Given that our work builds on the difficulty of obtaining global information, we

are especially concerned with small amounts of local information. We are also in-

terested in the algorithms’ performance for classes of graphs that are representative

48

of wireless network scenarios. We present a comparison between the performance of

four different algorithms for different classes of graphs and with parameter ρ = 1.

The algorithms selected for comparison are distributed coloring, greedy scheduling

(maximal scheduler), our conservative algorithm, and our aggressive algorithm. The

greedy distributed scheduling algorithm that produces maximal schedules is described

as follows:

1. Assign a randomized ordering to the nodes in the network

2. Following the assigned order, a node is added to the schedule if it has packets

to send and none of its interfering nodes have been scheduled

Note that the greedy algorithm described here requires full network information.

There are distributed implementations of similar greedy scheduling algorithms that

require rounds of communication with neighbors in the network.

The simulations are presented for three different classes of graphs. We first look at

Random Graphs, G(n, p), with n nodes and edge probability p. A graphical demon-

stration of a sample random graph with low connectivity (p = 0.1) is shown in

Figure 8.3 and with high connectivity (p = 0.1) in Figure 8.4. Then we simulate

algorithm performance in random scale-free graphs generated using the B-A algo-

rithm [48]. The degree distribution of scale-free graphs follows a power scale law and

is a good representation of sensor networks. An example of a scale-free graph with 20

nodes is shown in Figure 8.5. The third class of graphs is random geometric graphs,

in which n transmitter-receiver pairs are randomly placed with uniform distribution

in a unit square and interference occurs if any transmitter is within a diameter d of a

receiver from another user. An example of a geometric graph is shown in Figure 8.6.

To evaluate algorithm performance, for each class of graph and each parameter

setting 100 independent random graphs are generated and the average normalized

49

1

2

34

5

6

7

8 9

10

Figure 8.3: Sample Random Graph with Low Connectivity, p = 0.1

1

2

34

5

6

7

8 9

10

Figure 8.4: Sample Random Graph with High Connectivity, p = 0.9

50

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 8.5: Sample Scale-free Graph

1

2

34

5

6

7

8 9

10

Figure 8.6: Sample Geometric Graph

sum-rate of each algorithm is reported. Figure 8.7 shows the performance compari-

son of random graph with parameters G(n, 0.1), Figure 8.8 describes performance for

51

graphs with G(n, 0.5), and Figure 8.9 for graphs with G(n, 0.9). In Figure 8.10 we

report algorithm performance for the class of scale-free graphs with 25, 50, and 100

users. Finally, in Figure 8.11 we see the performance comparison in the class of geo-

metric graphs with interference diameter d = 0.25 and in Figure 8.12 the performance

in geometric graphs with interference diameter is d = 0.5.

0

0.2

0.4

0.6

0.8

5 10 20

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.7: Normalized sum-rate performance comparison in random graphs with low
connectivity, p = 0.1

The aggressive algorithm outperforms the distributed coloring and greedy (max-

imal schedule) algorithms in all this cases. Some notable points about the results

include the performance of the conservative algorithm in the highly connected ran-

dom graphs (p = 0.9) where cliques with large number of nodes are readily present

and the conservative algorithm is able to outperform distributed coloring and max-

imal scheduling. Also, note the performance in the case of scale-free graphs, where

52

0

0.125

0.250

0.375

0.500

5 10 20

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.8: Normalized sum-rate performance comparison in random graphs with
medium connectivity, p = 0.5

the conservative algorithm could often not ensure gains and so it remained conserva-

tive, and close in performance to distributed coloring, while the aggressive algorithm

formed cliques for gains in normalized sum-rate.

8.3 Net Sum-rate Comparisons

We have presented two distributed sub-network scheduling algorithms and analyzed

their normalized sum-rate performance. The algorithms show performance improve-

ments and provide schemes that can be implemented with limited local information

in terms of connectivity and channel states. Performance in terms of normalized

sum-rate is an important result because it represents the guaranteed fraction of what

53

0

0.2

0.4

0.6

0.8

5 10 20

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.9: Normalized sum-rate performance comparison in random graphs with
high connectivity, p = 0.9

could be achieved with the optimal strategy and full knowledge. Nevertheless, since

it provides a guarantee, the normalized sum-rate provides worst-case performance

behavior which could be significantly different from average performance in terms of

other metrics of performance, for example net sum-rate. Along with consideration of

net sum-rate, it is also important to compare the proposed algorithms to other known

distributed algorithms in terms of overhead and the amount of information required

to execute them. We comment on the performance of our conservative and aggres-

sive algorithms and compare them to distributed coloring and maximal scheduling

in terms of net sum-rate. Also, we discuss the amount and type of overhead of our

algorithms and of state-of-the-art distributed scheduling algorithms.

Net sum-rate describes network performance without taking into account what

54

0.05

0.10

0.15

0.20

0.25

25 50 100

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.10: Normalized sum-rate performance comparison in scale-free graphs

the optimal, full-knowledge capacity of the network is. While net sum-rate provides

a practical measure of net throughput performance, characterization for arbitrary

networks is unavailable due to the open problem of the capacity of the general in-

terference channel. Furthermore, net sum-rate performance using our algorithms is

dependent on the topology of the network, making direct comparisons with existing

scheduling algorithms problematic.

Here, we provide a couple of examples that illustrate what type of performance

we can expect from our algorithm when compared to a well-known distributed inde-

pendent set scheduling algorithm of queue-based systems in terms of net sum-rate.

55

0

0.125

0.250

0.375

0.500

10 20 30

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.11: Normalized sum-rate performance comparison in geometric graphs, d =
0.25

8.3.1 Example 1

Consider the topology in Figure 8.13, which represents a 6-node network arranged in

two cliques of size three that are connected by an single edge.

Assume each user i has a capacity Ci when no interference is present and the

arrival rate to user i is λi. Using the greedy distributed scheduling, if the original

ordering is randomized uniformly over the 6 nodes and λi = 1 for i = 1, 2, ..., 6, nodes

1, 2, 5, and 6 are scheduled 3/8 of the time and nodes 3 and 4 are active 1/4 of the

time, with high probability. This results in an achievable sum-rate using the greedy

algorithm of

Rgreedy
sum =

3

8
(C1 + C2 + C5 + C6) +

1

4
(C3 + C4) (8.12)

56

0

0.15

0.30

0.45

0.60

5 10 20

N
or

m
al

ize
d

Su
m

-r
at

e

Number of Users
Distributed Coloring Maximal Schedule
Conservative Aggressive

Figure 8.12: Normalized sum-rate performance comparison in geometric graphs, d =
0.5

and when we assume symmetric capacities, Ci = 1, for all i = 1, 2, ..., 6, Rgreedy
sum = 2.

We now consider the use of our algorithms with parameter ρ = 1. Using our

conservative algorithm, the two cliques, each consisting of three nodes are identified

and selected, and the resulting Gρ is depicted in Figure 8.14.

Each clique is assigned half of the time slots by the multicoloring algorithm. The

achievable sum rate, depends on the interference properties of the network. In order

to compute the achievable net sum-rate we must know the interference channel gains

and the scheme being employed by each sub-network attempting to use advanced

physical layer strategies. For example, in the low interference regime, we can assume

treating interference as noise while in the high interference regime we can assume

interference cancellation. In general, computing the achievable sum-rate for a set of

57

2

1 3 4 6

5

Figure 8.13: Two cliques

4,5,61,2,3

Figure 8.14: Two cliques after conservative algorithm, G1

interfering users is an open problem. Nevertheless, within each one of the selected

sub-networks, the achievable rate by each user can be lower and upper bounded. In

the worst case scenario, each member within each sub-network has to time-share the

medium with the other users in the sub-network. In this case, a user i in a sub-

network with m users will achieve rate Ci/m every time the sub-network is active,

in average. In the best case scenario, all interference is manageable and each user i

achieves Ci every time the sub-network is active. Therefore, the achievable sum-rate

by the conservative algorithm is bounded as follows:

1

6

6∑
i=1

Ci ≤ Rcons
sum ≤

1

2

6∑
i=1

Ci (8.13)

Our lower bound is achieved by each one of the three users in each of the selected

cliques using time-division multiplexing (TDM) and obtaining rate (1/3)Ci each time

their respective sub-network is active, which is 1/2 of the time. In the best-case

scenario, each user achieves Ci every time their sub-network is active, again 1/2 of

the time. Assuming unit capacities, Ci = 1 for all i, the achievable net sum-rate using

58

the conservative algorithm is bounded such that

1 ≤ Rcons
sum < 3, (8.14)

for ρ = 1.

The next step is to bound net sum-rate performance when using the aggressive

algorithm. Now, each user is allowed to be part of more than one sub-network and

the resulting Gρ is depicted in Figure 8.15

2

1 1,2,
3

4,5,
6

6

5

3,4

Figure 8.15: Two cliques after aggressive algorithm, G1

First, consider the fraction of the time each sub-network will be active. The sub-

networks {1}, {2}, {5}, and {6} will be active 1/4 of the time, sub-networks {1, 2, 3}

and {4, 5, 6} will be active 1/5 of the time, and sub-network {3, 4} will be active

1/7 of the time. The fraction of the time each sub-network is active is a result of the

degree of each sub-network in the graph G1. Using the bounding arguments described

above, the rates of each of the users is described as follows:

(
19

60

)
Ci ≤ Ri ≤

(
9

20

)
Ci, for i = 1, 2, 5, 6, (8.15)

and

(
29

210

)
Ci ≤ Ri ≤

(
17

35

)
Ci, for i = 3, 4. (8.16)

59

With these bounds on each user’s rate we can bound the net sum-rate achieved by

the aggressive algorithm.

(
19

60

) ∑
i∈{1,2,5,6}

Ci +

(
29

210

)
(C3 +C4) ≤ Ragg

sum ≤
(

9

20

) ∑
i∈{1,2,5,6}

Ci +

(
17

35

)
(C3 +C4).

(8.17)

When we assume the symmetric capacity point Ci = 1 for all i, then the net sum

rate becomes

(
54

35

)
≤ Ragg

sum <

(
97

35

)
, (8.18)

for ρ = 1.

The fact that the upper bounds of the proposed algorithms’ performance is higher

than the sum-rate of the greedy scheduling algorithm means that when interference

is manageable, our algorithm can perform better in terms of net sum-rate. While this

is encouraging, the actual net sum-rate remains dependent on network channel states

and direct comparison becomes unclear. On the other hand, normalized sum-rate

gives us a metric that is independent of channel state and guarantees that in the

worst-case over all possible channel realizations, we can guarantee a fraction of the

capacity. In this case, the normalized sum-rate of the greedy scheduling is 3/8 while

our conservative algorithm achieves 1/2 and our aggressive algorithm achieves 12/35.

8.3.2 Example 2

As expected, our algorithm’s ability to present gains is not only based on interference

properties, but on topology and the amount of information available. Consider the

topology in Figure 8.16.

60

2

1 3

64

5

Figure 8.16: Clique-star

For this topology, the greedy distributed scheduling achieves

Rgreedy
sum =

7

24
(C1 + C2 + C3) +

17

24
(C4 + C5 + C6), (8.19)

and when we assume all capacities are equal to 1, Rgreedy
sum = 3. For the same topology,

our conservative algorithm produces the Gρ depicted in Figure 8.17.

1,2,
3

5 6

4

Figure 8.17: Clique-star after conservative algorithm, G1

The conservative algorithm achieves a net sum-rate that is bounded as follows

1

12

3∑
i=1

Ci +
1

2

6∑
j=4

Cj ≤ Rcons
sum <

1

4

3∑
i=1

Ci +
1

2

6∑
j=4

Cj (8.20)

and when we assume unit capacities

1.75 ≤ Rcons
sum < 2.25. (8.21)

In this case, even with manageable interference, our algorithm cannot achieve a higher

61

rate than the greedy distributed scheduling with only ρ = 1.

We also consider the performance of the aggressive algorithm. The Gρ obtained

after performing the aggressive algorithm is depicted in Figure 8.18.

1,2,
3

2,5 3,6

1,4

4

5 5

Figure 8.18: Clique-star after aggressive algorithm, G1

The achievable rate by each user after the aggressive algorithm is bounded as

follows

(
31

210

)
Ci ≤ Ri ≤

(
12

35

)
Ci, for i = 1, 2, 3, (8.22)

and

(
13

30

)
Ci ≤ Ri ≤

(
8

15

)
Ci, for i = 4, 5, 6. (8.23)

With these bounds on each user’s rate we can bound the net sum-rate using the

aggressive algorithm.

(
31

210

) ∑
i∈{1,2,3}

Ci +

(
13

30

) ∑
j∈{4,5,6}

Cj ≤ Ragg
sum ≤

(
12

35

) ∑
i∈{1,2,3}

Ci +

(
8

15

) ∑
j∈{4,5,6}

Cj.

(8.24)

When we assume the symmetric capacities Ci = 1 for all i, then the achievable

62

Table 8.1: Table of Results for Two Example Topologies

Topology Algorithm Norm. sum-rate Net sum-rate

2

1 3 4 6

5

Distributed Coloring 0.25 1.833

Greedy 0.25 2

Conservative 0.5 1 ≤ Rsum ≤ 3

Aggressive 0.343 1.54 ≤ Rsum ≤ 2.48

2

1 3

64

5

Distributed Coloring 0.25 2.25

Greedy 0.292 3

Conservative 0.25 1.75 ≤ Rsum ≤ 2.25

Aggressive 0.343 1.74 ≤ Rsum ≤ 2.62

net sum-rate becomes

(
61

35

)
≤ Ragg

sum <

(
92

35

)
, (8.25)

for ρ = 1. We summarize the results of the previous two examples in Table 8.1.

One important note is that the greedy scheduling algorithm is not a one-shot

algorithm that results in maximal schedules in each time slot. Not using distributed

scheduling algorithms, such as greedy scheduling, certifies that the amount of infor-

mation needed to perform our algorithm is limited to 3ρ + 3 or 3ρ + 1, which would

63

not be the case otherwise since information propagates with the number of rounds.

A discussion regarding how locality constraints affect algorithms performance can be

found in [49] and general locality-sensitive approaches to distributed algorithms are

described in [50].

8.4 Numerical Results: Net Sum-rate

Just as in the case of normalized sum-rate, we also present net sum-rate performance

comparison for simulation in three classes of graphs: random graphs, scale-free graphs,

and geometric graphs. In this section, we report net sum-rate performance for four

algorithms: distributed coloring, greedy distributed algorithm (maximal schedule),

our conservative algorithm, and our aggressive algorithm. As discussed in Section

8.3, we assume each user i has a capacity Ci when no interference is present and

compute the sum-rate achievable by each of the four algorithms. Also, we note that

in our proposed algorithms net sum-rate is not directly computable, therefore in our

results we report lower and upper bounds.

Figure 8.19 shows the net sum-rate performance of random graph with parameters

G(n, 0.1), Figure 8.20 describes performance for graphs with G(n, 0.5), and Figure 8.21

for graphs with G(n, 0.9). In Figure 8.22, we report the net sum-rate achievable for

the class of scale-free graphs with 25, 50, and 100 users. Finally, in Figure 8.23 we

see the performance comparison in the class of geometric graphs with interference

diameter d = 0.25 and in Figure 8.12 in geometric graphs with interference diameter

is d = 0.5.

The results in Figures 8.19 - 8.24 show that in terms of net sum-rate, our ag-

gressive algorithm outperforms the conservative algorithm in the majority of the

cases. This trend agrees with the performance in terms of normalized sum-rate. An

interesting observation from the numerical results is that the upper bound on the

64

3.00

5.25

7.50

9.75

12.00

10 20 30

N
et

 S
um

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.19: Net sum-rate performance comparison in random graphs with low con-
nectivity, p = 0.1

sum-rate achievable by our aggressive algorithm is consistently higher than the sum-

rate achieved by distributed scheduling and the maximal scheduler for the simulated

random graphs and geometric graphs. This validates the assertion that when in-

terference is manageable, our aggressive algorithm can perform better in terms of

net sum-rate. The only case where neither of our algorithms could surpass maximal

scheduling was the class of scale-free graphs. As we discussed in Section 8.3, the

net sum-rate performance is dependent on topology and amount of knowledge avail-

able. The structure of scale-free networks is particularly unfavorable to the aggressive

algorithm since the spoke-hub nature of the graphs results in large degree increase

when ρ = 1. Nevertheless, in scale-free graphs, increasing the diameter of the cliques

being formed to ρ = 2 produces significant improvement since large sections of each

65

0

2.25

4.50

6.75

9.00

10 20 30

N
et

 S
um

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.20: Net sum-rate performance comparison in random graphs with medium
connectivity, p = 0.5

spoke-hub are identified as a single sub-network. Once again, these observations are

in agreement with the examples in the previous sections where we showed that in

terms of net sum-rate there are cases where maximal scheduling can outperform the

aggressive algorithm. The numerical results for net sum-rate performance highlight

the advantages of the aggressive algorithm because, with only ρ = 1, it is able to

outperform maximal scheduling in random and geometric graphs. In cases where

higher net sum-rate is not achieved, such as in scale-free graphs, it has the flexibility

to leverage more knowledge (e.g., let ρ = 2) and improve performance.

66

0

2.5

5.0

7.5

10.0

10 20 30

N
et

 S
um

-r
at

e

Number of Users
Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.21: Net sum-rate performance comparison in random graphs with high con-
nectivity, p = 0.9

8.5 Remarks on Overhead

The key feature of the algorithms we have proposed is that they can be executed with

ρ+ 1 hops of channel information and 3ρ+ 3 hops of connectivity information for the

conservative algorithm or 3ρ + 1 hops of connectivity information for the aggressive

algorithm. In order to be able to make comparisons with other distributed scheduling

algorithms, it is important to understand what is the overhead to required obtain this

amount of information. In this section we make some general remarks about the type

and amount of overhead induced by our algorithms and how it compares to state-of-

the-art distributed scheduling algorithms.

The total amount of overhead required for execution depends on how often the

system needs to renew its knowledge. Consider three different time-scales in the life of

67

0

17.5

35.0

52.5

70.0

25 50 100

N
et

 S
um

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.22: Net sum-rate performance comparison in scale-free graphs

the network. First, we define topology coherence time, Ttopo, as the amount of time the

network remains static in terms of topology. In other words, the amount of time the

network is correctly described by the graphG. Second, the amount of time the channel

remains constant before changing is denoted channel coherence time, Tchannel. Finally,

the amount of time required for a single communication transmission is denoted data

transmission time, Tdata. The length of each one of these time-scales and their ratios

depend on network properties such as mobility, fading environments, and packet

lengths. Due to the nature of wireless networks and their physical properties, it is

reasonable to assume that in most cases Ttopo ≤ Tchannel ≤ Tdata.

When we describe our proposed algorithms as one-shot algorithms, we are referring

to the fact that they need to exchange information only after some time Ttopo or

Tchannel. This important feature contrasts with a large section of distributed link

68

3.00

5.75

8.50

11.25

14.00

10 20 30

N
et

 S
um

-r
at

e

Number of Users

Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.23: Net sum-rate performance comparison in geometric graphs, d = 0.25

scheduling algorithms which require several rounds of message passing or dedicated

control sub-frames each time a data communication is established, i.e., every Tdata.

The distributed link scheduling algorithms described in Chapter 3 require rounds of

message passing per data transmission time because they are based on queue state

information. The queue state information of each user is updated after each data

transmission and must be communicated every Tdata. While some of these algorithms

only require communication from each node with neighbors only one hop away, they

require large amount of rounds per Tdata. A sequence of message exchanges implicitly

propagates information beyond one hop.

Direct overhead comparisons between the proposed algorithms in this work and

state-of-the-art distributed scheduling algorithms is non-trivial. The primary objec-

tive of the proposed algorithms is a reduction in the number of hops of network

69

0

2.25

4.50

6.75

9.00

5 10 20

N
et

 S
um

-r
at

e

Number of Users
Distributed Coloring Maximal Schedule
Conservative Lower Conservative Upper
Aggressive Lower Aggressive Upper

Figure 8.24: Net sum-rate performance comparison in geometric graphs, d = 0.5

information required for algorithm execution. In other words, we are concerned with

information locality. On the other hand, distributed scheduling algorithms have their

main priority set on reducing computational complexity [21, 20, 4, 5, 16, 22]. Because

the emphasis of efficiency is different in both scenarios, the relative cost of overhead

also changes. Therefore, while several rounds of message passing with neighbors is

typical in distributed scheduling algorithms and considered low overhead, in terms of

information locality, it can represent significant overhead since each round of message

passing can implicitly provide an extra hop of network information.

Chapter 9

Conclusion

In this chapter, we present a summary of our contributions and a list of possible

future directions in which the work presented can be extended.

9.1 Summary of Contributions and Significance

The work presented in this thesis was motivated by the original question of how

and when users in a wireless network should transmit if only local information is

available. To take steps towards solving this challenging problem, we have developed

two distributed algorithms that use only local connectivity information to coordinate

sub-networks that have enough channel information to communicate in an optimal

manner. The key idea behind the algorithms presented is to identify independent

sub-graphs such that, at each time slot, the active users in the network have all the

information required to use physical layers beyond interference avoidance.

The proposed conservative algorithm is guaranteed to have a normalized sum-

rate performance that is greater than or equal to distributed graph coloring. The

aggressive algorithm also shows significant improvement for important graph classes

over distributed graph coloring, maximal scheduling, and the conservative algorithm.

71

These two algorithms are constructive and provide more feasible schemes that can

leverage realistic assumptions of local information.

An implication of the results presented in this thesis is that the algorithms pro-

posed provide a lower bound on the normalized sum-capacity with local information.

The results in this thesis highlight the benefits that can be gained by using local

connectivity and channel information, and going beyond interference avoidance.

9.2 Future Directions

The study of the work we have presented opens the door to several future direc-

tions. The first direction of interest is the idea of exploring sub-network scheduling

when the physical layer is fixed to known achievable schemes. In the work we have

presented, we have concentrated on the fact that the sub-networks being identified

have full information to engage in optimal communication strategies, yet the optimal

communication strategy is not known for many scenarios. If we consider only a set of

physical layer strategies, the identification process and selection of sub-networks to be

scheduled needs to be properly adapted. This direction would generate more practical

algorithms that utilize feasible physical layers and are more easily implementable.

In the third step of the algorithms presented, a distributed multicoloring algo-

rithms was used to schedule sub-networks. Another direction to extend our work is

the use of other distributed scheduling algorithms to schedule the sub-networks iden-

tified and selected in the first two steps of the proposed algorithms. In particular, an

attractive option for scheduling sub-network are algorithms that use random access

and carrier sensing to find schedules. These algorithms can improve performance

since the normalized sum-rate will not be directly dependent on the maximum degree

of the sub-network graph. Random access scheduling algorithms also have the added

advantage of preserving the amount of local information since the only information

72

they need is from their one-hop network.

Finally, the third possible extension for our work is the addition of queues to the

network model. With queue information in our system we can provide queue stability

analysis of our algorithms. With a queue stability analysis of the proposed algorithms,

direct comparison to existing state-of-the-art distributed scheduling algorithms will

become more evident. This type of analysis has the potential to highlight the value

of local information, not just in terms of normalized sum-rate but also in terms of

quality of service and other typical networking performance metrics.

References

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio net-
works,” Automatic Control, IEEE Transactions on, vol. 37, no. 12, pp. 1936–
1948, December 1992. 1, 3.1, 3.1

[2] P. Gupta and P. Kumar, “The capacity of wireless networks,” Information The-
ory, IEEE Transactions on, vol. 46, no. 2, pp. 388–404, March 2000. 1

[3] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-layer rate
control in wireless networks,” in INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3,
March 2005, pp. 1804–1814 vol. 3. 1, 2.1, 1, 4

[4] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the complexity of scheduling
in wireless networks,” in Proceedings of the 12th annual international conference
on Mobile computing and networking, ser. MobiCom ’06, New York, NY, USA,
2006, pp. 227–238. 1, 2.1, 1, 8.5

[5] X. Wu, R. Srikant, and J. Perkins, “Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks,” Mobile Computing, IEEE Transac-
tions on, vol. 6, no. 6, pp. 595–605, June 2007. 1, 2.1, 1, 8.1, 8.5

[6] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, “Throughput and fairness guar-
antees through maximal scheduling in wireless networks,” Information Theory,
IEEE Transactions on, vol. 54, no. 2, pp. 572–594, Feb. 2008. 1, 1

[7] S. Verdu, Multiuser Detection, 1st ed. New York, NY, USA: Cambridge Uni-
versity Press, 1998. 1

[8] T. Han and K. Kobayashi, “A new achievable rate region for the interference
channel,” Information Theory, IEEE Transactions on, vol. 27, no. 1, pp. 49–60,
Jan. 1981. 1

74

[9] V. Cadambe and S. Jafar, “Interference alignment and spatial degrees of freedom
for the k user interference channel,” in Communications, 2008. ICC ’08. IEEE
International Conference on, 2008, pp. 971–975. 1

[10] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, MA:
Cambridge University Press, 2011. 1, 3.2

[11] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P. Mayer,
L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts, performance,
and field trial results,” Communications Magazine, IEEE, vol. 49, no. 2, pp.
102–111, Feb. 2011. 1

[12] H. Sato, “The capacity of the gaussian interference channel under strong inter-
ference (corresp.),” Information Theory, IEEE Transactions on, vol. 27, no. 6,
pp. 786–788, 1981. 1

[13] V. Aggarwal, A. Avestimehr, and A. Sabharwal, “On achieving local view ca-
pacity via maximal independent graph scheduling,” Information Theory, IEEE
Transactions on, vol. 57, no. 5, pp. 2711–2729, May 2011. 1, 2.2, 2.3, 3.2, 4.1,
4.2, 4.3, 6.1.1, 8

[14] V. Aggarwal, Y. Liu, and A. Sabharwal, “Sum capacity of interference channels
with a local view: Impact of distributed decisions,” Information Theory, IEEE
Transactions on, vol. 58, no. 3, pp. 1630–1659, March 2012. 1, 4.2

[15] F. Kuhn, “Local Multicoloring Algorithms: Computing a Nearly-Optimal
TDMA Schedule in Constant Time,” in 26th International Symposium on The-
oretical Aspects of Computer Science, ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 3, Dagstuhl, Germany, 2009, pp. 613–624. 1, 4.3, 7,
7.1, 7.2, 7.3

[16] X. Lin and S. Rasool, “Constant-time distributed scheduling policies for ad hoc
wireless networks,” in Decision and Control, 2006 45th IEEE Conference on,
2006, pp. 1258–1263. 2.1, 3, 8.5

[17] L. Jiang, D. Shah, J. Shin, and J. Walrand, “Distributed random access algo-
rithm: Scheduling and congestion control,” Information Theory, IEEE Transac-
tions on, vol. 56, no. 12, pp. 6182–6207, 2010. 3.1

[18] J. Lee, J. Lee, Y. Yi, S. Chong, A. Proutiere, and M. Chiang, “Implement-
ing utility-optimal CSMA,” in Communication, Control, and Computing, 2009.
Allerton 2009. 47th Annual Allerton Conference on, 2009, pp. 102–111. 3.1

[19] Y. Yi, A. Proutière, and M. Chiang, “Complexity in wireless scheduling: impact
and tradeoffs,” in Proceedings of the 9th ACM international symposium on Mobile
ad hoc networking and computing, ser. MobiHoc ’08. New York, NY, USA: ACM,
2008, pp. 33–42. 3.1

75

[20] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling with constant
overhead,” SIGMETRICS Perform. Eval. Rev., vol. 35, no. 1, pp. 313–324, Jun.
2007. 2, 8.5

[21] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in wireless
networks via gossiping,” in Proceedings of the joint international conference on
Measurement and modeling of computer systems, ser. SIGMETRICS ’06/Perfor-
mance ’06, New York, NY, USA, 2006, pp. 27–38. 2, 8.1, 8.5

[22] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed scheduling al-
gorithms for wireless networks,” IEEE/ACM Trans. Netw., vol. 17, no. 6, pp.
1846–1859, Dec. 2009. 3, 8.5

[23] C. Joo and N. B. Shroff, “Performance of random access scheduling schemes
in multi-hop wireless networks,” IEEE/ACM Trans. Netw., vol. 17, no. 5, pp.
1481–1493, Oct. 2009. 3

[24] P. Marbach and A. Eryilmaz, “A backlog-based CSMA mechanism to achieve
fairness and throughput-optimality in multihop wireless networks,” in Commu-
nication, Control, and Computing, 2008 46th Annual Allerton Conference on,
2008, pp. 768–775. 3

[25] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput and
utility maximization in wireless networks,” IEEE/ACM Trans. Netw., vol. 18,
no. 3, pp. 960–972, Jun. 2010. 3

[26] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algo-
rithms for achieving maximum throughput and low delay in wireless networks,”
Networking, IEEE/ACM Transactions on, vol. 20, no. 3, pp. 825–836, June 2012.
3

[27] C. Joo and N. Shroff, “Local greedy approximation for scheduling in multihop
wireless networks,” Mobile Computing, IEEE Transactions on, vol. 11, no. 3, pp.
414–426, March 2012. 4

[28] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput efficiency
of greedy maximal scheduling in wireless networks,” Networking, IEEE/ACM
Transactions on, vol. 19, no. 3, pp. 709–720, June 2011. 4

[29] D. Baker, J. Wieselthier, and A. Ephremides, “A distributed algorithm for
scheduling the activation of links in a self-organizing, mobile, radio network,”
in IEEE ICC, vol. 82, 1982, p. 2F. 3.1

[30] D. Shah, P. Giaccone, and B. Prabhakar, “Efficient randomized algorithms for
input-queued switch scheduling,” Micro, IEEE, vol. 22, no. 1, pp. 10–18, 2002.
3.1

76

[31] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies for fading
wireless channels,” Networking, IEEE/ACM Transactions on, vol. 13, no. 2, pp.
411–424, 2005. 3.1

[32] G. Sharma, C. Joo, and N. B. Shroff, “Distributed scheduling schemes for
throughput guarantees in wireless networks,” in the 44th Annual Allerton Con-
ference on Communications, Control, and Computing, 2006. 3.1

[33] S. Sarkar and K. Kar, “Achieving 2/3 throughput approximation with sequential
maximal scheduling under primary interference constraints,” in Proceedings of
44th Annual Allerton Conference on Communication, Control and Computing,
2006, pp. 27–29. 3.1

[34] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling for dis-
tributed throughput maximization in wireless networks,” in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, 2008, pp. 1139–1147.
3.1

[35] L. Ying and S. Shakkottai, “Scheduling in mobile ad hoc networks with topology
and channel-state uncertainty,” in INFOCOM 2009, IEEE, 2009, pp. 2347–2355.
3.1

[36] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovi-
cic, “Flashlinq: A synchronous distributed scheduler for peer-to-peer ad hoc
networks,” in Communication, Control, and Computing (Allerton), 2010 48th
Annual Allerton Conference on, 2010, pp. 514–521. 3.1

[37] S. A. Jafar, “Topological interference management through index coding,” arXiv
CoRR, vol. abs/1301.3106, 2013. 3.2

[38] N. Naderializadeh and A. S. Avestimehr, “Interference networks with no csit:
Impact of topology,” arXiv CoRR, vol. abs/1302.0296, 2013. 3.2

[39] D. T.-H. Kao and A. Sabharwal, “On capacity regions of interference channels
with mismatched local views,” arXiv CoRR, vol. abs/1110.0886, 2011. 3.2

[40] K. Sutuntivorakoon, V. Aggarwal, A. Avestimehr, and A. Sabharwal, “Maximal
k-clique scheduling: A simple algorithm to bound maximal independent graph
scheduling,” in Communication, Control, and Computing (Allerton), 2011 49th
Annual Allerton Conference on, 2011, pp. 816–823. 4.2, 6.1.1

[41] R. Diestel, “Graph Theory,” Graduate Texts in Mathematics. Springer-Verlag,
Heidelberg, vol. 173, 2005. 7

[42] N. Linial, “Locality in distributed graph algorithms,” SIAM Journal on Com-
puting, vol. 21, no. 1, pp. 193–201, 1992. 7

77

[43] M. Luby, “Removing randomness in parallel computation without a processor
penalty,” in Foundations of Computer Science, 1988., 29th Annual Symposium
on, 1993, pp. 162–173. 7

[44] K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer, “Distributed col-
oring in O(

√
(log n)) bit rounds,” in Proceedings of the 20th international con-

ference on Parallel and distributed processing, ser. IPDPS’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 44–44. 7

[45] R. Karp, “Reducibility among combinatorial problems,” in 50 Years of Integer
Programming 1958-2008. Springer Berlin Heidelberg, 2010, pp. 219–241. 7

[46] M. Luby, “A simple parallel algorithm for the maximal independent set problem,”
SIAM Journal on Computing, vol. 15, no. 4, pp. 1036–1053, 1986. 7

[47] M. Wattenhofer and R. Wattenhofer, “Distributed weighted matching,” in Dis-
tributed Computing, ser. Lecture Notes in Computer Science, R. Guerraoui, Ed.
Springer Berlin Heidelberg, 2004, vol. 3274, pp. 335–348. 7

[48] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev.
Mod. Phys., vol. 74, pp. 47–97, Jan 2002. 8.2

[49] A. Korman, J.-S. Sereni, and L. Viennot, “Toward more localized local algo-
rithms: removing assumptions concerning global knowledge,” in Proceedings of
the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, ser. PODC ’11, New York, NY, USA, 2011, pp. 49–58. 8.3.2

[50] D. Peleg, Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics, 1987, vol. 5. 8.3.2

	Title Page Signed
	thesis
	Abstract
	Acknowledgements
	1 Introduction
	2 System Model and Problem Formulation
	2.1 Network Model
	2.2 Local View
	2.3 Normalized Sum-rate

	3 Related Work
	3.1 Interference Avoidance: Link Scheduling
	3.2 Beyond Interference Avoidance

	4 Overview
	4.1 Approach
	4.2 Contributions
	4.3 Overview of Proposed Algorithms

	5 Step 1: Identification (G G-(v))
	6 Step 2: Selection (G-(v) G(v))
	6.1 Consevative Selection Algorithm
	6.2 Aggressive Selection Algorithm

	7 Step 3: Scheduling
	7.1 Local Multicoloring Algorithm
	7.2 Application
	7.3 Overhead

	8 Results
	8.1 Conservative Algorithm Guarantee
	8.2 Numerical Results: Normalized Sum-Rate
	8.3 Net Sum-rate Comparisons
	8.4 Numerical Results: Net Sum-rate
	8.5 Remarks on Overhead

	9 Conclusion
	9.1 Summary of Contributions and Significance
	9.2 Future Directions

	References

